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Abstract. In an effort to bring intelligent tutoring system (ITS) authoring tools 

closer to content authoring tools, the authors are working to integrate GIFT with 

the Unity game engine and editor. The paper begins by describing challenges 

faced by modern intelligent tutors and the motivation behind the integration ef-

fort, with special consideration given to how this work will better meet the 

needs of future serious games. The next three sections expand on these major 

hurdles more thoroughly, followed by proposed design enhancements that 

would allow GIFT to overcome these issues. Finally, an overview is given of 

the authors’ cur- rent progress towards implementing the proposed design. The 

key contribution of this work is an abstraction of the interface between intelli-

gent tutoring systems and serious games, thus enabling ITS authors to imple-

ment more complex training behaviors. 

Keywords: intelligent tutoring, serious games, virtual environments, game en-

gines 

1 Introduction 
 

Experience with the Generalized Intelligent Framework for Tutoring (GIFT) has 

shown that authoring new courses, domain knowledge, and learner configurations 

requires little-to-no programming experience. A basic understanding of XML and 

how the modules of GIFT interact is sufficient to design and configure a course for 

one of the supported training applications. When it comes to extending the framework 

to support new training applications, however, each interface module must be hand-

crafted. Reducing the amount of effort required to author a tutor and its content is a 

desirable quality of future authoring tools [1], therefore the task of integrating new 

training applications should be made as seamless as possible. 

Serious games are one example of training applications that are well-suited for 

integration with ITSs; two such games are already supported by GIFT: Virtual 

Battlespace 2 (VBS2) and TC3 vMedic. These games encompass a only a subset of 

the training material that is possible with serious games, however. There are certain 

aspects of this genre of game are common across all individual applications, meaning 

that it may be possible to create a single abstraction layer capable of decoupling GIFT 

from the training application. This approach is recommended by Sottilare and Gilbert, 
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who suggest that such an abstraction layer might be able to translate learning objec-

tives into meaningful objects actions in the game world, and vice versa [2]. 

In addition to adapting data about the game state to a format that the ITS expects, 

it is also desirable for the ITS to have a finer degree of control over the scenario itself.  

These so-called “branching” or “conditional” scenarios [2] are difficult to achieve if 

the serious game and its plugin API are not designed with such functionality in mind. 

Therefore, it may also be necessary to “standardize” the ability to branch scenarios in 

the design of serious games. 

To these ends, our proposed solution is to bring the ITS authoring tools closer to 

the content authoring tools used to create a given serious game. In the case of this 

paper, we have chosen to work with the popular Unity game engine. In the following 

sections we will show how integration with Unity and other serious game authoring 

tools can achieve the functionality that is currently desired in a modern ITS authoring 

suite. 

2 Current Authoring Capabilities 
 

As stated by Sottilare et. al, authoring new intelligent tutors is one of the three prima-

ry functions of GIFT [3]. To this end, the framework already contains authoring tools 

that enable users to create and configure the essential elements of an intelligent tutor-

ing program. The following list gives a brief overview of the current authoring capa-

bilities supported by GIFT: 

· Authoring learner models through the Learner Configuration Authoring Tool 

(LCAT) 

· Configuring sensors through the Sensor Configuration Authoring Tool (SCAT) 

· Authoring Domain Knowledge Files (DKFs) through the DKF Authoring Tool 

(DAT) 

· Creating and presenting surveys through the Survey Authoring Tool (SAT) 

 

By using good design principles, the authors of GIFT have been able to effective-

ly decouple the authoring of individual tutor components from one another. The de-

coupling of different program elements is important for improving the maintainability 

and extensibility of large pieces of software such as GIFT. One area of the framework 

design that suffers from tight coupling is the integration of third-party training appli-

cations, e.g. VBS2, vMedic, etc.  

