Performance Analysis Patterns for
Requirements Analysis

Azadeh Alebrahim

Paluno - The Ruhr Institute for Software Technology, University of Duisburg-Essen, Germany
azadeh.alebrahim@paluno.uni-due.de

Abstract. Many problems might arise when performance requirements are not
taken into account from the beginning of software development. Architectural
solutions such as performance patterns represent design decisions on the archi-
tecture level that might constrain quality requirements significantly. Knowledge
which is gained in the solution space, for example from performance patterns,
should be reflected in the requirements engineering to obtain sound architectures
and correct requirements. We propose to reuse performance architectural patterns
in the requirements engineering in a systematic manner to equip requirement
models with performance solution approaches early in the software development
process. To this end, we propose performance analysis patterns. The performance
requirement models elaborated with performance analysis patterns can easily be
transformed into a particular solution at the design level.

1 Introduction

Many software systems fail to achieve their quality objectives due to neglecting quality
requirements at the beginning of the software development life cycle [1]. Problems such
as loss of productivity, loss of revenues, loss of customers, cost overruns, etc. arise when
software systems are constructed without having performance in mind [2]. Fixing such
problems afterwards (by modifying the code) is costly or even hardly possible. The
software after fixing such problems might be erroneous or might not perform as well as
software which has been constructed under performance considerations [3]. Therefore,
performance as one of the critical quality requirements to the success of a software
system must be integrated from the beginning into software development to prevent
performance problems.

Patterns describe solutions for commonly recurring problems in software develop-
ment. They are defined for different software development phases, such as problem
frames [4], architectural styles [5] for the architectural level and design patterns [6] for
the design level. Most patterns provide information about the proposed solution inclu-
ding the intent, structure, participants, and collaborations, whereas the problem to be
solved is illustrated only by scenarios and situations in which the specific pattern can
be applied. The essence of the problem and its structure, which is important for being
able to apply a pattern, is not provided.

In this paper, we propose patterns that can be applied during the requirements en-
gineering phase to refine the requirement models. These patterns reuse the knowledge
gained in the design phase (solution space) to equip the requirement models (problem

Performance Analysis Patterns ... 55

space) with solution approaches early in the software development process. We leve-
rage existing performance patterns for the architecture level as solutions for perfor-
mance problems in order to adapt them for the requirements analysis phase. We call the
adapted patterns performance analysis patterns. That is, we do not only elicit and model
performance requirements, but also provide solution approaches for these requirements.

The benefit of the proposed performance analysis patterns is manifold. First, they
provide guidance for refining performance problems located in the problem space Thus,
they nudge software engineers to think about performance problems and early solution
approaches as early as possible in the software development. Second, the elaborated
performance requirement models can easily be transformed into a particular solution
at the design level. Thus, it bridges the gap between performance problems and per-
formance solutions. Third, it supports less experienced software engineers in applying
solution approaches early in the requirements engineering phase in a systematic man-
ner.

As a basis for requirements analysis, we use the problem frames approach [4]. We
use the problem frames approach, because 1) it allows decomposing the overall software
problem into subproblems, thus reducing the complexity of the problem, 2) it makes it
possible to annotate problem diagrams with quality requirements, such as performance
requirements, 3) it enables various model checking techniques, such as requirements
interaction analysis and reconciliation [7] due to its semi-formal structure, and 4) it
supports a seamless transition from requirements analysis to architectural design (e.g.
(8D.

The remainder of this paper is organized as follows. Section 2 introduces the ex-
ample CoCoME. We give a brief description of problem frames in Section 3. Section 4
describes the performance analysis patterns for the requirements analysis phase. We
describe how to use the proposed patterns in Section 5. Section 6 presents related work
and Section 7 concludes the paper and points out suggestions for future work.

2 Application Example CoCoME

To illustrate the applicability of our approach, we use the Common Component Mode-
ling Example (CoCoME) [9], which is a trading system to be deployed in supermarkets
for handling sales. Different tasks can be performed using this trading system, such as
scanning the products using a bar code scanner, paying by cash or credit card taking
place at a single cash desk, logging sale information and updating the stock inventory
as well as administrative tasks such as generating reports or ordering products. A store
contains several cash desks, called a cash desk line. Each cash desk is connected to
a store server which itself is connected to a store client. Detailed description of the
example CoCoME is described in [9].

