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Abstract. Designing dialogue systems that engage in rich tutorial dialogue has 

long been a goal of the intelligent tutoring systems community. A key challenge 

for these systems is determining when to intervene during student problem 

solving. Although intervention strategies have historically been hand-authored, 

utilizing machine learning to automatically acquire corpus-based intervention 

policies that maximize student learning holds great promise. To this end, this 

paper presents a Markov Decision Process (MDP) framework to learn when to 

intervene, capturing the most effective tutor turn-taking behaviors in a task-

oriented learning environment with textual dialogue. This framework is 

developed as a part of the JavaTutor tutorial dialogue project and will contribute 

to data-driven development of a tutorial dialogue system for introductory 

computer science education. 
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1 Introduction 

The effectiveness of tutorial dialogue has been widely established [1, 2]. Today’s 

tutorial dialogue systems have been successful in producing learning gains as they 

support problem solving [3–5], encourage collaboration [6, 7], and adapt to student 

responses [8]. These systems have also been shown to be successful in implementing 

some affective adaptations of human tutors [5, 9]. Recent research into tutorial 

dialogue systems with unrestricted turn-taking has shown promise for simulating the 

natural tutorial dialogue interactions of a human tutor [7]. Recognizing and simulating 

the natural conversational turn-taking behavior of humans continues to be an area of 

active research [10–12], and there has recently been renewed interest in developing 

dialogue systems that harness unrestricted turn-taking paradigms [7, 13, 14].  

The JavaTutor tutorial dialogue project aims to build a tutorial dialogue system 

with unrestricted turn-taking and rich natural language to support introductory 

computer science students. The overarching paradigm of this project is to 

automatically derive tutoring strategies using machine learning techniques applied to 

a corpus collected from an observational study of human-human tutoring. In 



particular, the project focuses on how to devise tutorial strategies that deliver both 

cognitive and affective scaffolding in the most effective way. The project to date has 

seen the collection of a large corpus of tutorial dialogue featuring six repeated 

interactions with tutor-student pairs, accompanied by data on learning and attitude for 

each session as well as across the study [15–17]. This paper describes an important 

first step toward deriving tutorial dialogue policies automatically from the collected 

corpus in a way that does not simply mimic the behavior of human tutors, but seeks to 

identify the most effective tutorial strategies and implement those within the system’s 

dialogue policy.   

In recent years, reinforcement learning (RL) has proven useful for creating tutorial 

dialogue system policies in structured problem-solving interactions, such as what type 

of question to ask a student [18] and whether to elicit or tell the next step in the 

solution [19]. In order to harness the power of RL-based approaches within a tutorial 

dialogue system for computer science education, two important research problems 

must be addressed. First, a representation must be formulated in which student 

computer programming actions, which can occur continuously or in small bursts, can 

be segmented at an appropriate granularity and provided to the model. Second, 

because student dialogue moves, tutor dialogue moves, and student programming 

actions can occur in an interleaved manner with some overlapping each other, features 

to define the Markov Decision Process state space must be identified that preserve the 

rich, unrestricted turn-taking and mixed-initiative interaction to the greatest extent 

possible. In a first effort to address these challenges, this paper presents a novel 

application of RL-based approaches to the JavaTutor corpus of textual tutorial 

dialogue. In particular, the focus here is automatically learning when to intervene 

from this fixed corpus of human-human task-oriented tutorial dialogue with 

unrestricted turn-taking. The presented approach and policy results can inform data-

driven development of tutorial systems for computer science education. 

2 Human-Human Tutorial Dialogue Corpus 

To date, the JavaTutor project has seen the collection of an extensive corpus of 

human-human tutoring. Between August 2011 and March 2012, 67 students interacted 

with experienced tutors through the Java Online Tutoring Environment (Figure 1). 

Students were drawn from a first-year engineering course on a voluntary basis. They 

earned partial course credit for their participation. Students who reported substantial 

programming experience in a pre-survey were excluded from the experienced-tutoring 

condition (and were instead placed in a peer-tutoring collaborative condition that is 

beyond the scope of this paper), since the target population of the JavaTutor tutorial 

dialogue system is students with no programming experience. Each student completed 

six tutoring sessions over a period of four weeks, and worked with the same tutor for 

all interactions. Each tutoring session was limited to forty minutes. 