The development of these authoring tools is guided by several design goals, one 

of which is to “Employ standards to support rapid integration of external train-

ing/tutoring environments.” [3] In this regard, the current GIFT authoring construct 

can benefit from design enhancements that standardize this process across a range of 

training applications. Through the work outlined in this paper, we aim to generalize 

the process of integrating serious games with GIFT by creating an abstraction layer 

between GIFT and the game engine itself. 
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3 Related Work 
 

Prior work in integrating serious games and intelligent tutors has demonstrated that 

ITS authoring tools can be easily adapted to work with individual games. Research 

conducted by Gilbert et al. demonstrated interoperation between the Extensible Prob-

lem-Specific Tutor (xPST) and a scenario created in the Torque game engine [4].  

Devasani et al. built upon this work and demonstrated how an authoring tool for 

interpreting game state and player actions might be designed [5]. For their work, 

xPST was integrated with a VBS2 scenario. An important revelation made by the 

authors was that the author of the tutor need not define a complete state machine with 

transitions, since these transitions are implicit when the game engine changes state 

each frame.  

Another of the GIFT design goals is to “Develop interfaces/gateways to widely 

used commercial and academic tools.” [2] As previously mentioned, the current GIFT 

release has support for two serious games, one of which is VBS2, and the other being 

vMedic. This work and the previous two examples highlight the usefulness of inte-

grating intelligent tutors with serious games, as well as the need for a standardized 

interface for authoring relationships between the game objects and tutor concepts.  

There are currently no concrete examples of a standard for quickly integrating serious 

games and intelligent tutors, although Sottilare and Gilbert make recommendations on 

how this problem might be approached [2]. 

4 Design Enhancements 
 

As noted by previous authors [2, 4], one of the key challenges of tutoring in a virtual 

environment is mapping relevant game states to subgoals defined by the training cur-

riculum. If the learner's goal is to move to a specific location, for example, the tutor 

author may not be interested in how the learner reached that state (e.g., driving, walk-

ing, or running). Thus, the tutor would have to know to filter out information from the 

game engine about modality of movement, and attend only to the location. If, howev-

er, the trainer wants to focus on exactly how best to move to that location (e.g., 

stealthily), then the tutor does need to monitor movement information. Using this 

example, we see that the context of the pedagogical goal influences the type of and 

granularity of tutor monitoring. From here on, we will refer to this challenge as the 

“observation granularity challenge.” 

In the process of reaching each pedagogical goal, the learner will build up a histo-

ry of actions. Similar to the concept of a context attached to goals, there can also be 

context attached to patterns of actions over time. As an example, there may be cases 

where a tutor would permit errors in subgoals within a larger pattern of actions that it 

would still deem “successful.” This history is essentially a recording of the virtual 

environment state over the course of the training. The amount and diversity of data in 

this history stream is potentially massive, creating a major challenge when attempting 

to recognize patterns. The problem of recognizing these patterns is crucial for identi-

fying the learner's progress. From here on, we will refer to this challenge as the “his-

tory challenge.” 
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In addition, because game environments afford interaction among multiple simul-

taneous entities, the tutor's reaction to actions and other new game states may be de-

pendent on the actor. This context dependence suggests that it would be a valuable to 

add game entity attributes to state updates, and for GIFT to be able to process logic 

such as, “If the gunshot action came from an entity that is unknown or hostile, then 

take action X.  If the gunshot came from a friend entity, take action Y.” The addition-

al layer of entity attributes adds complexity to authoring, but will be necessary for 

modeling team and social interactions. Devasani et al. describes a possible state-based 

architecture that could be the basis for such an approach, and it could be incorporated 

into GIFT [4]. From here on, we will refer to this challenge as the “actor-context chal-

lenge.” 

4.1 Abstraction Layer 

 

A core aspect of the design principles behind GIFT is its generalizability to new train-

ing applications and scenarios. For this reason it is critical that the representations of 

data in GIFT and in the training application be allowed to remain independent. It is 

infeasible to force training applications to adapt to the interfaces that GIFT provides.  

