

Requirements Specification as Executable Software
Design – A Behavior Perspective

Albert Fleischmann1, Werner Schmidt2, and Christian Stary3
1 Interaktiv.Expert, Germany

Albert.Fleischmann@Interaktiv.Expert
2Technische Hochschule Ingolstadt, Germany

Werner.Schmidt@thi.de
3University of Linz, Austria

Christian.Stary@jku.at

Abstract. Today’s application development requires agile project structures and
active involvement of concerned stakeholders. Transforming of representations
from requirements specification to executable design models hinders seamless
roundtrip engineering and dynamic adaptation. Subject-oriented software pro-
cesses allow fine-grained modeling and subsequent execution of mutually ad-
justed stakeholder behaviors representing the business logic of an organization.
They enable continuous requirements engineering in the sense of non-disruptive
articulation and specification of process knowledge that represents executable
software elements. In this contribution we reveal these capabilities of Subject-
oriented Business Process Management according to several scenarios of re-
quirements management: (i) development of some business logic starting from
scratch, and (ii) extensions and adaptation of behaviors. Each scenario is illus-
trated by respective business cases.

Keywords: Specification, process modeling, adaptability, seamless develop-
ment, automated execution

1 Introduction

Albeit agile approaches, such as Scrum, SW-Engineering is still a disruptive process
due to the gap between requirements engineering, design, and implementation, thus
hindering rapid development and adaptability of software [1,2,3,19]. Although the
idea of real-time adaptation has been established quite early, more effort is still need-
ed to correct errors in the later phases of the!software life cycle [16]. The current fo-
cus in research is on eliminating ‘discontinuities between development and deploy-
ment’ [6]. In [17] five research challenges for requirements at run-time are listed: (i)
‘Run-time representations of requirements; (ii) Evolution of the requirements model
and its synchronization with the architecture, (iii) Dealing with uncertainty, (iv) Mul-
ti-objective decision-making, (v) Self-explanation’ (p. 15). The authors propose a
framework addressing these challenges by maintaining run-time representations of
requirements using so-called run-time requirement artifacts. They allow users provid-

9

Copyright © 2015 by the authors. Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

ing new or changed requirements to the software system in terms of requirement
models. These models are expressed in a specific way (Techne) and maintained by the
run-time requirements artifacts, and stored in a repository. All user inputs are kept, so
that alternatives can be used for adaptation of the software system. Adaptation is
achieved by reconfiguring requirements and their operationalization, leading to dif-
ferent forms of representation. Such an endeavor is likely to require transformation of
representation that can be facilitated by intuitive diagrammatic languages, such as
UML (cf. [4]). However, the desired output of a Requirement Engineering!process!is a
complete software system specification expressed using a formal!language!on which
execution can be based upon [16]. The language needs to be precise and unambiguous
while high-level for stakeholder acceptance. The subject-oriented modeling language,
based on communication requirements and their underlying processes and theories,
can meet this goal [7]. It allows persons involved in business processes as well as
software engineers to create integral, task/role-conformant and unambiguous specifi-
cations that, due to its formality, can be utilized for automation. Continuous Require-
ments Engineering can thus be based on seamless roundtrip engineering.
 The contribution follows the direction towards evolutionary information system
development as recently proposed in [18] utilizing subject orientation. The authors
aimed at overcoming development deficiencies, such as project initiation by manage-
ment and modeling by modeling experts, through active stakeholder involvement.
This involvement should not be restricted to requirements analysis, e.g., through par-
ticipating in workshops, but rather focus on mapping each stakeholder perception of
work into an executable process, that can be aligned with others to form an overall
model. In the following, we present our effort to utilize the subject-oriented approach
allowing requirements articulation, model representation, and subsequent model exe-
cution. The paper is organized as follows. Section 2 explains existing approaches to
bridging the gap between requirements management, design and implementation of
software systems. Sections 3 and 4 provide the elements of the process language and
present concrete examples of application development along different development
scenarios. Section 5 summarizes the objectives and achievements while referring to
further research issues.