Seven tutors participated in the study. Their experience level ranged from multiple 

years’ experience in one-on-one tutoring to one semester’s experience as a teaching 

assistant or small group tutor. Gender distribution of the tutors was three female and 



four male. Tutors were provided with printed learning objectives for each session and 

were reminded that they should seek to support the students’ learning as well as 

motivational and emotional state. Also, because each subsequent tutoring session built 

on the completed computer program from the preceding session, tutors were 

encouraged to ensure that students completed the required components of the 

programming task within the allotted forty-minute time frame.  

The overarching computer science problem-solving task was for students to create 

a text-based adventure game in which a player can explore scenes based on menu 

choices. In order to implement the adventure game, students learned a variety of 

programming concepts and constructs. This paper focuses on the first of the six 

tutoring sessions. The learning objectives covered in this first session included 

compiling and running code, writing comments, variable declaration, and system I/O. 

For each learning objective, there was a conceptual component and an applied 

component. For example, for the learning objective related to compiling code, the 

conceptual learning objective was for students to explain that compilation translates 

human-readable Java programs into machine-readable forms. The applied learning 

objective was for students to demonstrate that they can compile a program by pressing 

the “compile” button within the interface. 

The Java Online Learning Environment, shown in Figure 1, supports textual 

dialogue between the human tutor and student. It also provides tutors with a real-time 

synchronized view of the student’s workspace. The interface allows for logging 

events to a database with millisecond precision, making it straightforward to 

reconstruct the events of a session from these logs. There are two information 

channels between a tutor and a student. The first of these, the messaging pane, 

supports unrestricted textual dialogue between a tutor and a student, similar to 

common instant messaging applications. There are no restrictions placed on turn-

taking, allowing either person to compose a message at any time. In addition, both 

students and tutors are notified when their partner is composing a message. The 

second information channel is the student’s workspace. A tutor can see progress on 

the Java program written by the student in real-time, but the tutor is not able to edit 

the program directly. The Java programming environment is scaffolded for novices: it 

hides class declarations, method declarations, and import statements from the student, 

lowering the amount of complex syntax visible. Students effectively compose their 

programs within a main method “sandbox”.  

In order to measure the effectiveness of each session, students completed a pre-test 

at the beginning of each session and a post-test at the end of each session evaluating 

their knowledge of the material to be taught in that lesson. From these, we computed 

normalized learning gain using the following equation: 
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Fig. 1. A student’s view of the JavaTutor human tutoring interface 

This equation, adapted from Marx and Cummings [20] allows for the possibility of 

negative learning gain during a session, a phenomenon that occurred three times in the 

corpus. These normalized learning gain values can range from -1 to 1. In the present 

study normalized learning gains ranged from -0.29 to 1 (mean = 0.42; median = 0.45; 

st. dev. = 0.32). Students scored significantly higher on the post-test than the pre-test 

(p < .001). 

3 Building the Markov Decision Process 

The goal of the analysis presented here is to derive an effective tutorial intervention 

policy—when to intervene—from a fixed corpus of student-tutor interactions. From 

the tutors’ perspective, the decision to intervene was made based on the state of the 

interaction as observed through the two information channels in the interface: the 

textual dialogue pane and the synchronized view of the student’s workspace. In order 

to use a MDP framework to derive an effective intervention policy, we describe a 

representation of the interaction state as a collection of features from these 

information channels. 

A Markov Decision Process is a model of a system in which a policy can be 

learned to maximize reward [21]. It consists of a set of states S, a set of actions A 

representing possible actions by an agent, a set of transition probabilities indicating 



how likely it is for the model to transition to each state sʹ ϵ S from each state s ϵ S 

when the agent performs each action a ϵ A in state s, and a reward function R that 

maps real values onto transitions and/or states, thus signifying their utility.  

The goal of this analysis is to model tutor interventions during the task-completion 

process, so the possible actions for a tutor were to intervene (by composing and 

sending a message) or not to intervene. Hence, the set of actions is defined as A = 

{TutorMove, NoMove}. We chose three features to represent the state of the dialogue, 

with each feature taking on one of three possible values. These features, described in 

Table 1, combine as a triple to form the states of the MDP as (Current Student Action, 

Task Trajectory, Last Action). These three features were chosen because they 

succinctly represent the current state of the dialogue in terms of turn-taking 

information in the Current Action and Last Action features, while the recent behavior 

of the student is captured in the Task Trajectory and Current Action features. Thus, 

these features supply an agent with sufficient information to learn a basic intervention 

policy while relying only on automatically annotated features. By selecting a small 

state space and action space, we avoid data sparsity issues [22], thereby decreasing 

the likelihood of states being insufficiently explored in our corpus, and increasing the 

likelihood of producing a meaningful intervention policy. 

