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Abstract. In programming as well as in modelling, artefacts are required to 

comply with the rules of well-formedness given by their underlying language 

definition or their meta model, respectively. In many cases (e.g. the UML speci-

fication or the meta models implemented with EMF), these rules are given as 

Boolean typed OCL expressions, whose evaluation results indicate whether an 

artefact is well-formed. In this work, we present a set of transformation rules 

that allows for the direct use of OCL assertions as input for the generation of a 

Constraint Satisfaction Problem (CSP) representing a particular user activity, 

i.e., a CSP in which some constraint variables do not (yet) have values. The 

constraint generation process is sensitive of the activity’s variability in that im-

mutable parts are evaluated at constraint generation time, thus reducing the 

generated CSP’s complexity. Our previous work on constraint based program-

ming and modelling tools (allowing for example behaviour-preserving refactor-

ing and well-formedness preserving completions or changes) can thus be 

applied directly to instances of an arbitrary language or meta model, as long as 

its invariants are specified in OCL. 

1 Introduction 

The Object Constraint Language (OCL) is commonly used to express assertions about 

object graphs, that is, instances of classes linked via attributes and references (togeth-

er referred to as properties [5]). Although an assertion language, OCL has the look 

and feel of an object-oriented and functional expression language (specifically: a sub-

set of Smalltalk). And indeed, OCL has fairly straightforward operational semantics: 

relational operators (=, <, etc.) and logical connectives (and, or, implies, etc.) are eval-

uated as usual, and quantifiers as well as Smalltalk-style collection iterators are evalu-

ated in loops, accumulating values that represent the results. 

On the surface OCL has only little to do with constraints in the usual sense, i.e., the 

constraints that constitute a constraint satisfaction problem (CSP). Unlike an OCL 

expression, a CSP, which consists of a set of variables (each with an associated do-

main) and a set of constraints on these variables, is not evaluated, but is rather solved, 

by assigning its variables values from their domains such that all constraints are satis-

fied, i.e., evaluate to true. Constraint solving is a search problem, involving constraint 

propagation and backtracking. 

In previous work, we have shown how constraint solving can be used to implement 

certain development tools that offer controlled changes (“in place transformations”) 

of an artefact to their users, such as refactoring, well-formed completion, or fixing ill-

formedness [7–9]. These tools require that the artefact to be changed is translated into 
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a CSP first. The variables of this CSP then represent properties of the artefact’s ele-

ments, including those that are to be changed and those that, via constraints, restrict 

possible changes. The difficulty of getting the development tools right then reduces to 

producing the right constraints. This is usually done using constraint generating rules 

(called constraint rules for short), which are applied to the abstract syntax tree (AST) 

or meta model instance representing artefact and which are manually crafted after the 

language specification (which in turn may include OCL expressions). 

In this paper, we show how OCL assertions (i.e., OCL invariants, preconditions, 

and postconditions)1 can be interpreted as constraint generating rules or, more specifi-

cally, how a set of constraints that can be submitted to a constraint solver can be gen-

erated from the evaluation of an OCL assertion on an object graph. Differing from 

other, related work, our constraint generation is sensitive to the changeability of prop-

erties, which usually differs from application to application. This allows us to gener-

ate much fewer constraints (when compared to generating all) which, if the artefact 

for which the constraints are to be generated is large, is necessary for the constraint 

approach to be feasible. 

2 Related Work 

Although our target is very different, our work is technically related to UMLtoCSP 

[1] and its successor EMFtoCSP [3] (and hence indirectly related to some other work 

discussed in [3], which we do not discuss here). 

In UMLtoCSP and EMFtoCSP, OCL invariants are translated to CSPs in order to 

let the constraint solver prove certain correctness properties of models (including their 

invariants), such as freeness of inconsistencies (“satisfiability”) or freeness of redun-

dancy. For this, models of increasing size are generated whose elements’ properties 

(i.e., attributes and links between elements), represented as constraint variables, are 

constrained by constraints generated from the OCL invariants of the model. The solv-

er then tries to find and assignment to the properties that satisfies all constraints and 

that thus represents a valid model instance. This amounts to a form of bounded verifi-

cation (similar to model checking) which works because the sizes of the models are 

strictly limited (because of the size of the resulting search problem, maximum model 

size is usually rather small). By contrast, our approach starts with an existing model 

instance of arbitrary size (which may however be ill-formed, i.e., violate OCL invari-

ants) and tries to find possible assignments for certain model elements only. 