The functionality of the trading system CoCoME is described as use cases, each of
which is concerned with several activities that can be divided into several functional
requirements. By means of the requirement R5, we illustrate the use of performance
analysis patterns. The requirement R5 requires logging of sale information and updating
the stock of inventory.

56 A. Alebrahim

3 Background

This section outlines the basic concepts of problem frames as a requirements engi-
neering approach. Problem frames are a means to understand, describe, and analyze
software development problems proposed by Michael Jackson [4]. A problem frame is
described by a frame diagram, which basically consists of domains, interfaces between
them, and a requirement. The task is to construct a machine (i.e., software) that im-
proves the behavior of the environment (in which it is integrated) in accordance with
the requirements. A problem diagram represents an instance of a problem frame.

We use a UML-based enhancement of problem frames, which is extended by a spe-
cific UML profile for problem frames (UML4PF) proposed by Hatebur and Heisel [10].
The software to be developed (machine in problem frames terminology) is represented
by the stereotype <machine>>. Jackson distinguishes the domain types biddable do-
mains (represented by the stereotype <BiddableDomain>>>) that are usually peo-
ple, causal domains (< CausalDomain>>) that comply with some physical laws, and
lexical domains (& LexicalDomain>>) that are data representations. Figure 1 shows
the problem diagram for the client side of the requirement R5 which is concerned with
logging sale information and updating the stock of inventory. It describes that the ma-
chine domain LogUpdateStockClient obtains sale information from the lexical domain
Salelnformation and sends it through the domain Network to the server.

In problem diagrams, interfaces connect domains and they contain shared pheno-
mena. Shared phenomena may, e.g., be events, operation calls or messages. They are
observable by at least two domains, but controlled by only one domain, as indicated by
“1”. The notation SI!{contentO fSI} (between the domains LogUpdateStockClient
and Salelnformation) in Figure 1 means that the phenomenon contentOfSI is controlled
by the domain LogUpdateStockClient. When we state a requirement we want to change
something in the world with the machine to be developed. Therefore, each requirement
expressed by the stereotype <requirement > constrains at least one domain. This
is expressed by a dependency from the requirement to a domain with the stereotype
< constrains>>. A requirement may refer to several domains in the environment
of the machine. This is expressed by a dependency from the requirement to a domain
with the stereotype <refersTo>>. The requirement R5-/ in Figure 1 constrains the
domain Network. It refers to the domain Salelnformation.

sproblemDiagrams
LoggingAndUpdatingStockClient

wlexicalDomain:
SlicontentOTsI} Salelnformation ~ . srefersTos
smaching, resources - stequirement:
LogUpdateStockClient - R5-1
-7 l
LUSCRYsendSl}

ecausalDomain, hwhledias |£2 «CONStraings :«complemems»
Network X
arequirement, pasteps
PerfR5-1

Fig. 1. Problem diagram for logging sale information and updating the stock of inventory

Performance Analysis Patterns ... 57

To be able to annotate problem diagrams with quality requirements, we extended
the UML profile for problem frames [8]. It enables us to complement functional re-
quirements with quality requirements. A dependency from a quality requirement to
a functional one is expressed with the stereotype < complements>>. To specify and
model quantitative performance annotations, we use the UML profile MARTE [11]. In
Figure 1, the performance requirement PerfR5-1 complements the functional require-
ment R5-1.

4 Performance Analysis Patterns

In this section, we propose an adaptation for existing performance patterns from the
literature [12,13]. Our adaptation allows the use of such performance patterns in the
requirements analysis phase for the analysis of performance problems.

The adaptation encompasses a generic template for describing performance patterns
textually. It has to be instantiated for each performance pattern explicitly. In addition
to the template, we provide a problem frame that describes the generic structure of the
problem. Then, we describe the solution approach by introducing a new problem frame
that describes the generic solution structure. We call such performance patterns adapted
in order to be used for requirements analysis performance analysis patterns.

