
 37

Bringing Authoring Tools for Intelligent Tutoring

Systems and Serious Games Closer Together: Integrating

GIFT with the Unity Game Engine

Colin Ray, Stephen Gilbert

Iowa State University, Ames, IA, USA

{rcray, gilbert}@iastate.edu

http://www.iastate.edu

Abstract. In an effort to bring intelligent tutoring system (ITS) authoring tools

closer to content authoring tools, the authors are working to integrate GIFT with

the Unity game engine and editor. The paper begins by describing challenges

faced by modern intelligent tutors and the motivation behind the integration ef-

fort, with special consideration given to how this work will better meet the

needs of future serious games. The next three sections expand on these major

hurdles more thoroughly, followed by proposed design enhancements that

would allow GIFT to overcome these issues. Finally, an overview is given of

the authors’ cur- rent progress towards implementing the proposed design. The

key contribution of this work is an abstraction of the interface between intelli-

gent tutoring systems and serious games, thus enabling ITS authors to imple-

ment more complex training behaviors.

Keywords: intelligent tutoring, serious games, virtual environments, game en-

gines

1 Introduction

Experience with the Generalized Intelligent Framework for Tutoring (GIFT) has

shown that authoring new courses, domain knowledge, and learner configurations

requires little-to-no programming experience. A basic understanding of XML and

how the modules of GIFT interact is sufficient to design and configure a course for

one of the supported training applications. When it comes to extending the framework

to support new training applications, however, each interface module must be hand-

crafted. Reducing the amount of effort required to author a tutor and its content is a

desirable quality of future authoring tools [1], therefore the task of integrating new

training applications should be made as seamless as possible.

Serious games are one example of training applications that are well-suited for

integration with ITSs; two such games are already supported by GIFT: Virtual

Battlespace 2 (VBS2) and TC3 vMedic. These games encompass a only a subset of

the training material that is possible with serious games, however. There are certain

aspects of this genre of game are common across all individual applications, meaning

that it may be possible to create a single abstraction layer capable of decoupling GIFT

from the training application. This approach is recommended by Sottilare and Gilbert,

 38

who suggest that such an abstraction layer might be able to translate learning objec-

tives into meaningful objects actions in the game world, and vice versa [2].

In addition to adapting data about the game state to a format that the ITS expects,

it is also desirable for the ITS to have a finer degree of control over the scenario itself.

These so-called “branching” or “conditional” scenarios [2] are difficult to achieve if

the serious game and its plugin API are not designed with such functionality in mind.

Therefore, it may also be necessary to “standardize” the ability to branch scenarios in

the design of serious games.

To these ends, our proposed solution is to bring the ITS authoring tools closer to

the content authoring tools used to create a given serious game. In the case of this

paper, we have chosen to work with the popular Unity game engine. In the following

sections we will show how integration with Unity and other serious game authoring

tools can achieve the functionality that is currently desired in a modern ITS authoring

suite.

2 Current Authoring Capabilities

As stated by Sottilare et. al, authoring new intelligent tutors is one of the three prima-

ry functions of GIFT [3]. To this end, the framework already contains authoring tools

that enable users to create and configure the essential elements of an intelligent tutor-

ing program. The following list gives a brief overview of the current authoring capa-

bilities supported by GIFT:

· Authoring learner models through the Learner Configuration Authoring Tool

(LCAT)

· Configuring sensors through the Sensor Configuration Authoring Tool (SCAT)

· Authoring Domain Knowledge Files (DKFs) through the DKF Authoring Tool

(DAT)

· Creating and presenting surveys through the Survey Authoring Tool (SAT)

By using good design principles, the authors of GIFT have been able to effective-

ly decouple the authoring of individual tutor components from one another. The de-

coupling of different program elements is important for improving the maintainability

and extensibility of large pieces of software such as GIFT. One area of the framework

design that suffers from tight coupling is the integration of third-party training appli-

cations, e.g. VBS2, vMedic, etc.

The development of these authoring tools is guided by several design goals, one

of which is to “Employ standards to support rapid integration of external train-

ing/tutoring environments.” [3] In this regard, the current GIFT authoring construct

can benefit from design enhancements that standardize this process across a range of

training applications. Through the work outlined in this paper, we aim to generalize

the process of integrating serious games with GIFT by creating an abstraction layer

between GIFT and the game engine itself.

 39

3 Related Work

Prior work in integrating serious games and intelligent tutors has demonstrated that

ITS authoring tools can be easily adapted to work with individual games. Research

conducted by Gilbert et al. demonstrated interoperation between the Extensible Prob-

lem-Specific Tutor (xPST) and a scenario created in the Torque game engine [4].