Constraints have been used for program analysis and compiler optimization for a 

long time [4]. More recently, it has been discovered as an effective means for imple-

menting program refactoring tools, type-related ones in particular [10]. Our group has 

first extended the application to arbitrary declaration-related refactorings [7] and later 

from programming to modelling [8]. Here, the relationship between well-formedness 

rules and the constraint-generating rules required for constraint-based refactoring was 

                                                           

1 OCL expressions can also evaluate to other data types (including objects), for instance to 
compute derived attributes. These expressions can also be interpreted as generating solver con-
straints, but are not the target of our research. 
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first described. More recently we extended the application of the constraint rules of 

the kind required for model refactoring to model completion and fixing [9]. Because 

behaviour can be neglected in these applications, the rules of well-formedness are 

sufficient. However, despite the fact that certain languages (such as UML) specify 

their well-formedness rules using OCL invariants, no attempt has been made so far to 

generate the constraints from OCL directly. The present paper reports on the current 

status of our work in this area.  

3 Constraint Generation from OCL invariants 

3.1 Conventional OCL evaluation vs. Transformation to a CSP 

Figure 1 shows an exemplary meta model, for which OCL assertion (1) is assumed to 

be specified2, together with an exemplary model instance. The assertion requires that 

if a lifeline has a classifier specified, each of its incoming messages that refers to an 

operation will refer to an operation of that classifier3. 

context Interaction inv OpOwnerMatchesClassifier:  

  self.lifelines->forAll(l |  

    l.classifier <> null implies l.messages->select(m | 

      m.operation <> null 

    )->forAll(m |  

        m.operation.owner = l.classifier 

    ) 

  ) 

(1) 

An OCL interpreter, evaluating an assertion (i.e. a Boolean typed expression) 

against a particular artefact, typically descends down the expression’s abstract syntax 

tree and evaluates the individual nodes from the bottom to the top until the root node 

is reached. In case of an assertion, the root node finally represents a Boolean value, 

indicating whether the expression holds for the artefact. 

                                                           

2 Given the composition relationship between Lifeline and Message, the meta model implicitly 
specifies another constraint, requiring, that every message is referred to by exactly one instance 
of Lifeline. Due to space restrictions, we assume this constraint to be implemented implicitly. 
3 Note that due to inheritance, m.operation.owner could also be a superclass of l.classifier. 
However, we do not deal with inheritance here; the interested reader is referred to [10]. 

  

Figure 1: Meta model for OCL invariant OpOwnerMatchesClassifier 

Interaction Lifeline Message

Classifier Operation

operation

messages

*

owner

1 *
1

1

*

1 **

classifer1
*

lifelines

95



Another way to evaluate such an expression is to not evaluate it directly, but to 

transform it into a (set of) logical expression(s), that consist(s) of variables, constants 

and operators and that are required to hold if and only if the iterative evaluation re-

turns true. In contrast to the OCL assertion itself, the variables4 used then represent an 

individual element’s property (e.g.              ), rather than an arbitrary element’s 

one (e.g. l.classifier with l being a variable for any lifeline in self.lifelines). In case of a 

plain evaluation, all variables’ domains only consist of a single value, namely that of 

represented property’s current value. Together with the logical expressions (the con-

straints) generated, the variables and their domains constitute a constraint satisfaction 

problem (CSP), which can be submitted to a standard CSP solver. If all variables have 

singleton domains, the solver only verifies if the domains’ single values satisfy the 

constraints, i.e., if the expression the constraints are generated from holds. The result 

is then equivalent with that of the conventional evaluation of the OCL assertion. 

While the conventional evaluation of an assertion, as done by a common OCL in-

terpreter, can only return the Boolean result value, specifying an equivalent constraint 

set has the advantage that single variables (i.e. properties of model elements) can be 

declared variable in the corresponding CSP. This is done by assigning it a domain 

containing all (or a subset of) the values of the property’s type, each being a potential 

value for that property. The solutions, determined by the constraint solver then consist 

in value assignments for all variables ensuring that all constraints are satisfied, i.e., for 

which the original assertion holds. As we have shown in [9], this behaviour can be 

exploited to implement completion and fixing functionality, suggesting values for 

properties that ensure the artefact’s well-formedness. 

3.2 Transformation to a full constraint set 

The challenge of this approach is to create constraints, which faithfully reflect the 

original expression’s semantics. Relational expressions such as m.operation <> null 

can obviously be translated directly to a constraint such as                  . 

However, expressions operating on multi-valued properties (especially iterator ex-

pressions, e.g., forAll or select) are more difficult to translate. Some major challenges 

of the procedure are illustrated by transforming assertion (1) to a constraint set.  