4.1 Template for Performance Analysis Patterns

According to Gamma et al. [6], a pattern describes a recurring problem and the core
of the solution for that problem. Architectural patterns can be applied to meet qua-
lity requirements. They represent design decisions on the architecture level that affect
the achievement of quality requirements significantly. A performance pattern conveys
essential performance-specific information and principles for facilitating the reuse of
performance knowledge.

We make use of a collection of existing performance patterns taken from current
literature [12,13] in order to adapt them for the requirements analysis phase. To this
end, we propose a template that represents the concepts contained in such patterns in a
way that they can be used in a higher abstraction level than architecture level, namely in
the requirements analysis phase. Our proposed template illustrated in Table 1 is inspired
by the template for design patterns from Gamma et al. [6]. We modified the template
for design patterns to describe and represent performance-specific information. Our
template contains additional information for modeling a performance analysis pattern
using the UML profiles UML4PF and MARTE. The proposed template allows to define
new performance analysis patterns according to this structure as well.

The fields problem and applicability describe when the pattern can be applied. They
represent the pre-conditions for the pattern at hand. The fields solution, collaboration,
benefits, and consequences describe the solution including its elements, their relation-
ships, and their behavior. They represent the post-conditions for the pattern at hand.

58 A. Alebrahim

Table 1. Template for performance analysis patterns

1) Name Name of the pattern

2) Description Brief description of the pattern

3) Also known as Other well-known names for the pattern, if any

4) Problem Situation and structure of the problem

5) Applicability Conditions under which the pattern can be applied

6) Solution Structure of the solution using stereotypes from UMLA4PF and MARTE
7) Collaboration Behavior Description of solution elements

8) Benefits Benefits of applying the pattern

9) Consequences Consequences and hints to be considered when applying the pattern
10) Related patterns Another pattern related to the pattern

4.2 Performance Analysis Patterns

The original performance patterns only describe the principle of the solution. They do
not provide any structure of the problem. We provide the structure of the problem as
a specific problem frame in addition to the textual description in the template. Note
that the structure of the problem for all performance patterns presented in this paper is
similar (see the field problem in the template). The reason is that the lack of resources
is the essence of most performance problems. This is the case when more requests
have to be processed at the same time than the resources can process. Hence, there
is only one problem frame describing the generic problem structure for all patterns.
Nevertheless, the conditions under which the patterns can be applied are different (see
the field applicability in the template).

We adapt three existing performance patterns [12,13], namely First Things First,
Flex Time, and Load Balancer for requirements analysis. These patterns provide solu-
tions for the problem situation where an overload of the system is expected. Figure 2
shows the problem frame describing the generic problem structure. Domains contained
in this problem frame are:

— One Machine domain. It represents a resource expressed by the stereotype < re—
source>> responsible for responding to the requests. The resource is expected to
be the bottleneck which cannot complete all inbound requests (see the stereotype
<Dbottleneck>> in the generic problem frame in Figure 2). It is also possible
that the bottleneck is a hardware resource which is consumed by the Machine do-
main. In such a case, the hardware resource is modeled explicitly.

«problemFrames
GenericProblem
Midol}, D14contentl}
#machine, resource, bottlenecks
Machine

D2lcontent2}, Mi{do2}

«damain::

= _ «efersTo, constraings
Domainl -

" wrequirements
- - ==-=""" Requirement

«damains
Domain2

wtonstraing, refersTo:

o |
_~-&complementss |

«Reguirements I «requirement, pasteps
text = Requests should be processed. PerformanceReq |

B i
«Bottlenecks» «Pasteps
loadDistributionType = respT = [{unit=ms , value= given time, source=req , statQ=max j]
overloadType = «Regquirement:
resourceType = text = All reguests should be processed within the aiven time.

Fig. 2. Problem frame describing generic problem structure

Performance Analysis Patterns ... 59

Table 2. First Things First Pattern

1) Name

First Things First (FTF)

2) Description

FTF ensures that the most important tasks will be processed if not every task can be processed.

