
LHCb–RICH-2006–061

RICH Reconstruction And Particle Identification
Using Ring Fit Methods :

Standalone PID in the RICH2 Detector

M. Benayoun
�����

, P. David
�����

, L. DelBuono
�����

, G. Gilles
�����

, Ch. Jones
�����

	�
�
LPNHE Paris VI/VII, F-75252 Paris, France	����

Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, UK

Version 0.0

November 16, 2006

Abstract

We have extended the ring fit algorithm presented in earlier works, in order to trans-
form it into a fully standalone PID algorithm running over the full RICH2 momentum
range. For this purpose, the full information provided by the tracking (track direction and
momentum as well as their errors) is accounted for in the minimized ��� function along with
the photon information. Additionally, all available information concerning the Cerenkov
light emission effect is accounted for in the PID algorithm. PID efficiencies and misiden-
tification rates are found similar to the global ID results, while the statistical information
is still much more reliable.
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1 Introduction

In a previous LHCb note [1], we outlined a PID Algorithm based on Ring Fit Methods
(namely, the RichRingRefit Algorithm). As implemented, this algorithm was running as slave
of the Global ID algorithm [2], in the sense that photons used to start the iteration procedure of
the ring fit are collected within a window1 opened around the Cerenkov angle value expected
from the Global ID assignment. Above some momentum (say 50 GeV ��� ), this condition is
practically unbiasing and safe ; at low momenta, however, the RichRingRefit algorithm might
tend to favour the heavy/light flavor choice already provided by the Global ID algorithm.

Within this framework, the RichRingRefit algorithm is nevertheless useful as it allows to
supplement the Global ID identification with reliable statistical information not accessible oth-
erwise at the expense of negligible additional CPU time.

Among the reliable statistical information derived from the RingRefit algorithm, the �����
separation obtained from fitting the ring reproduces well the momentum dependence expected
from the Cerenkov effect theory, while the corresponding result provided by the Global ID al-
gorithm does not and is additionally hard to interpret. Moreover, the fit probability distribution
behaves canonically and thus allows one to use probability thresholds meaningfully. Several
other examples can be found in Ref. [1] where the statistical properties of the RichRingRefit
Algorithm have been thoroughly considered.

There are two limiting conditions in the present use of Ring Fit Methods within the
LHCb RICH software :

� The photons used are those associated with the most probable mass assignment, follow-
ing the Global ID recognition.

� The RichRingRefit Algorithm is implemented for particle identification only in RICH2.

In this note, an algorithm which releases the first constraint is outlined providing an iden-
tification performance comparable to that of the Global ID method ; the controlled statistical
properties of the former RichRingRefit Algorithm are preserved. It happens that the RICH2 pa-
rameter calibration performed with the former RingRefit algorithm remains valid, both method-
ologically and numerically.

The forthcoming – and final – step will be to extend the recognition to the (gas) RICH1
data with still an unknown performance. Due to the small number of Cerenkov photons and
to the large level of background, there is little hope to extend successfully a ring fit method to
aerogel data.

Basically, the working of the present version of the Ring Fit Algorithm is the same as
those of the former RichRingRefit Algorithm. Therefore, in the present note, we mostly limit
ourselves to giving the information specific to the extension of the ring fit method and to the
PID decision choice. In some sense, it is a progress report describing the working of an (au-
tonomous) algorithm which can be run independently of any other and can be fully compared
to other methods. It is named RichStereoFit Algorithm.

1Some 	�
 cut, with 
 computed dynamically – see Section 5 in Ref. [1]
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2 The RichStereoFit Algorithm

As stated above, the RichStereoFit and the former RichRingRefit algorithms share the same
structure. Namely, the first step is to select photons associated with each track under each
possible mass assignment ; the second step is basically an iterative procedure aiming at getting
the track direction improved under each mass assumption by minimizing some � � ; the changes
of the � � are determined by removing candidate photons too far from the expected ring. The
last step is to compare the fit results for the five mass assignments and choose a preferred
assignment according to criteria to be defined.

In this last step, the distance between the fit angle and the expected angle plays some role.
The distribution of photons along the ring and an estimate of the number of (true) Cerenkov
photons also contribute to defining the preferred mass assignment.

The first step is exactly the same as those of the former RichRingRefit Algorithm ; we refer
the interested reader to Sections 5 and 6 of Ref. [1] for further information. The algorithm
parameters currently have exactly the same values as in the RichRingRefit Algorithm and their
tuning is performed as described previously in Ref. [1].