2 Existing Approaches

Even agile approaches to SW Engineering, such as QUMAS [5], focus on organizing
the development process along small and controlled steps, rather than referring to
stakeholder requirements and their representation for communication or execution.
Castro et al. [2] have proposed a requirements-driven methodology that could be used
for structuring agile development steps. It consists of four phases: (i) ‘Early require-
ments, concerned with the understanding of a problem by studying an organizational
setting; the output of this phase is an organizational model which includes relevant
actors, their respective goals and their interdependencies; (ii) Late requirements,
where the system-to-be is described within its operational environment, along with
relevant functions and qualities, (iii) Architectural design, where the system’s global
architecture is defined in terms of sub-systems, interconnected through data, control
and other dependencies, (iv) Detailed design, where behavior of each architectural

10

component is defined in further detail.’ (p. 366) The methodology also targets execu-
tion by using an agent-oriented programming platform for implementation. Hereby,
the detailed design consists of (system) actors, goals and interdependencies among
them. As such it follows the primacy of functions for software development.
 For bridging the gap between requirements and design/execution specification in a
structured way, model-driven approaches have been introduced and gained tradition
[10,12,13,15]. On the architecture level model-driven development enforces the im-
plementation-independent representation of applications. In order to enable accurate
execution of models the OMG has defined a standard procedure for transformations
[20]. However, the capabilities of tools seems to be crucial for successful practical
use, given recent studies on the interface between specification and execution, as
provided by Yang et al. [22] for UML and Model-Driven Architecture (MDA).
 Software Process Languages might support bridging gaps between requirements
specification, design models, and execution (cf. [2,14]). García-Borgoñon et al. [9] in
a recent study found more than 40 languages reported since 2000, each of which with
a concrete purpose. Revealing the trends of software process modeling language de-
velopment over the last ten years, according to the authors, model-based Software
Process Modeling Languages seem to be the current trend. However, the process of
building a final system can be regarded as a series of model transformations. Model
transformation is a major task in model-driven software development. Once coherent
and consistent specifications can be generated, automation could occur early in devel-
opment. In MDA models on different levels of abstraction allow capturing a dedicated
development or runtime perspective, as is target for a comprehensive description of a
technical artifact [13]. For implementation architectural issues grounded in user-
centred design play a crucial role, whereas for design the user perspective and the
mapping of this perspective to design representations are of major importance.
 The user perspective of involved stakeholders has also been addressed through
‘opportunistic BPM’ [11]. The authors aim at bottom-up design allowing for alterna-
tive task execution paths. Users of the software system are involved in modeling,
assuming the complexity of the models and design methodology can be decreased,
while the acceptance of the software system can be increased in this way. The model
comprises business processes in an object-oriented specification and in terms of finite
state machines. Such an approach brings Business Process Management (BPM) life
cycle models into play, as they structure designing and executing business processes,
in order to facilitate organizational development steps (cf. [21]). Each iteration corre-
sponds to a certain level of organizational development, and can be achieved either in
a linear (traditional) or a non-linear sequence (like in Subject-oriented BPM [7]).
 Non-linear development allows improving the individual organization of work
dynamically, depending on the connectivity to an execution engine. The more directly
modeling is coupled to execution the more direct effects of changes can be experi-
enced, and more stakeholders are able to continuously adapt the organization of work.
In any case, modeling has to be considered the core activity, as models serve as focal
representation of existing processes and required adaptations.

11

3 Continuous Construction of Requirements

In Subject-oriented Business Process Management (S-BPM) [7,8] an organization is
represented in terms of interacting subjects specified in S-BPM Interaction Diagrams
(SIDs). Outcome is generated through the exchange of business objects that are pro-
cessed by functions. Functions are performed by the involved subjects, and are speci-
fied in S-BPM Behavior Diagram (SBDs). By focusing from the beginning on the
functional behavior of each participating party (humans or systems) in a business
case, S-BPM captures all essential aspects of BPM, namely the Who, the What, the
How (including data), and the When. However, it is the communication-oriented way
of specifying organizational and stakeholder behavior ensuring coherence and reduc-
ing complexity in continuous requirements management. We exemplify continuous
construction using a common process application: Employees have to apply for going
on holidays or taking days off, and need management for approving their request.
 Continuous construction starts with an empty model, and the process model is
constructed step by step. Task-relevant actors or systems need to be identified as the
process specification evolves, and the lines of interaction need to be included as re-
quired for task accomplishment. Subject-oriented modeling of processes requires:
• identifying and describing the subjects involved in the process,
• identifying and describing interactions the subjects are part of,
• specifying the messages they send or receive through each interaction, and
• detailing the behavior of each subject.