3) Also known as

4) Problem A temporary overload of inbound requests is expected. This situation may overwhelm the pro-
cessing capacity of a specific resource (see the generic problem frame in Figure 2).
5) Applicability FTF pattern is only applicable when there is a temporary overload. That is, the attribute over-

loadType of the stereotype <bottleneck> in Figure 2 should have the value temporary.

6) Solution

The solution uses the strategy of prioritizing tasks and performing the important tasks with high-
priority first. A new machine is introduced that takes the responsibility for prioritizing the tasks
and assigning them to corresponding domains.

7) Collaboration

When requests are issued, they arrive through Domainl at the newly introduced machine do-
main FTF, which takes the responsibility to prioritize the requests and forward them to the
corresponding machine that performs the requests using the domain Domain2. Note that there
exists only one machine domain Machine.

8) Benefits

FTF reduces the contention delay for high-priority tasks.

9) Consequences

In the case of a permanent overload, applying this pattern would cause the starving of low-
priority tasks.

10) Related patterns

LB pattern can be used to improve the processing capacity if the overload is not temporary.

Table 3. Flex Time Pattern

1) Name

Flex Time (FT)

2) Description

FT moves the load to a different period of time where the inbound requests do not exceed the
processing capacity of the resource.

3) Also known as

4) Problem An overload of the system is expected. The inbound requests exceed the processing capacity of
a specific resource (see the generic problem frame in Figure 2).
5) Applicability FT is only applicable when some tasks can be performed at a different period of time. That is,

the attributes loadDistributionType and overloadType of the stereotype <bottleneck>> in
Figure 2 have the values temporally and permanent.

6) Solution

The solution uses the strategy of spreading the load at a different period of time. A new machine
is introduced that takes the responsibility for modifying the processing time of the tasks and
assigning them to corresponding domains for processing in the specified time.

7) Collaboration

When requests are issued, they arrive through Domainl at the newly introduced machine
FTF/FT/LB, which takes the responsibility to spread the requests at a different period of time to
be processed by the corresponding machine using the domain Domain2. Note that there exists
only one machine domain Machine.

8) Benefits

FT pattern reduces the load of the system by spreading it temporally.

9) Consequences

The order of satisfying requirements will be changed. It has to be checked that this modification
does not cause new bottlenecks.

10) Related patterns

LB pattern can be used to reduce the load if the tasks cannot be performed at a different period
of time.

chine.

One Domainl domain, which transmits the requests to the machine domain Ma-

One Domain2 domain, which represents the domain that might be required for

processing the requests by the Machine.

One Requirement, which describes the functional requirement to be satisfied. It

requires the processing of the requests.

One PerformanceReq, which describes the performance requirement to be satis-

fied. It requires the satisfaction of the functional requirement Requirement within
a specific time.

60 A. Alebrahim

We describe each pattern as one instance of the template given in Table 1. The in-
stantiation of the template for the First Things First pattern is shown in Table 2. Tables 3

and 4 illustrate the instantiation of the template for the Flex Time pattern as well as for
the Load Balancer pattern.

Table 4. Load Balancer Pattern

1) Name Load Balancer (LB)

2) Description LB pattern is used to distribute computational load evenly over two or more hardware resources.
3) Also known as -

4) Problem

An overload of the system is expected. The inbound requests exceed the processing capacity of
a specific hardware resource (see the generic problem frame in Figure 2).

5) Applicability LB pattern is only applicable when the resource which is the bottleneck is a hardware resource,
the overload is permanent, and the load can be spread spatially. That is, the attributes load-
DistributionType and overloadType, and resourceType of the stereotype <bottleneck>> in
Figure 2 have the values spatially, permanent, and hardware.

6) Solution The solution uses the strategy of spreading the load over several hardware resources.

7) Collaboration When requests are issued, they arrive through Domainl at the newly introduced machine
FTF/FT/LB, which takes the responsibility to forward the request to one corresponding ma-
chine which is free. The selected machine processes the request, creates a response using the
domain Domain2, and sends the response. Note that there exists at least two machine domains
of the same type.