Table 1. The features that define the states of the Markov Decision Process 

Current Student Action Task Trajectory Last Action 

• Task: Working on the 

task 

• StudentDial: Writing a 

message to the tutor 

• NoAction: No current 

student action 

• Closer: Moving closer to the 

final correct solution 

• Farther: Moving away from 

correct solution 

• NoChange: Same distance 

from correct solution 

• TutorDial: Tutor 

message 

• StudentDial: Student 

message 

• Task: Student worked on 

the task 

 

In addition, the model includes 3 more states: an Initial state, in which the model 

always begins, and two final states: one with reward +100 for students achieving 

higher-than-median normalized learning gain and one with reward -100 for the 

remaining students, following the conventions established in prior research into 

reinforcement learning for tutorial dialogue [18, 19]. 

Using these formalizations, one state was assigned to each of the log entries 

collected during the sessions and transition probabilities were computed between 

them when a tutor made an intervention (TutorMove) and when a tutor did not make 

an intervention (NoMove) based on the transition frequencies observed in the data. 

Any states that occurred less than once per session on average were combined into a 

single LowFrequency state, following the convention of prior work [23]. There were 

four states fitting this description: (Task, Farther, StudentDial), (StudentDial, 

Farther, StudentDial), (StudentDial, Farther, Task), and (StudentDial, Farther, 

TutorDial). Thus, the final MDP model contained 25 states requiring a tutorial 

intervention decision (23 states composed of feature combinations, the LowFrequency 

state, and the Initial state), and two final states. 



The Current Student Action and Last Action features were relatively 

straightforward to assign to log entries by simply observing what a student was 

currently doing at that point in the session and observing what action had occurred 

most recently. The Task Trajectory feature was computed by discretizing the students’ 

work on the task into chunks, which presents a substantial research question and 

design decision for supporting computer science learning. Historically, intelligent 

tutoring systems for computer science have utilized granularity at one extreme or the 

other. The smallest possible granularity is every keystroke, perhaps the earliest 

example of this being the Lisp tutor of Anderson and colleagues [24]. The largest 

granularity could arguably be to evaluate only when the student deems the artifact 

complete enough to manually submit for evaluation, which was the approach taken by 

another very early computer science tutor, Proust [25]. For the JavaTutor system, 

evaluating the student program more often than at the completion of tasks is essential 

to support dialogue, but an every-keystroke evaluation is too frequent due in part to 

algorithm runtime limitations. We define our task events as beginning when a student 

begins typing in the task pane and ending when a student has not typed in the task 

pane for at least 1.5 seconds. This threshold of 1.5 seconds was chosen empirically 

before model building to strike a balance between shorter thresholds, which resulted 

in frequent switching between “working on task” and “not working on task” states, 

and longer thresholds, which resulted in never leaving the “working on task” state. 

After each task event (discretized as described above), a student’s program was 

separated into tokens as defined by the Java compiler, and a token-level minimum edit 

distance was computed from that student’s final solution for the lesson, tokenized in 

the same manner. Variable names, comments, and the contents of string literals were 

ignored in this edit distance calculation. The change in the edit distance from one 

chunk to the next determined the value of the Task Trajectory feature. Because the 

tutors were experienced in Java programming and had knowledge of the lesson 

structure, it is reasonable to assume that they were able to determine whether the 

student was moving farther or closer to the final solution. In this way, the edit 

distance algorithm provides a rough, automatically computable estimate of the tutors’ 

assessment of student progress. 

4 Policy Learning 

The goal of this analysis is to learn a tutorial intervention policy—when to 

intervene—that reflects the most effective strategies within the corpus. In the MDP 

framework described above, this involves maximizing the learning gain reward. In 

order to learn this tutorial intervention policy, we used a policy iteration algorithm 

[21] on the MDP. For each iteration, this algorithm computes the expected reward in 

each state s ϵ S when taking each action a ϵ A, based on the computed transition 

probabilities to other states and the expected rewards of those states from the previous 

iteration. Following the practice of prior work [13, 17], a discount factor of 0.9 was 

used to penalize delayed rewards (those requiring several state transitions to achieve) 

in favor of immediate rewards (those requiring few state transitions to achieve). The 



policy iteration continues until convergence is reached; that is, until the change in 

expected reward for each state is less than some epsilon value between iterations. We 

used an epsilon of 10
-7

, requiring 125 iterations to converge. The resulting policy is 

shown in Table 2. 