!
Fig. 1. Identified subjects and their interactions - a Subject Interaction Diagram

 Figure 1 exemplifies the identified subjects and the messages they exchange for
the holiday application procedure explained above. The modeler has identified the
following subjects: Employee, Manager, Human Resource Department (HR). The
messages they need to exchange according to the scenario description above are: Va-
cation Request from Employee to Manager, Approval or Denial from Manager to
Employee, Approval from Manager to Human Resource Department (HR). The re-
sulting diagram is termed Subject Interaction Diagram (SID) as it contains all the
subjects involved and the interaction relations they need to have for accomplishing a
certain task. The behaviour of subjects is described by three states (send, receive,
internal function) and transitions between these states. These states represent opera-
tions as they are active elements of the subject description. Services are being used to
implement the states. State transitions are necessary to exchange business objects.

12

Fig. 2. The S-BPM Subject Behavior Diagram for Employee

 When specifying the behavior of each subject, as shown in Figure 2 for the em-
ployee, a sequence of sending & receiving messages and functional activities to be set
for task accomplishment need to be represented. In the initial (top) state the employee
fills in a holiday application form. Upon completion the employee’s state switches to
the next state via the transition ‘Vacation Request written’. This state is a sending
state. In this state the holiday application is sent to the manager. After successful
sending the employee reaches the state ‘Wait for manager’s answer’ waiting for ap-
proval or denial. This state is a receiving state. In case of denial the process termi-
nates. In case of approval, the holidays can be taken as applied for. Upon return of the
employee the holiday application process terminates, too.
 The behavior of the manager is complementary to the employee’s. The messages
sent by employee are received by the manager and vice versa. The manager is on hold
for the holiday application of the employee. Upon receipt of the Vacation Request the
holiday application is examined (function state). This check can either result in an
approval or a denial, leading to either state, informing the employee, and HR (only in
case of approval). In case the holiday application is approved, the HR department is

13

informed about the successful application, and for the subject Manager the process
comes to an end.
 Finally, the behavior of the HR department has to be detailed. HR receives the
approved holiday application and puts it to the employee’s days-off record, without
further activities (process completion). At least one operation needs to be assigned to
each state. Further detailing of operations is not necessary at the modeling stage of S-
BPM, as operations might be processed by existing applications. For instance, filling
in a Vacation Request could be supported by a transaction of an ERP (Enterprise Re-
source Planning) system. A corresponding form based on the structure of an employee
data record could be processed for application purposes. Objects encapsulate all rele-
vant data manipulations based on the Subject Behavior Diagram. Hence, the business
object Vacation Request Form for the Holiday Application case contains the follow-
ing operations: examine application, approve request, specify reason for denial, in-
form on vacation - inform HR.
 The resulting peer-to-peer network contains all the subject behaviors and objects
relevant for a business operation at hand. Since it also captures the interactions re-
quired for collaborative task accomplishment, it contains a complete control flow
description for generating workflows. Using a corresponding interpreter or BPM
suite, such as Metasonic (www.metasonic.de), S-BPM models can be executed after
validating them - business processes can be experienced interactively, even when
some subjects and messages have not been assigned to concrete actors, systems and
message paths. In S-BPM these assignments are performed in the course of technical
and organizational implementation (see [7]).

4 Dynamic Change Management

Once models are constructed they can be modified through enriching existing SIDs or
SBDs, e.g., including travel agencies handling booking requests either from employ-
ees or the HR department. Beyond that, alternative behaviors for each subject can be
created when needed. We demonstrate that requirements engineering feature along a
business case different to the holiday approval procedure above. Figures 3 shows the
interaction structure of an order handling process of an organization, consisting of
three subjects and the messages they exchange. Figure 4 depicts part of the behavior
of the subjects Customer and Order Handling when taking orders from customers.
 In the first state of its behavior, the subject Customer executes the internal func-
tion ‘Prepare order’. When this function is finished, the transition ‘order prepared’
follows. In the succeeding state ‘send order’, the message ‘order’ is sent to the subject
Order Handling. After this message has been sent, the subject Customer goes into the
state ‘wait for confirmation’. If this message is not available, the subject stops its
execution until the corresponding message arrives. Upon receipt the subject follows
the transition into state ‘wait for product’ and so forth. The subject Order Handling
waits for the message ‘order’ from the subject Customer. If this message comes in, it
is removed and the succeeding function ‘check order’ is executed and so on.