8) Benefits LB pattern reduces the load of the system by spreading it spatially.

9) Consequences Efficient algorithm for allocating the requests to responders is required to ensure that the newly
introduced LBMachine does not become the new bottleneck.

10) Related patterns |FT pattern can be used if the tasks can be performed at a different period of time. FTF pattern
can be used when there is a temporary overload.

Figure 3 shows the problem frame describing the generic solution structure. It is
a composition frame that composes several subproblems using a new introduced ma-
chine domain. We introduce the new machine domain FTF/FT/LB to compose several
machine domains that are bottlenecks (see machine domain Machine in Figure 2) in
order to prevent the overload for each single machine domain. There exist only one ma-
chine domain Machine for the performance analysis patterns FTF and FT and at least

two machine domains Machine of the same type for the performance analysis pattern
LB.

Domains contained in this problem frame are:

«problerFrames
GenericSolution

«damain:
Domainl e
«refersTo, constrainss «

«reguirements

«constrains, refersTo: - -|_Requirement
amachine, resources wdamain: -7 :
Machine Domain2 l H

FTFHforwardRequest), Mi{response’ DzKcontent2], Mi{do2} <<comp|ements>: i

srequirement, pasteps =.
«PaStaps U ~“7|PerformanceReq|

respT = [unit=ms , value= given time, source=req , statQ=max j]

«Requirements «Requirements
text = All requests should be processed within the given time. text = Requests should he processed.

M dal}, D14contentl}

Fig.3. Problem frame describing generic solution structure

Performance Analysis Patterns ... 61

— One domain FTF/FT/LB as a machine domain and as a resource with the stereo-
types <machine>>» and <resource>>.

— Atleast one domain as machine domain and as resource (stereotypes <machine>>
and <resource>>) responsible for responding to the requests (see Machine in
Figure 3).

— One domain Domainl with the stereotype < domain>>, which transmits the re-
quests to the machine domain Machine.

— One domain Domain2 with the stereotype <domain>> required for processing
the requests by the machine domain Machine.

— One functional requirement Requirement with the stereotype < requirement >
to be satisfied by the machine domains Machine (at least one machine domain).

— One PerformanceReq with the stereotypes < requirement > and <paStep>>
to be satisfied by the machine domains Machine (at least one machine domain).

5 Selection and Application of Performance Analysis Patterns

In this section, we describe how the proposed patterns can be applied within our problem-
oriented software development method [8]. To this end, we make use of the CoCoME
example introduced in Section 2. By means of the requirement R5, we illustrate the use
of performance analysis patterns. The requirement R5 requires logging of sale informa-
tion and updating the stock of inventory.

The starting point is a set of problem diagrams annotated with performance require-
ments. The problem diagram for the functional requirement R5 has to be decomposed
into two subproblems one for the client side and the other for the server side. Figure 1
illustrates the problem diagram for the client side. Also the corresponding performance
requirement has to be decomposed into two performance requirements PerfR5-1 and
PerfR5-2. The second subproblem for logging and updating the stock server (R5) con-
cerning the server side is shown in Figure 4.

Performance is concerned with the workload of the system and the available re-
sources to process the workload [[14]]. The system has to process the requests (or sa-

«problemDiagrams

LogygingAndUpdatingStockServer

«Bottlenecks
loadDistributionType = ternporally
overloadType = pertnanent
resourceType = hardware

«PaSteps
cause = YWorkloadEventLogging
msgSize = [{unit= KB , value= 100, source= est , statQ= max)]

«causalDomain, hwhiedias

Network

= _ stonsirainss

./"

, HHBIContent]
etmaching, bottleneck, resources

LogUpdateStockServer
LUSENlogSl updateStock)

ecausalDomain, hwProcessar, hwhiemorys

CPU

|exicalDotmain, storageResources,
Log_Stock

T~ J ereuirements i
- R5.2 /

<constraings |

| ;
srequirement, paSteps
PerfR5-2

«GaWorkloadEvents
pattern = (closed(population= {value=8), extDelay= {unit= ms, value=

"""" —...| 1000.0, statQ= max)))

Fig. 4. Problem diagram LoggingAndUpdatingStockServer annotated with performance-specific

domain knowledge

62 A. Alebrahim

tisfy the requirements) caused by the workload using available resources. We elicit and
model the workload and resources of the system as domain knowledge [15] as illustrated
in Figure 4. The workload is represented by the stereotype < gaWorkloadEvent >.
Resources are modeled using the stereotypes <hwMedia>», <hwProcessor:>>,
<K storageResoure>>, etc.