Devasani et al. built upon this work and demonstrated how an authoring tool for

interpreting game state and player actions might be designed [5]. For their work,

xPST was integrated with a VBS2 scenario. An important revelation made by the

authors was that the author of the tutor need not define a complete state machine with

transitions, since these transitions are implicit when the game engine changes state

each frame.

Another of the GIFT design goals is to “Develop interfaces/gateways to widely

used commercial and academic tools.” [2] As previously mentioned, the current GIFT

release has support for two serious games, one of which is VBS2, and the other being

vMedic. This work and the previous two examples highlight the usefulness of inte-

grating intelligent tutors with serious games, as well as the need for a standardized

interface for authoring relationships between the game objects and tutor concepts.

There are currently no concrete examples of a standard for quickly integrating serious

games and intelligent tutors, although Sottilare and Gilbert make recommendations on

how this problem might be approached [2].

4 Design Enhancements

As noted by previous authors [2, 4], one of the key challenges of tutoring in a virtual

environment is mapping relevant game states to subgoals defined by the training cur-

riculum. If the learner's goal is to move to a specific location, for example, the tutor

author may not be interested in how the learner reached that state (e.g., driving, walk-

ing, or running). Thus, the tutor would have to know to filter out information from the

game engine about modality of movement, and attend only to the location. If, howev-

er, the trainer wants to focus on exactly how best to move to that location (e.g.,

stealthily), then the tutor does need to monitor movement information. Using this

example, we see that the context of the pedagogical goal influences the type of and

granularity of tutor monitoring. From here on, we will refer to this challenge as the

“observation granularity challenge.”

In the process of reaching each pedagogical goal, the learner will build up a histo-

ry of actions. Similar to the concept of a context attached to goals, there can also be

context attached to patterns of actions over time. As an example, there may be cases

where a tutor would permit errors in subgoals within a larger pattern of actions that it

would still deem “successful.” This history is essentially a recording of the virtual

environment state over the course of the training. The amount and diversity of data in

this history stream is potentially massive, creating a major challenge when attempting

to recognize patterns. The problem of recognizing these patterns is crucial for identi-

fying the learner's progress. From here on, we will refer to this challenge as the “his-

tory challenge.”

 40

In addition, because game environments afford interaction among multiple simul-

taneous entities, the tutor's reaction to actions and other new game states may be de-

pendent on the actor. This context dependence suggests that it would be a valuable to

add game entity attributes to state updates, and for GIFT to be able to process logic

such as, “If the gunshot action came from an entity that is unknown or hostile, then

take action X. If the gunshot came from a friend entity, take action Y.” The addition-

al layer of entity attributes adds complexity to authoring, but will be necessary for

modeling team and social interactions. Devasani et al. describes a possible state-based

architecture that could be the basis for such an approach, and it could be incorporated

into GIFT [4]. From here on, we will refer to this challenge as the “actor-context chal-

lenge.”

4.1 Abstraction Layer

A core aspect of the design principles behind GIFT is its generalizability to new train-

ing applications and scenarios. For this reason it is critical that the representations of

data in GIFT and in the training application be allowed to remain independent. It is

infeasible to force training applications to adapt to the interfaces that GIFT provides.

However, a layer of abstraction that adapts messages from a sender into a form that

can be consumed by a receiver is similar to the classic Adapter design pattern in soft-

ware engineering. This design pattern has the useful property of enabling two other-

wise incompatible interfaces to communicate, in addition to decreasing the coupling

between them. In the case of GIFT, the abstraction layer would handle the mapping of

objects from one service into a representation that makes sense to the other. As an

example, this module might receive a message from the game engine containing the

new location of the learner in the virtual environment which might then be interpreted

for the tutor as “the learner reached the checkpoint.”

In addition to mapping game engine concepts to tutor concepts, the abstraction

layer can act as a filter in order to solve the observation granularity and history chal-

lenges. The scripting language achieves this by affording “do not care” conditions that

would then trigger the abstraction layer to interpret only the relevant messages and

discard everything else.

One proposed method for implementing this mapping is a scripting language and

engine that allows the author to define the mapping themselves. Although it is far

from being an automated solution, a scripting language would allow the ITS and con-

tent authors to hook into more complex behaviors with very little learning overhead.