2.1 The �
�

Of The RichStereoFit Algorithm

As in the RichRingRefit Algorithm, the basic input information is provided by the photon
and track directions unit vectors. The ring fit methods are local (i.e. track by track) methods
and the photons considered are supposed to be (candidate) Cerenkov photons emitted by the
track along its radiator path.

One then considers a frame where the polar axis is taken along the charged track direction ;
all photon direction unit vectors are drawn with their origin at the origin of this frame and with
their endpoints all laying on the unit sphere centered at the frame origin. One then performs a
stereographic projection of these photon directions onto the equatorial plane of the unit sphere.
The projected photon direction endpoints are then expected to be all spread onto a circle with
radius �����	��
��� ����� , where � is the particle Cerenkov angle [1] and with its center located at
the origin.

Let us remind a few notations in order to avoid referring too much to [1] for trivial infor-
mation. The circle equation is written :

� ����������� � ��� � ��� ��� ����� � �! "� � (1)

where �#�$� � �%� � �& � , � and  being the circle center coordinates in the stereo plane. The
projected photon coordinates are :

�(')�+*,'.-,/�0213'4���5')�+*,'.0768
913'4��*:');�����
 �,'� (2)

where �<' is the Cerenkov angle of the =?>A@ photon and 1�' its azimuth around the cone (the azimuth
origin is a priori arbitrary).

The tracking provides a reliable information on the track direction ( B7C and BED ) and momen-
tum (F ). Ref. [1] worked out in details the relation between BGC and BED on the one hand and �
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and  on the other hand. The iterative procedure which underlies the ring fit methods has been
simplified by the change of coordinates which moves the image of the track direction in the
stereo plane to the origin ( � � � and  � � ). In this case � � � � and the full error covariance
matrix of � ,  and � can be explicitly derived from known information on a track by track basis.

The random variable defining the error function on the Cerenkov angle can be written [1] :� � � ��� � � �
����
9�

� ��� �
	 �� ��	2� �
����� (3)

where
� � � is a random variable which accounts for the errors due to the pixel size, to the

choice of the (unknown) emission point along the track trajectory inside the radiator and the
track curvature errors. The rest of Equation (3) is derived from the definition of the Cerenkov
angle ;

� � � together with the middle term in the Equation just above defines what was named
uncorrelated error [1] because these are independent random variables associated with each
photon separately. In contrast, the last term, named

� �������
��� in [1] is common to all photons
associated with the same charged track and gives rise to correlations ; it can also be written :� ���������
� � �

�	��
 �
��� �

�
�	��
 ��� ��

�

� F
F (4)

When computing the covariance matrix �2'��+��� � � ' � � � � as explained in [1] (
� ' ;� ���(' ���5' � ), terms like � � �<' � �!�"� arise and, at leading order in � (which is small –a few

tens of milliradians – in both LHCb gaseous radiators), one can write :

� � �,' � �!�#� �%$ �& � ''� � �( � � �
� ��� � � �")!'�)*� (5)

where $ �& is the variance of the uncorrelated errors and ) is a vector defined in order to match
photon indices2 ; it is such that )!' � � for each = . A priori, � should be the true circle radius, but
an estimate of it is enough for practical purposes. The content of $ �& has been widely discussed
in [1].

Gathering all these pieces of information, one can show that the photon error covariance
matrix is at leading order :��''� � � � $ �& � ''� � ( � �+ $ �
 �	' �,� � $ ��*- ' - � � $ 
 � � �	' - � � �.� - ' �0/

�
�( $ �1 )!'�)*� � ��� + � �	'2)3� � �,�!)!'��,$ 
 1 � � - '2)3� � - �4)5' �,$ � 1 / (6)

where �"' and - ' are the sine and cosine of the photon azimuth angle 1 ' on the Cerenkov ring.$ �& , $ �
 , $ �� and $ 
� have been widely discussed in [1] ; $ �1 is the coefficient of )8'�)*� in Equation
(5). The quantities $ 
 1 �5� � � � �6� and $ � 1 �5� �  � �7� can easily be computed using the
random variables

� � and
�  defined in [1] and

� � � � � �8�����
��� ��� ; indeed, all other contributions
to
� � give vanishing correlations.

2The second term in Equation 5 is a constant entering each entry of the covariance matrix. Using 9�:;94< �>=@? �
simply allows to preserve the tensor structure.
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The photon part of the � � to be minimized is

� �� @��?>�� � � � �
'�� � � ' ���
	''� � � (7)

���
	'�� can be derived from Equation (6) on a track by track basis whatever the number of
photons. A fast way to perform this inversion is given in the Appendix of [1] ; the most time
consuming operation is the inversion of one 3 by 3 matrix which should be performed at each
iteration step3 as described in the Appendix of Ref. [1].