Now, subproblems containing potential performance problems (bottlenecks) have to
be identified. This has to be supported by a performance analyst to analyze whether the
processing capacity of existing resources (modeled as domain knowledge) suffices to
satisfy performance requirements for each subproblem with regard to the existing work-
load and frequency of occurring problem diagrams. We identify the problem diagram
LoggingAndUpdatingStockServer as a critical one. Therefore, we mark it as a potential
bottleneck. After identifying performance problems, we select appropriate performance
analysis patterns for those subproblems containing bottlenecks. Only when subprob-
lems are valid instances of the generic problem structure (Figure 2), we can apply pat-
terns to the subproblems. The subproblem LoggingAndUpdatingStockServer represents
a valid instance of the problem frame describing the generic problem structure. We de-
scribe the instantiation of the subproblem LoggingAndUpdatingStockServer. It contains
the following elements:

One machine domain LogUpdateStockServer, which is responsible for responding to
the requests. The bottleneck is a hardware resource that is modeled explicitly (CPU).
One domain Network, which transmits the requests to the machine domain LogUp-
dateStockServer.

One domain Log _Stock, which is used by the machine domain LogUpdateStockServer
for processing the request, namely for logging sale information.

One requirement R5-2, which describes the functional requirement.

One performance requirement PerfR5-2, which describes the performance require-
ment corresponding to the functional requirement R5-2.

A pattern can be applied to a subproblem being a valid instance of the problem
frame describing the generic problem structure only if the subproblem fulfills all pre-
conditions of the specific pattern given in the field applicability in the description of
the pattern template. The type of the overload for the subproblem LoggingAndUpdat-
ingStockServer is permanent (overloadType=permanent) and the subproblem can be
moved to a different period of time (loadDistributionType=temporally) as shown in
Figure 4. These attributes of the stereotype <bottleneck>> correspond to the pre-
conditions for the application of performance analysis patterns given in the pattern tem-
plate in the field applicability of the Flex Time pattern. Table 5 provides an overview of
performance analysis patterns and their selection criteria.

Hence, we select Flex Time pattern for applying to the subproblem LoggingAndUp-
datingStockServer (see Figure 5).

Table 5. Performance analysis patterns and their selection criteria

selection criteria
type of load distribution |type of overload |type of resource
First Things First (FTF) |spatially / temporally temporary software / hardware
Flex Time (FT) temporally permanent software / hardware
Load Balancer (LB) spatially permanent hardware

Performance Analysis Patterns ... 63

«problemDiagram:
CompositionDiagramFT

MESICantant}

ecausalDomain, hwhiedias, «consiraings
Metwork [~ """ "TTTToTTTTmmToTe el
LUSSKlogs] update Stock} . R52

amachine, resource: zlexicalDomain, storageResource: P ;refersTo»
LogUpdateStockServer Log_Stock

stomplamentss

smachine, resource:

FT
FTHforwardSIContent}

lecausalDomain, hwProcessor, huwblemory:s|

CPU

arequirement, paSteps

PerfR5-2

Fig. 5. Flex Time application to the subproblem LoggingAndUpdatingStockServer

It is a valid instance of the composition frame describing the generic solution struc-
ture illustrated in Figure 3. It contains the following elements:
One domain FT as a machine domain and as a resource with the stereotypes <ma-
chine> and <resource>>.
One domain LogUpdateStockServer as machine domain and as resource.
Onel domain Log_Stock used by the machine domain for processing the requests.
One domain Network, which is responsible for transmitting the requests.
One functional requirement R5-2 to be satisfied by the machine LogUpdateStock-
Server.
One performance requirement PerfR5-2, which represents the performance require-
ment to be satisfied by the machine LogUpdateStockServer.