However, a layer of abstraction that adapts messages from a sender into a form that 

can be consumed by a receiver is similar to the classic Adapter design pattern in soft-

ware engineering. This design pattern has the useful property of enabling two other-

wise incompatible interfaces to communicate, in addition to decreasing the coupling 

between them. In the case of GIFT, the abstraction layer would handle the mapping of 

objects from one service into a representation that makes sense to the other. As an 

example, this module might receive a message from the game engine containing the  

new location of the learner in the virtual environment which might then be interpreted  

for the tutor as “the learner reached the checkpoint.” 

In addition to mapping game engine concepts to tutor concepts, the abstraction 

layer can act as a filter in order to solve the observation granularity and history chal-

lenges. The scripting language achieves this by affording “do not care” conditions that 

would then trigger the abstraction layer to interpret only the relevant messages and 

discard everything else. 

One proposed method for implementing this mapping is a scripting language and 

engine that allows the author to define the mapping themselves. Although it is far 

from being an automated solution, a scripting language would allow the ITS and con-

tent authors to hook into more complex behaviors with very little learning overhead. 

Scripting languages can be more user-friendly than XML by virtue of their syntactical 

similarities to written English. Furthermore, within the context of the Unity develop-

ment environment we can expect users to have familiarity with scripting languages 

such as JavaScript and Boo (similar to Python). For these reasons, a scripting lan-

guage is a natural choice for abstracting communication between GIFT and Unity. It 

is important for the simplicity of tutor authoring that this messaging abstraction layer 

have the tutor-side representation use language that a trainer would naturally use. If 

this is the case, the trainer can more easily author feedback and adaptive scenarios. 

Although JavaScript and Boo are well-suited as tools to implement complex be-

haviors for game objects, they overcomplicate the task of describing interactions be-

tween the game world and the tutor. Instead of complex behaviors, we seek to enable 
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the tutor author to quickly declare relationships between objects in the game, domain 

knowledge, and pedagogical goals.  

In order to avoid burdening the author with the challenge of authoring different 

components in different languages, it may be advantageous to use XML for authoring 

abstraction layer rules. The declarative nature of XML makes it ideal for this role, 

although as mentioned previously, it suffers from poor readability. An alternative to 

XML is TutorScript, a scripting language developed for use in ITSs [6]. The design of 

TutorScript centers around the sequences of goals or contexts called a predicate tree. 

TutorScript’s primary advantage over the previously mentioned alternatives is that it 

was designed with the goal of relating domain knowledge to learner actions in the 

training application. Additionally, TutorScript takes inspiration from Apple script in 

regards to syntax, allowing non-programmers to write scripts that read like English. 

For our work, TutorScript would allow us to hook into objects in both GIFT and Uni-

ty, where we can then create interactions using simple language. 

4.2 Unity Editor 

 

One of the main benefits of the Unity editor is that it is extensible to support  user-

created tools for custom workflows, or to fill in functionality lacked by the default 

editor. Some examples of editor plugins authored by users have added advanced level 

building tools, cut-scene editors, and even node-based visual scripting interfaces. The 

ultimate goal of this project is to completely integrate GIFT's authoring tools with the 

Unity ecosystem. This entails creating editor plugins for the entire suite of GIFT au-

thoring tools, thereby enabling content authors to generate serious game and tutor 

content side-by-side using a single development environment. 

An added benefit of integration with the Unity editor is its powerful rapid-

prototyping abilities. Scenarios in Unity are organized into “Scenes” which can be 

loaded individually, played, and paused within Unity's built-in player. Current work 

to develop a proof-of-concept has demonstrated that it is possible to interact with the 

tutor within this player, thereby enabling the author to perform debugging on the 

training scenario to an extent. 

It is considered good practice when authoring Unity games to “tag” game objects 

with names that encode the meaningful behavior that the game object performs. As-

suming that the author adheres to this practice, the tagging mechanism combined with 

the abstraction layer will solve the actor-context challenge. Tags can be transmitted 

with game state updates that pass through the abstraction layer, which will then inter-

pret the tags into context that is meaningful to the tutor. Since the abstraction layer is 

scripted by the author, it is essential for the abstraction layer script editor to be in-

cluded in Unity's authoring suite. Making these tools easily accessible from one or the 

other allows the author to update changes to the scripts as soon as he or she makes 

changes to game object tags and other metadata. 