Since common solvers lack support for quantification, the call of forAll on 

self.lifelines has to be unrolled for any    that could potentially be referred to by 

                                                           

4 Here and in the following we use a computer font for OCL expressions, and a mathematical 
typesetting for the constraints generated from them. 
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self.lifelines. This is done by instantiating the body expression (i.e. the parameter ex-

pression to forAll) for    and   , yielding the constraint stubs5: 

                  (                    ) 

                  (                    ) 
(2) 

Note how the implications’ conditions ensure that the assertion expressed in the 

outer forAll’s body is only required for any    contained in the set value of self.lifelines. 

In case                  , the OCL assertion (1) does not pose any requirement and 

so the constraints in (2) are true. 

Different from the forAll iterator, select does not evaluate to a Boolean value, but to 

a set of objects. In the context of an assertion, i.e. an expression returning true or false 

only, its result can therefore only be argument to an outer expression e0 (for example 

another operation or iterator call as in (1)). Consequently, the transformation of a 

select expression to a constraint requires providing the result value in a way it can be 

used for the transformation of e0. Therefore, a temporary variable is introduced, which 

is required to only contain the subset of elements satisfying the select condition. The 

outer expression can then be transformed to a constraint by unrolling over all potential 

members of that accumulator variable guarded with an implication constraint, whose 

condition is that the particular member is a member of that variable. For instance, for 

the expression fragment l.message->select(.)->forAll(.) in (1), if l is instantiated with   , 

we get the constraint stub (3), which has to be created and conjoined for every   . 

((                                )            )

 (            ) 
(3) 

More subtle than in these two iterator expressions is the complexity of transforming 

an expression such as m.operation.owner to a constraint. As stated in section 3.1, an 

element’s (e.g.   ) property (e.g.             ) directly translates to a variable; but 

here we have a property (...owner) reached by an indirection from another property 

(m.operation). Depending on the value of             ,                    can 

either evaluate to the value of the variables         ,          or,         . Follow-

ing the pattern of conditional constraints as above, the chained property access of the 

inner forAll iterator’s body expression is translated to constraint stub (4), with l being 

instantiated with    and m with    [8]. Again, instances for all    have to be conjoined. 

                                       (4) 

Although the single stubs are quite simple, their rollout and their nesting makes the 

resulting constraint set rather complex, consisting of expressions whose ASTs have a 

total of 82 terminals referring to 13 variables and 46 terminals referring to ten literals 

representing the model elements and the special null value6.  

The advantage of the full constraint set, as generated above, is that any property 

can be declared variable and the same constraint set can be used for finding a valid 

assignment for all of them. On the other hand, as we have seen [7], constraint size and 

                                                           

5 The ellipsis represents a placeholder for the transformation of the expression following 
self.lifelines. 
6 Due to space restrictions, the complete resulting constraint set is not displayed here. 
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complexity is crucial to the solving time and thus to user acceptance. At the same 

time, in most development tools we have seen thus far (excluding [1, 3]) concrete 

applications only require distinguished properties to be variable. Creating the full 

constraint set therefore is in most cases not justified; instead, a generation process is 

required that systematically exploits constancy of particular properties by evaluating 

them at constraint generation time and generating constraints restricting the variable 

properties’ values only. 

3.3 Variability-sensitive constraint generation 

A generation process that is sensitive to a distinguished variability of properties has to 

interleave evaluation of the constant parts of the expression (respectively its subex-

pressions) with the construction of constraints. The general idea of the variability-

sensitive generation process is sketched with the help of some examples. 

 If only the classifier property of all lifelines is variable, self.lifelines is constant, so 

that the condition                   of the constraint stub from (2) can be 

dropped. With                being variable, the translation of the first forAll’s body 

expression has to be translated directly, so that we get the constraint stubs 

                      and                       (5) 

To complete these constraints, the expression to the right side of the implies key-

word needs transformation. As the messages property as well as the operation 

property are constant, the select operation can be evaluated to {  }  for    and 

{     } for   , so that the forAll can be translated by conjoining the respective 

                                 constraints. However, in                   , 

both referred properties are constant, so that they can be evaluated to    for    

and    for    and   . With the tautology      , we get the constraint set 

                                    

                                    
(6) 

With four terminals referring to two variables and four terminals referring to three 

literals, the constraint set’s complexity has strongly been reduced. 