In this way, we successfully instantiated and applied the performance analysis flex
time pattern in order to resolve the identified bottleneck. We only showed the instantia-
tion of the graphical part of the pattern. The corresponding template can be easily filled
out.

Benefits. Performance analysis patterns allow software engineers not only to think
about potential performance problems as early as possible in the software develop-
ment life cycle, but also to think about solution approaches resolving such problems.
By exploring the solution space, we find appropriate solution mechanisms, which can
be used for refining performance requirement models in the requirement engineering
phase. However, performance analysis patterns do not replace the application of “clas-
sical” performance patterns. They do not really apply a solution. They only enforce
the requirements analyst to think about the problem, its solution and the consequences
of applying a specific solution as early as possible. This results in preparing the re-
quirement models for applying the “classical” performance patterns later on in the de-
sign phase. Performance analysis patterns are located in the problem space aiming at
structuring and elaborating performance problems while “classical” performance pat-
terns are accommodated in the solution space aiming at solving performance problems.
Hence, performance analysis patterns in the requirements engineering phase represent
the counterpart to the “classical” performance patterns in the design phase.

64 A. Alebrahim

6 Related Work

In a software development process, typically performance solutions are considered as
architectural decisions to be made in the architecture and design phases. A number of
approaches that contributed to software performance development, have focused on ar-
chitectural solutions. Nevertheless, information and knowledge needed for dealing with
performance issues, have to be collected and analyzed early in the software develop-
ment process. Similar to our approach, Williams and Smith [16] explore the informa-
tion needed to construct and evaluate performance models. This information has to be
captured during the analysis and design process. They define a similar set of informa-
tion required for early life cycle software performance engineering. They use the terms
“execution environment” for resource capacity and “resource requirement” for resource
utilization and resource type.

Bass et al. [17] analyze how architectural mechanisms such as fixed priority schedu-
ling and caching help achieve performance as one specific quality requirement. They
introduce three performance strategies resource allocation, resource arbitration, and re-
source use are introduced by Bass et al. [17]. Each strategy provides a set of perfor-
mance tactics to achieve performance requirements. The tatic fixed priority scheduling
that prioritizes processes to a fixed priority uses the strategy resource arbitration. The
authors only describe two tactics fixed priority scheduling and caching. They do pro-
vide neither details regarding the structure and behavior of the tactics nor about the
applicability of them.

Composition frames used in this paper are used in some other approaches as well.
Laney et al. [18] propose a systematic approach to resolve inconsistencies in the pro-
blem frames. The authors introduce composition frames in order to deal with composing
conflicting requirements. Composition frame are also used in an aspect-oriented method
based on problem frames to restructure requirement models using security patterns [19].
Composition frames in this approach serve as a means to weave security aspects into
the functional structures. We use composition frames in a different way. A composition
frame in our paper represents the generic solution structure for performance analysis
patterns. We use composition frames to apply performance analysis patterns to problem
diagrams containing potential performance problems.

7 Conclusion

In this paper, we adapted three existing performance architectural patterns for the re-
quirements analysis phase. The adaptation allows us to use such performance patterns
for the analysis of performance problems. We have provided a systematic structure
for performance analysis patterns consisting of a template containing performance-
specific information for modeling performance analysis patterns using the UML profiles
UMLAPF and MARTE and a two-part graphical pattern describing the generic problem
structure and the generic solution structure.

Using the application example CoCoME, we showed how the proposed perfor-
mance analysis patterns can be used in a the requirements analysis phase based on
problem frames to refine the requirement models and prevent potential performance
problems.

Performance Analysis Patterns ... 65

We summarize the benefits of proposed performance analysis patterns as follows:

— Performance analysis patterns provide support for refining performance problems

located in the problem space using the knowledge located in the solution space
such as performance patterns . Thus, they nudge software engineers to think about
performance problems and possible solution approaches as early as possible in the
software development.

— less experienced software engineers are supported in applying solution approaches

in terms of performance analysis patterns early in the requirements engineering
phase in a structured manner.