Table 2. The learned tutorial intervention policy 

State  

(Current Action,   

Task Trajectory,  

Last Action)  

Policy 

 State  

(Current Action,   

Task Trajectory,  

Last Action) 

Policy 

(Task, Closer, Task) TutorMove  (StudentDial, NoChange, TutorDial) NoMove 

(Task, Closer, StudentDial) TutorMove  (NoAction, Closer, Task) TutorMove 

(Task, Closer, TutorDial) TutorMove  (NoAction, Closer, StudentDial) TutorMove 

(Task, Farther, Task) TutorMove  (NoAction, Closer, TutorDial) NoMove 

(Task, Farther, TutorDial) TutorMove  (NoAction, Farther, Task) NoMove 

(Task, NoChange, Task) TutorMove  (NoAction, Farther, StudentDial) TutorMove 

(Task, NoChange, StudentDial) NoMove  (NoAction, Farther, TutorDial) NoMove 

(Task, NoChange, TutorDial) TutorMove  (NoAction, NoChange, Task) TutorMove 

(StudentDial, Closer, Task) TutorMove  (NoAction, NoChange, StudentDial) NoMove 

(StudentDial, Closer, StudentDial) TutorMove  (NoAction, NoChange, TutorDial) NoMove 

(StudentDial, Closer, TutorDial) TutorMove  Initial TutorMove 

(StudentDial, NoChange, Task) NoMove  LowFrequency TutorMove 

(StudentDial, NoChange, StudentDial) NoMove    

 

Some noteworthy patterns emerge in the intervention policy learned from the corpus. 

For example, in seven of the eight states where the student is actively engaged in task 

actions (Task, *, *), the policy recommends that the tutor make a dialogue move. An 

excerpt from the corpus illustrating this strategy in a high learning gain session is 

shown in Figure 2, on lines 2-4. An excerpt from a low learning gain session showing 

tutor non-intervention during task progress is shown in Figure 3. In addition, among 

the states in which no action is currently being taken by the student and the last action 

was a tutor message, i.e., matching the pattern (NoAction, *, TutorDial), we find that 

the policy recommends that a tutor not make another consecutive dialogue move, 

regardless of how well the student is progressing on the task. However, Figure 2 

shows that high learning gains are possible without strictly following this particular 

recommendation. Additional discussion on these recommendations can be found in 

[26]. 

5 Conclusion and Future Work 

Current tutorial dialogue systems are highly effective, and matching the effectiveness 

of the most effective tutors is a driving force of tutorial dialogue research. This paper 



presents a step toward rich, adaptive dialogue for supporting computer science 

learning by introducing a representation of task-oriented dialogue with unrestricted 

turn-taking in a reinforcement learning framework and presenting initial results of an 

automatically learned policy for when to intervene. The presented approach will 

inform the development of the JavaTutor tutorial dialogue system, whose initial 

policies will be learned based on the fixed human-human corpus described here.  

 

 Event Tutor action and state transition 

1. Student is declaring a String variable named 

“aStringVariable”. 

NoMove 

  
(Task, NoChange, Task) 

2. Tutor starts typing a message TutorMove 

                                  
(NoAction, Closer, TutorDial) 

3. 1.5 seconds elapse, task action is complete. 

4. Tutor message: That works, but let’s give the variable 

a more descriptive name 

5. Tutor starts typing a message TutorMove 

 
(NoAction, Closer, TutorDial) 

6. Student starts typing a message 

7. Student message: ok 

8. Tutor message: Usually, the variable’s name tells us 

what data it has stored 

Fig. 2. An excerpt from a high learning gain session. 

 Event Tutor action and state transition 

1. Student has just attempted to implement the 

programming code needed to complete the task, with 

no tutor intervention. 

NoMove 

 

(NoAction, Closer, Task) 

2. Student starts typing a message NoMove 

 

(StudentDial, Closer, Task) 

3. Student message: not sure if this is right… NoMove 

 

(NoAction, Closer, StudentDial) 

Fig. 3. An excerpt from a low learning gain session. 

Further exploring of the state space via simulation and utilizing a more expressive 

representation of state are highly promising directions for future work. Other 

directions for future work include undertaking a more fine-grained analysis of the 

timing of interventions, which could inform the development of more natural 

interactions, as well as allowing for more nuanced intervention strategies. 

Additionally, these models should be enhanced with a more expressive representation 

of both dialogue and task. It is hoped that these lines of investigation will yield highly 

effective machine-learned policies for tutorial dialogue systems and that tutorial 

dialogue systems for computer science will make this subject more accessible to 

students of all grade levels. 
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