As stated previously, the scripting languages provided by Unity may not be ideal-

ly suited to the task of communicating between the game engine and the tutor. Addi-

tional modifications will need to be made to MonoDevelop, the highly extensible IDE 

distributed as part of Unity, in order to support TutorScript or a variant of it. 

MonoDevelop greatly simplifies the creation of helpful programming tools such as 

syntax-highlighting and auto-completion that assist users with no prior programming 
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background. Developing a MonoDevelop add-on for TutorScript also allows the au-

thor to more easily manage large or complex scripts needed to address the history and 

actor-context challenges via the built-in code organization features such as collapsing 

scopes. Taken together, Unity and MonoDevelop can be used as a suite of tools for 

authoring not only serious game content, but also advanced tutor behaviors, curricu-

lum, and domain knowledge that will drive the training scenarios. 

5 Recommendations 
 

We project that the design enhancements recommended in this paper will assist in 

improving time savings and reducing cost involved with authoring an intelligent tutor. 

Specifically, we are aiming to reduce the time required to integrate GIFT with a new 

serious game by instead integrating it with the game engine itself. Our reasoning is 

that there are relatively few game engines that would need to be integrated, compared 

to the number of games with potential for enhancement through tutoring. Additionally, 

code reuse is facilitated by employing a standard format for describing relationships 

between game and tutor objects. If successful, this work will introduce a new abstrac-

tion layer between GIFT and the game engines that drive serious serious games, ena-

bling a single tutor configuration to be deployed across a wide range of scenarios. For 

your convenience, the recommendations have been consolidated and figured in the 

table below. 

Table 3. GIFT Design Enhancement Recommendations 

Improve decoupling of potential learner actions and other game-specific data from the 

gateway and other GIFT modules. 

Define a new XML schema for constructing game-tutor object relationships. 

Develop a new authoring tool capable of authoring and validating these relationships. 

Integrate new and existing authoring tools with the Unity editor. 

6 Current Work 
 

At this point we have successfully developed a proof-of-concept plugin that demon-

strates basic communication between GIFT and Unity-driven games, similar to the 

interoperation module developed for VBS2. The extent of this functionality encom-

passes connecting to the Unity plugin from GIFT and then issuing playback com-

mands such as pause and resume to the Unity player. This work has helped to increase 

our understanding of the inner workings of GIFT with regard to the augmentation 

required to communicate with our abstraction layer. In particular, the extent to which 

GIFT is tailored to each training application became apparent. In addition, we were 

able to leverage support for C# .NET 2.0 in Unity to move a great deal of the support-

ing code into components attached to game objects. This design allows the three ser-

vices (Unity, Abstraction Layer, and GIFT) to remain isolated from one another dur-

ing development, encouraging loose coupling across service boundaries and portabil-

ity to other serious game authoring tools. 



 43 

Before any work on the abstraction layer can begin, the language used to define 

object relationships must first be well-defined. Once this step is completed, we can 

begin abstracting away the elements of third-party application integration in GIFT 

that are currently hard-coded. Ultimately, these elements will be encapsulated by the 

proposed abstraction layer. 

7 Conclusion 
 

In this paper we proposed a handful of major design enhancements to GIFT with the 

overarching goal of bringing the ITS authoring workflow into the game content crea-

tion pipeline. The first task in realizing this vision is to create an abstraction layer 

comprised of a scripting engine tailored for ITSs. The second and final task is to inte-

grate the GIFT authoring tools into Unity, in order to encourage side-by-side devel-

opment of game and tutor content. The Unity game engine has been chosen for this 

work due to its ease of use, cross-platform support, and high extensibility. It is our 

hope that such a comprehensive suite of tools will help to drive a new generation of 

high-quality serious games. 
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