In this paper, we only considered one performance metric, namely response time.

In the future, we strive for dealing with other performance metrics that might be also
relevant for an overload scenario such as throughput. Furthermore, we will extend the
basis of our existing performance analysis patterns with more patterns in order to pro-
vide a catalog of performance analysis patterns for requirements analysis addressing
more kinds of performance issues.

References

10.

11.

12.

. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional requirements in software

engineering. Klewer Academic (2000)

. Smith, C.U., Williams, L.G.: Five steps to establish software performance engineering. In:

Int. CMG Conference, 507-516 (2006)

. Smith, C.U., Williams, L.G.: Software performance engineering: A case study includ-

ing performance comparison with design alternatives. IEEE Trans. Software Eng. 19(7),
720-741 (1993)

. Jackson, M.: Problem Frames. Analyzing and structuring software development problems.

Addison-Wesley (2001)

. Shaw, M., Garlan, G.: Software Aechitecture: Perspectives on an emerging discipline. Pren-

tice Hall (1996)

. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley (1995)

. Alebrahim, A., Choppy, C., Fabender, S., Heisel, M.: Optimizing functional and quality re-

quirements according to stakeholders goals. In: System Quality and Software Architecture
(SQSA). Elsevier, 75-120 (2014)

. Alebrahim, A., Hatebur, D., Heisel, M.: A method to derive software architectures from

quality requirements. In Thu, T.D., Leung, K., eds.: Proc. of the 18th Asia-Pacific Software
Engineering Conf. (APSEC), IEEE Computer Society, 322-330 (2011)

. Rausch, A., Reussner, R., Mirandola, R., Plasil, F.: The Common Component Modeling

Example: Comparing Software Component Models. 1st edn. LNCS 5153, Springer (2008)
Hatebur, D., Heisel, M.: Making pattern- and model-based software development more rig-
orous. In: Proc. of 12th Int. Conf. on Formal Engineering Methods (ICFEM). LNCS 6447,
Springer, 253-269 (2010)

UML Revision Task Force: UML Profile for MARTE: Modeling and Analysis of Real- Time
Embedded Systems. http://www.omg.org/spec/MARTE/1.0/PDF

Ford, C., Gileadi, I., Purba, S., Moerman, M.: Patterns for Performance and Operability.
Auerbach Publications (2008)

66

13.

14.

15.

16.

17.

18.

19.

A. Alebrahim

Smith, C.U.,Williams, L.G.: Performance solutions, a practical guide to creating responsive,
scalable software. ADDISON WESLEY (2001)

Bass, L., Clemens, P., Kazman, R.: Software architecture in practice. Second edn. Addison-
Wesley (2003)

Alebrahim, A., Heisel, M., Meis, R.: A structured approach for eliciting, modeling, and using
quality-related domain knowledge. In: Proc. of the 14th Int. Conf. on Computational Science
and Its Applications (ICCSA). LNCS 8583, Springer, 370-386 (2014)

Williams, L.G., Smith, C.U.: Information requirements for software performance engineer-
ing. In: Proc. of the Int. Conf. on Modeling Techniques and Tools for Computer Performance
Evaluation, Springer, 86—101 (1995)

Bass, L., Klein, M., Bachmann, F.: Quality attributes design primitives. Technical report,
Software Engineering Institute (2000)

Laney, R., Barroca, L., Jackson, M., Nuseibeh, B.: Composing requirements using problem
frames. In: Proc. of the 4th int. conf. on Requirements Engineering, Press, 122-131 (2014)
Alebrahim, A., Tun, T.T., Yu, Y., Heisel, M., , Nuseibeh, B.: An aspect-oriented approach
to relating security requirements and access control. In: Proc. of the CAiSE Forum. CEUR
Workshop Proceedings, 15-22, CEUR-WS.org (2012)

	Lecture Notes in Computer Science
	Introduction
	Application Example CoCoME
	Background
	Performance Analysis Patterns
	Template for Performance Analysis Patterns
	Performance Analysis Patterns

	Selection and Application of Performance Analysis Patterns
	Related Work
	Conclusion