Scripting languages can be more user-friendly than XML by virtue of their syntactical

similarities to written English. Furthermore, within the context of the Unity develop-

ment environment we can expect users to have familiarity with scripting languages

such as JavaScript and Boo (similar to Python). For these reasons, a scripting lan-

guage is a natural choice for abstracting communication between GIFT and Unity. It

is important for the simplicity of tutor authoring that this messaging abstraction layer

have the tutor-side representation use language that a trainer would naturally use. If

this is the case, the trainer can more easily author feedback and adaptive scenarios.

Although JavaScript and Boo are well-suited as tools to implement complex be-

haviors for game objects, they overcomplicate the task of describing interactions be-

tween the game world and the tutor. Instead of complex behaviors, we seek to enable

 41

the tutor author to quickly declare relationships between objects in the game, domain

knowledge, and pedagogical goals.

In order to avoid burdening the author with the challenge of authoring different

components in different languages, it may be advantageous to use XML for authoring

abstraction layer rules. The declarative nature of XML makes it ideal for this role,

although as mentioned previously, it suffers from poor readability. An alternative to

XML is TutorScript, a scripting language developed for use in ITSs [6]. The design of

TutorScript centers around the sequences of goals or contexts called a predicate tree.

TutorScript’s primary advantage over the previously mentioned alternatives is that it

was designed with the goal of relating domain knowledge to learner actions in the

training application. Additionally, TutorScript takes inspiration from Apple script in

regards to syntax, allowing non-programmers to write scripts that read like English.

For our work, TutorScript would allow us to hook into objects in both GIFT and Uni-

ty, where we can then create interactions using simple language.

4.2 Unity Editor

One of the main benefits of the Unity editor is that it is extensible to support user-

created tools for custom workflows, or to fill in functionality lacked by the default

editor. Some examples of editor plugins authored by users have added advanced level

building tools, cut-scene editors, and even node-based visual scripting interfaces. The

ultimate goal of this project is to completely integrate GIFT's authoring tools with the

Unity ecosystem. This entails creating editor plugins for the entire suite of GIFT au-

thoring tools, thereby enabling content authors to generate serious game and tutor

content side-by-side using a single development environment.

An added benefit of integration with the Unity editor is its powerful rapid-

prototyping abilities. Scenarios in Unity are organized into “Scenes” which can be

loaded individually, played, and paused within Unity's built-in player. Current work

to develop a proof-of-concept has demonstrated that it is possible to interact with the

tutor within this player, thereby enabling the author to perform debugging on the

training scenario to an extent.

It is considered good practice when authoring Unity games to “tag” game objects

with names that encode the meaningful behavior that the game object performs. As-

suming that the author adheres to this practice, the tagging mechanism combined with

the abstraction layer will solve the actor-context challenge. Tags can be transmitted

with game state updates that pass through the abstraction layer, which will then inter-

pret the tags into context that is meaningful to the tutor. Since the abstraction layer is

scripted by the author, it is essential for the abstraction layer script editor to be in-

cluded in Unity's authoring suite. Making these tools easily accessible from one or the

other allows the author to update changes to the scripts as soon as he or she makes

changes to game object tags and other metadata.

As stated previously, the scripting languages provided by Unity may not be ideal-

ly suited to the task of communicating between the game engine and the tutor. Addi-

tional modifications will need to be made to MonoDevelop, the highly extensible IDE

distributed as part of Unity, in order to support TutorScript or a variant of it.

MonoDevelop greatly simplifies the creation of helpful programming tools such as

syntax-highlighting and auto-completion that assist users with no prior programming

 42

background. Developing a MonoDevelop add-on for TutorScript also allows the au-

thor to more easily manage large or complex scripts needed to address the history and

actor-context challenges via the built-in code organization features such as collapsing

scopes. Taken together, Unity and MonoDevelop can be used as a suite of tools for

authoring not only serious game content, but also advanced tutor behaviors, curricu-

lum, and domain knowledge that will drive the training scenarios.

5 Recommendations

We project that the design enhancements recommended in this paper will assist in

improving time savings and reducing cost involved with authoring an intelligent tutor.

Specifically, we are aiming to reduce the time required to integrate GIFT with a new

serious game by instead integrating it with the game engine itself. Our reasoning is

that there are relatively few game engines that would need to be integrated, compared

to the number of games with potential for enhancement through tutoring. Additionally,

code reuse is facilitated by employing a standard format for describing relationships

between game and tutor objects. If successful, this work will introduce a new abstrac-

tion layer between GIFT and the game engines that drive serious serious games, ena-

bling a single tutor configuration to be deployed across a wide range of scenarios. For

your convenience, the recommendations have been consolidated and figured in the

table below.