The main change with respect to the previous � �� @��?>�� � � function[1] is the occurrence of
additional correlation terms in the error covariance matrix (the second line of Equation (6))
related to the track momentum.

Minimizing the � �� @��?>�� � � function in Equation (7) is in principle enough to get the best
solution for any given assignment. However, if the photons populate a small fraction of the
circle (less than, or about, 180 � ), the fit procedure generally fails [3]. A way to circumvent
this difficulty is to supplement the � � with additional information accessible from the tracking.
This is done by adding the following term to the � � :

� �>� 
 1�� ��� >�� �
	�� (8)

as in the RichRingRefit � � . However, now, we extend the vector � to � �$� �(�	 � � � ���	� as the
measured track direction has been shifted to ( � � � �	 � � ) and ��� is the radius squared ex-
pected from tracking information ; the error covariance matrix � is inherited from the tracking
software with $ �
 , $ �� and $ 
 � modified in order to include multiple scattering effects inside the
RICH gas volume. $ 
 1 , $ � 1 and $ �1 are purely derived from tracking information. ��� in the third
component of the vector � is ����
 � ��� as coming from the momentum value and the current
mass assignment (recall that we examine now the five possible mass assignments in turn).

Therefore, the quantity to be minimized in the iteration procedure becomes :

� � ���(�	 � �,� � �
'�� � � ' ���
	''� � � � � >�� �
	�� (9)

The difference between the present version of the algorithm and the former one is the
use of a “measured” value for � which follows from having a good measurement of the track
momentum and the five possible mass assignments in turn.

As we previously allowed the mass assignment to change (with respect to the starting
Global ID best solution), we did not include the constraint provided by the present � terms
in Equation (9) in the former RichRingRefit Algorithm. In the present release, as we first ex-
amine the five possible mass assignments independently of each other, it is perfectly legitimate
to include this strong constraint into the fit procedure4.

In the RichRingRefit Algorithm, the � � had
��� � � degrees of freedom, while this is

presently equal to the number of photons surviving the iterative cleaning up procedure,
���

.

3Note an unfortunate misprint in Equations (54) : the minus sign in the last equality should be removed.
4As a first attempt, we tried the previous release of the fit algorithm – i.e. without the � terms – running on the

five possible mass assignments. The results, while interesting, were not as good as those presently achieved.
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Therefore, having only one (surviving) photon, would not prevent to have a quality factor like
the fit probability ; provisionally however, we maintain a minimum number of 4 photons in
order to assert that we really observe a ring. This implies some tiny efficiency loss near the
Cerenkov threshold (and/or for low geometrical acceptance rings).

2.2 Use of the Fit Probability Information

The result of the fit performed through the minimization of the � � given by Equation (9)
is an improved track direction, the best circle radius (i.e. the Cerenkov angle) and the error
covariance matrix of these quantities. For each track, five fits are performed by assuming the
five possible mass assignments5.

Leaving free � and  has a clear motivation : the tracking information provides the track
direction at the RICH2 entrance window. However, because of the material of the RICH2
detector and of the fringe field in the detector volume, the information provided by the tracking
concerning the track direction (and thus the circle center) has certainly to be improved ; the fit
procedure is supposed to perform the change from the track direction at the radiator volume
entrance window to some averaged track direction inside the radiator volume. So, having ����' >
and  ���' > different from the values provided by the tracking can be legitimately expected.

Instead, for obvious physical reasons, ����' > , the best fit value returned for � by the ring fit,
should stay consistent with the value � � derived from knowing the momentum F with the appro-
priate mass assignment (i.e. the mass assignment corresponding to the fit under consideration),
if the mass assignment is correct.

Therefore, for each of the five fits, two pieces of information are relevant :

� The probability Pr(ringFit) associated with � � ������' > �� ���' > � � �"� ,
� The probability Pr( ��� ) of the pull :

�
	���
� � ����' > � ���$ 1 � (10)

The former information Pr(ringFit) gives the ring fit probability given the Cerenkov angle
expected for the expected mass assignment for the best track direction, the latter Pr( ��� ) gives
the distance of the Cerenkov fit angle to the one expected for this particular fit. It is indeed clear
that an angle fit value ����' > returned by the fit which would be inconsistent with the expected
value should be disfavored, whatever the fit quality value Pr(ringFit).