 The situation becomes more intricate, when considering the property operation to 

be variable for all messages: Neither can the value of the select calls be evaluated 

at constraint generation time, nor can the value of m.operation.owner, although the 

property owner is not variable. Furthermore, some algebraic optimizations allow 

for further simplification at the end. 

Just like in the former example, the implication stubs of (2) can be dropped, as 

self.lifelines is constant. As classifier is also a constant property which is not null 

for    as well as for   , the expression to the left of the implies keyword is constant-

ly true (and can thus also be dropped), so that the right side has to hold for both   . 

Constraint generation thus proceeds with transformation of l.messages->select(.), 

for which             can be constantly evaluated again, yielding {  }  for    and 

{     } for   . Compared to (3), the condition                can therefore be 

evaluated at constraint generation time: If it is true, only the right side of the inner 

conjunction,                  , remains; if it is false; so is the conjunction, so 

that the right side of the equivalence requires negation (              for some  ): 
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((                 )               )  (              ) (7a) 

(             )  (               ) (7b) 

(             )  (               ) (7c) 

(             )  (               ) (7d) 

((                 )               )  (               ) (7e) 

((                 )               )  (               ) (7f) 

The alert reader will have noted that in the conjunction (             )  

(               ) the second term can be dropped as it is always true due to the 

expression of the first term. The remaining stubs require transformation of the 

subsequent expression, m.operation.owner = l.classifier, with the indirection of the 

chained property access being rolled out as in (4). With this, with               

   and with the          being the operations’ declaring classes, we get for (7a): 

((                 )               )

 (              (

                      
                      
                     

)) 
(8) 

A consideration of the inner conjunction now allows further evaluation: the impli-

cation for the case of              being    is always true and can thus be 

dropped; for the cases of    and    the consequence       is constantly false. 

With          , we can simplify (8) to: 

((                 )               )

 (              (
                
               

)) 
(9) 

We finally get six constraints, consisting of 16 terminals referring to five variables 

and 13 terminals referring to six literals, which is still a considerable reduction. 

To summarize, although the simple procedure for the generation of the full constraint 

set (being generic in that is supports variability of an arbitrary property) leads to con-

siderable constraint complexity even for small examples, we have seen that the un-

changeable properties’ fixedness can be systematically exploited to simplify the 

generated constraints. By evaluating those parts of the OCL assertion that are not af-

fected by any variable property, and by simplifying the resulting logical expressions 

according to the rules of Boolean algebra, we can reduce the number of terminals in 

the resulting constraint set, allowing for a faster solving. 

After the exemplary discussion of individual optimization steps, the following sec-

tion introduces a set of transformation rules for common OCL expression that indi-

vidually reflect variability of its operands. 

3.4 Transformation Rules 

We define the rules per iterator type (node type of the abstract syntax tree), i.e., we 

provide rules for forAll, select, collect and iterate (see figure 3). For each involved 

subexpression (typically the source, i.e., the expression on whose result the iterator is 
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applied, and a body expression), we consider the case that it is fixed and that it is var-

iable (typically giving four cases to consider). The result of an expression involving at 

least one variable subexpression is variable; otherwise, it is fixed. We write a rule as 
           
        

in which            is replaced with expressions that typically introduce variables 

along with their domains and that can be evaluated at constraint generation time. 

These variables also occur in expressions that replace         and that serve as a pat-

tern for the constraints to be generated. For constraint generation,         is instanti-

ated by replacing its variables for every tuple of values that satisfies           . 

In           , we write [ ] for the type of expression   and   [ ] for an   to be an 

instance of the type of  , whose extension is a set of objects {       }. 

The four rules for forAll are to be read as follows (in pseudocode): 

EXPRESSION BODY EXPRESSION 

 SOURCE variable constant 

e1->forAll(v|e2(v)) 

 
variable 

  [  ] 

       ( ) 
 

  [  ]     ( ) 

     
 

 
constant 

     

  ( ) 
 

         ( ) 

 
 

e1->select(v|e2(v)) =: e 

 
variable 

  [  ] 
       ( )       

 

  [  ]    ( ) 
         

 

  [  ]     ( ) 

    
 

 
constant 

     

  ( )      
 

  ⋃ { }    
  ( )

 

 
 

e1->collect(v|e2(v)) =: e 

 variable 

  [  ( )] 

    ⋁          ( )

  [  ]

 

 

  [  ( )] 

    ⋁       [  ]

    ( )

 
 

 

 constant 
  [  ( )] 

    ⋁     ( )
    

 
 

  ⋃   ( )
    

 

 
 

 

e1->iterate(v; acc v0| e2(v, acc)) 

 
variable 

   [  ] 
       