Table 3. GIFT Design Enhancement Recommendations

Improve decoupling of potential learner actions and other game-specific data from the

gateway and other GIFT modules.

Define a new XML schema for constructing game-tutor object relationships.

Develop a new authoring tool capable of authoring and validating these relationships.

Integrate new and existing authoring tools with the Unity editor.

6 Current Work

At this point we have successfully developed a proof-of-concept plugin that demon-

strates basic communication between GIFT and Unity-driven games, similar to the

interoperation module developed for VBS2. The extent of this functionality encom-

passes connecting to the Unity plugin from GIFT and then issuing playback com-

mands such as pause and resume to the Unity player. This work has helped to increase

our understanding of the inner workings of GIFT with regard to the augmentation

required to communicate with our abstraction layer. In particular, the extent to which

GIFT is tailored to each training application became apparent. In addition, we were

able to leverage support for C# .NET 2.0 in Unity to move a great deal of the support-

ing code into components attached to game objects. This design allows the three ser-

vices (Unity, Abstraction Layer, and GIFT) to remain isolated from one another dur-

ing development, encouraging loose coupling across service boundaries and portabil-

ity to other serious game authoring tools.

 43

Before any work on the abstraction layer can begin, the language used to define

object relationships must first be well-defined. Once this step is completed, we can

begin abstracting away the elements of third-party application integration in GIFT

that are currently hard-coded. Ultimately, these elements will be encapsulated by the

proposed abstraction layer.

7 Conclusion

In this paper we proposed a handful of major design enhancements to GIFT with the

overarching goal of bringing the ITS authoring workflow into the game content crea-

tion pipeline. The first task in realizing this vision is to create an abstraction layer

comprised of a scripting engine tailored for ITSs. The second and final task is to inte-

grate the GIFT authoring tools into Unity, in order to encourage side-by-side devel-

opment of game and tutor content. The Unity game engine has been chosen for this

work due to its ease of use, cross-platform support, and high extensibility. It is our

hope that such a comprehensive suite of tools will help to drive a new generation of

high-quality serious games.

8 References

1. Brawner, K., Holden, H., Goldberg, B., Sottilare, R.: Recommendations for Modern Tools

to Author Tutoring Systems. (2012)

2. Sottilare, R.A., Gilbert, S.: Considerations for adaptive tutoring within serious games: au-

thoring cognitive models and game interfaces. (2011)

3. Sottilare, R.A., Brawner, K.W., Goldberg, B.S., Holden, H.K.,: The Generalized Intelligent

Framework for Tutoring (GIFT). Technical report (2013)

4. Gilbert, S., Devasani, S., Kodavali, S., Blessing, S.: Easy Authoring of Intelligent Tutoring

Systems for Synthetic Environments. (2011)

5. Devasani, S., Gilbert, S. B., Shetty, S., Ramaswamy, N., Blessing, S.: Authoring Intelli-

gent Tutoring Systems for 3D Game Environments. (2011)

6. Blessing, S.B., Gilbert, S., Ritter, S.: Developing an authoring system for cognitive models

within commercial-quality ITSs. (2006) 497–502

Authors:

Colin Ray is a graduate student at Iowa State University, where he is pursuing an M.S. in Hu-

man Computer Interaction and Computer Science under the guidance of Stephen Gilbert, Ph.D.

He possesses a B.S., also from Iowa State University, in the field of Electrical Engineering. His

current research is focused on integrating intelligent tutoring systems with entertainment tech-

nology. In addition to ITS research, he is also conducting research and development in the areas

of wireless video streaming and mobile surveillance to develop a platform for studying 360-

degree video interfaces.

Stephen Gilbert, Ph. D., is the associate director of the virtual reality applications center

(VRAC) and human computer interaction (HCI) graduate program at Iowa State University. He

is also assistant professor of industrial and manufacturing systems engineering in the human

factors division. His research focuses on intelligent tutoring systems. While he has built tutors

for engineering education and more traditional classroom environments, his particular interest

 44

is their use in whole-body real-world tasks such as training for soldiers and first responders or

for machine maintenance. He has supported research integrating four virtual and three live

environments in a simultaneous capability demonstration for the Air Force Office of Scientific

Research. He is currently leading an effort to develop a next-generation mixed-reality virtual

and constructive training environment for the U.S. Army. This environment will allow 20-

minute reconfiguration of walls, building textures, and displays in a fully tracked environment

to produce radically different scenarios for warfighter training. Dr. Gilbert has over 15 years of

experience working with emerging technologies for training and education.