14

Fig. 3. Part of the behavior diagrams of the subjects Customer and Order Handling

 A business case like that is likely to require adaptation towards non-standard be-
haviors, e.g., due to changing customer needs or emergency situations, thus, leading
to continuous requirement engineering for adequate workflow support. In particular,
in case a customer is able to change orders, adaptations of the models are required.
These can be implemented on the interaction and behavior level.

Fig. 4. Subject Interaction Diagram including changed requirements

Send
order

Prepare
order

Wait for
confirmation

End

Check
delivery

Wait for
product

To::Order:handling
Order

From::Shipment
Deliver product

From::Order:handling
Order:confirmation

Order:prepared

Rest:of
subject
behavior

Customer
Wait for
order

From::Customer
Order

Check
order

Order:checked

Confirm
order

To::Customer
Order:confirmation

Handover to
shipment

To::Shipment
Delivery request

End

Rest:of
subject
behavior

Order+handling

15

Fig. 5. Refinement of modifications in the Behavior Diagrams of the subject ‘customer’

 Figure 4 shows the extension of message exchanges when allowing for changing
orders, as it requires approval. In Figure 5 the corresponding customer behavior is
detailed, introducing the concept of message guards [8]. It allows continuous refine-
ment according to non-standard business behavior. The example indicates how stake-
holders can introduce additional requirements in the process model, even indicating
exceptions to routine behavior, and how these changes could propagate to execution
based on the model specifications. This S-BPM feature not only minimizes the time
spent from articulation of requirements to their implementation in a running system,
but also leads to a high level of consistency between the desired and the actual behav-
ior of a software system. Since the changes are made by stakeholders they can incor-
porate novel behavior sequences continuously into ones they have done beforehand.
In this way, adaptations can get accepted from the involved stakeholders (represented
as subjects) before being fully implemented.

5 Conclusion

When agile project structures and active involvement of concerned stakeholders be-
come part of organizational change, requirements to software development might
change continuously. Hence, the effort for transforming representations from re-
quirements specification to executable design models should be minimized. Ideally,
requirement specifications support fine-grained modeling at a semantically precise
level that enables the direct execution of these specifications. We have demonstrated

16

such as an approach on the level of business processes utilizing the capabilities of
Subject-oriented Business Process Management. Its diagrammatic modeling language
allows stakeholders continuously articulating their requirements and subsequently
refining them to executable behavior components (subjects) ensuring utmost parallel-
ism. However, it still has to be investigated how such a paradigmatic shift can be put
to organizational development practice, namely maintaining an interaction perspective
in parallel to the functional one on work and business structures.
 In particular, organizations that are organized in a hierarchical way might experi-
ence difficulties with highly parallel behavior structures - subject orientation provides
the highest potential when stakeholders individually and in parallel can change their
behavior according to their needs, as long as they act along the communication pat-
terns between the subjects (specified through message exchanges).
 Finally, S-BPM, due to its capability to precisely describe the execution of process
components, is likely to have impact on software engineering. The concept of reactive
programming (cf. http://www.reactivemanifesto.org/#the-need-to-go-reactive) has its
focus on easy-to-arrange and -adapt micro services, in order to meet the original idea
of real-time adaptation of software (components). In that context, subjects and their
fundamental interaction scheme could play a crucial enabling role, as micro-services
could be represented as fine-grained while agile subjects.