     (       )  

   [  ] 
       
         

depends on the structure of    

 
constant 

      
     (       )  

depends on the structure of    

Figure 3: Transformation rules for selected OCL expressions 
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/*  Let e1 -> forAll( e2) be the expression to generate constraints from.  */ 

if e1 is variable then 

  for all instances v of the type of e1   

 /*  i.e., for all v that could possibly be in e1  */ 

    if e2 is variable then 

      generate the constraint   

“       ( )” /*  i.e., if v is really in e1, than e2 has to hold on v  */ 

    else  /* i.e., e2 is constant */ 

      if e2 does not evaluate to true on v, then  

/*  i.e., forAll will not be true if v is really in e1  */ 

        generate the constraint  

“    ” /*  i.e., avoid that v becomes member of e1  */ 

else  /* i.e., e1 is constant */ 

  for all members of e1 /*  i.e., for all v that are in e1  */ 

    if e2 is variable then 

      generate the constraint 

“  ( )”  /*  i.e., ensure, that e2 holds on v    */ 

    else  /* i.e., e2 is constant */ 

      evaluate e2 on v at constraint generation time 

Note that, as stated above, the result of the expression is variable (i.e., is computed by 

the constraint solver) if e1 or e2 are variable; otherwise, it is constant and computed as 

usual, i.e., by conjoining the results of e2(v) for all v in e1 (i.e., no constraint is gener-

ated, and the expression is fully evaluated at constraint generation time). 

For e1 -> select(e2), the rules are analogous. The main difference here is (as ex-

plained above) that a select expression does not evaluate to a Boolean (and as such 

cannot directly be translated to a constraint); instead, it evaluates to a subset of the 

objects of e1. However, we can transform such an expression into a constraint by in-

troducing a new constraint variable,  , and requiring that this variable equals the re-

sult of the expression. Like for forAll, the result can be computed during constraint 

generation if both subexpressions are constant; the OCL interpreter/constraint genera-

tor can simply construct   by conjoining all      for which   ( ) holds. Transfor-

mation rules for reject can be derived by negating the selection predicate   ( ).  

A similar strategy can also be used for the transformation of collect calls. In con-

trast to select and reject, however, collect generally does not produce a subset of the 

source expression but (a bag of) objects of arbitrary types, which can be reached from 

each element of the source expression via an arbitrary navigation path or operation 

call. The constraint variable  , representing the expression’s result, is therefore re-

stricted to contain only those elements w for which a v in the expression source e1 

exists so that w is in e2(v). If both e1 and e2(v) are constant,   can be evaluated at gen-

eration time again by conjoining e2(v) for all v in e1. 

The rule for iterate is generic for all iterators (including quantifiers). However, it 

differs in that the accumulator, which is an updatable variable in OCL, needs to be 

replaced by a series of constraint variables   , each one (except   ) constrained to the 

value of its predecessor joined with the update operation. The result of the expression 

is then the value of the last   . Note that all OCL iterators that can be interpreted as 
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special cases of iterate can be translated using this scheme; in the case of forAll, accu-

mulation is implicit (all generated constraints must be satisfied); in the case of select, 

a single set-valued variable suffices as accumulator. 

4 Future Work 

This work presents our current approaches to interpreting OCL assertions as the 

source for constraint generation as we need it, e.g., for our generic model assist re-

search [9]. A further challenge, for example, is to verify applicability of the given 

rules for further collection types besides set, such as bag and sequence. As most solv-

ers do not support all of them, emulation is required; for instance, in the case of the 

Choco solver [2] (which we have used in our previous work), Set is the only collec-

tion type directly supported. Still, bags and sequences can be represented as sets of 

pairs of a member and an integer which allows being optimistic. Finally, we plan to 

enhance existing model editors with assist functionality based on the OCL invariants 

that the meta modeller specified. 

5 Summary and Conclusion 

In this paper, we have shown how OCL invariants can be transformed to constraints 

amenable to constraint solving. Differing from earlier work by others, we have made 

the transformation sensitive to the variability of constrained properties, saving us the 

generation of constraints that are not needed. Applications of our work are constraint-

based refactorings [7, 8, 10] and other constraint-based development tools [9] that 

formerly required the formulation of constraint rules in a formalism specific to the 

tools; they can now rely on pre-existing OCL expressions, making the tools readily 

available for all languages whose well-formedness is specified using OCL. Further 

applications of our work seem to abound; it can be used in all areas in which OCL 

assertions are to hold after an update, for instance for change propagation and con-

sistency preservation. 
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