References

1. Alford, M. W.: A requirements engineering methodology for real-time processing re-
quirements. IEEE Trans. Software Eng., 3(1), 60-69 (1977)

2. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems
engineering: the Tropos project. Information Systems, 27(6), pp. 365-389 (2002)

3. Cohn, M.: Succeeding with agile: software development using Scrum. Pearson Education,
London (2010)

4. Czopik, J., Košinár, M. A., Štolfa, J., Štolfa, S.: Formalization of software process using
intuitive mapping of UML Activity Diagram to CPN. In Proc.Fifth International Confer-
ence on Innovations in Bio-Inspired Computing and Applications (IBICA), pp. 365-374.
Springer, London (2014)

5. Fitzgerald, B., Stol, K. J., O'Sullivan, R., O'Brien, D.: Scaling agile methods to regulated
environments: An industry case study. In Proc. International Conference on Software En-
gineering, pp. 863-872. IEEE Press, New York (2013)

6. Fitzgerald, B., Stol, K. J.: Continuous software engineering and beyond: trends and chal-
lenges. In Proc. 1st International Workshop on Rapid Continuous Software Engineering,
pp. 1-9. ACM, New York (2014)

7. Fleischmann, A., Schmidt, W., Stary, C., Obermeier, S., Börger, E.: Subject-oriented
Business Process Management. Springer, Berlin (2012)

8. Fleischmann, A., Kannengiesser, U., Schmidt, W., Stary, C.: Subject-oriented modeling
and execution of multi-agent business processes. In Proc. International Joint Conferences
on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), ACM, Vol. 2, pp.
138-145. IEEE, New York (2013)

9. García-Borgoñon, L., Barcelona, M. A., García-García, J. A., Alba, M., Escalona, M. J.:
Software process modeling languages: A systematic literature review. Information and
Software Technology, 56(2), pp. 103-116 (2014)

17

10. Gruhn, V., Pieper, D., Röttgers, C.: MDA®. Effektives Software-Engineering mit UML2®
und EclipseTM. Springer, Berlin (2006)

11. Grünert, D., Brucker-Kley, E., Keller, T.: oBPM–An Opportunistic Approach to Business
Process Modeling and Execution. (2014) Download from
http://pd.zhaw.ch/publikation/upload/207332.pdf (6.1.2015)

12. Hurtado Alegría, J. A., Bastarrica, M. C., Quispe, A., Ochoa, S. F.: An MDE approach to
software process tailoring. In Proc. International Conference on Software and Systems
Process pp. 43-52. ACM, New York (2011)

13. Miller, J., Mukerji, J.: MDA® Guide, OMG, www.omg.org (2003)
14. Pandey, D., Suman, U., Ramani, A. K.: An effective requirement engineering process

model for software development and requirements management. In Proc. International
Conference on Advances in Recent Technologies in Communication and Computing
(ARTCom), pp. 287-291. IEEE, New York (2010)

15. Petrasch, R., Meimberg, O.: Model-Driven Architecture. Eine praxisgerechte Einführung
in die MDA. dpunkt, Heidelberg (2006)

16. Pohl, K.: The three dimensions of requirements engineering. In Seminal Contributions to
Information Systems Engineering pp. 63-80. Springer, Berlin (2013)

17. Qureshi, N. A., Perini, A., Ernst, N. A., Mylopoulos, J.: Towards a continuous require-
ments engineering framework for self-adaptive systems. In Proc. First International Work-
shop on Requirements@ Run.Time (RE@ RunTime), pp. 9-16. IEEE, New York (2010)

18. Schiffner, S., Rothschädl, T., Meyer, N.: Towards a Subject-Oriented Evolutionary Busi-
ness Information System. In 18th International Enterprise Distributed Object Computing
Conference (EDOCW), pp.381-388. IEEE, New York (2014)

19. Schwaber, K., Beedle, M. Agile software development with Scrum. Pearson, London
(2002)

20. Sendall, S., Kozaczynski, W.: Model Transformation - the heart and soul of model-driven
software development. IEEE Software, Special Issue on Model Driven Software Devel-
opment, Vol.20, No. 5, (2003)

21. Weske, M.: Business process management. Concepts, languages, architectures. 2nd ed.,
Springer, Berlin (2012)

22. Yang, D., Liu, M., Wang, S.: Object-oriented methodology meets MDA. In Proc. ICSESS,
3rd Int. Conf. on Software Engineering and Services, pp. 208-211. IEEE, New York (2012)

18