Even if these two pieces of information (Pr(ringFit) and Pr( ��� )) somewhat overlap, they are
independent of each other to a large extent. Practically, we assume their mutual independence.

As there is a minimum number of starting photons (4 by default) in order to initiate the fit
procedure, it may happen that fits associated with some given assignments are not performed.
Quite generally this figure happens when the mass assignment corresponds to a particle below

5Actually, of course, a fit is performed for a given assignment only if one is above the corresponding Cerenkov
threshold.
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(or very close to) the Cerenkov threshold ; in this case the corresponding fits are simply not
performed6.

Pr(ringFit) and Pr( ��� ) are the most important elements for the best ID decision, however
other pieces of information are also helpful and discussed below.

3 Additional Information About Cerenkov Rings

There are two more properties of the Cerenkov Effect which are of some relevance in PID
procedures. Cerenkov photons are expected to be uniformly distributed in azimuth around the
track direction and the average number of emitted Cerenkov photons has to be consistent with
theoretical expectations.

3.1 The Worst Empty Arc

The Cerenkov photons generated by a track should be uniformly distributed in azimuth
along the Cerenkov cone, and, hence, along the ring in the stereo plane. However, Cerenkov
photons associated with a given track mix with those associated with neighbouring tracks in az-
imuth. Therefore the uniform distribution property should be handled with some care. Indeed,
even if the Cerenkov photons associated with neighbouring tracks follow a uniform distribution,
they might provide local accumulations on the ring produced by the track under consideration.
Therefore, on real data, observed photon hits are generally not uniformly distributed along a
given ring.

In addition, acceptance effects in the detector HPD plane can generate large areas where
Cerenkov photons are undetected ; this effect produces arcs between consecutive photons
which can be large compared to expectations, as illustrated by the last Figure 9 in [1]. This
is also shown in the present Figure 1, where large empty arcs on the Cerenkov ring are clearly
associated with small ring acceptances. Additionally this plot proves that ring acceptances are
always significantly smaller than 1, as one observes an upper bound slightly larger than 80%.

There is however, an interesting property of uniform distributions which keeps still some
use, even in a noisy environment. It can be derived from the following theorem [4] :

� Theorem (induced partition) :�
independently and randomly chosen points � 	 , . . . , � � partition the interval + � � � / into� � � intervals whose length � has a common distribution given by ;

��� ��� � BG� � � � ��BG� � � � �&B � � (11)

� This theorem obviously applies to
� � � ordered points uniformly and randomly dis-

tributed on a circle with the arc lengths ( + � 	 ��� � / ,. . . + � ' ��� '�� 	 / , etc . . . ) normalized (i.e.
B � + � ' ��� '�� 	 / ��� � ). One has only to cut the circle at the � � � � � >A@ point to get back to
the + � � � / interval and to the conditions of the theorem above.

6There is no point in attempting below threshold recognition until a conclusion on RICH1 data handling is
reached.
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Figure 1: Ring acceptance in the HPD plane versus largest empty arc in DC04 data. Accep-
tance and arc distributions are obtained by the appropriate projections of the scatter plot (top
left figure).

The Cerenkov light emission is, for each track, uniform in azimuth ; therefore, for tracks
isolated in direction, we are in the conditions of the theorem above. However, in the conditions
of LHCb, each track has several tracks close in azimuth, giving hits which break this uniformity
property. Therefore, one cannot fully use this theorem.

However, a property survives background and acceptance effects. The largest possible
empty azimuthal7 arc on the Cerenkov ring due to acceptance effects is � � � � �+� � , denoting
by � the acceptance value (

� � � � � ). This is certainly the most pessimistic estimate of
the largest empty arc on a ring ; indeed, simulating photon emission around a ring regularly

7This includes the HPD dead areas.
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by steps of, say, one degree turns out to assume that all non–accepted photons (i.e. hitting a
HPD plane in inactive areas) are consecutive ; this is clearly not the most common figure as a
Cerenkov ring generally overlaps more than one HPD.

On the other hand,
�
� , the average number of Cerenkov photons emitted by a track, is

proportional to � 0768
 � � � � with a calibration constant (generally denoted ��� � as in [1])
which can be inferred from technical information ; a finer tuning using Monte Carlo truth
information can be performed and has provided an average ����� � ( ����� for RICH2 DC04
data, with a precision of about 0.25 %.

Therefore, an estimate of the most pessimistic (i.e. largest) empty arc ��� 
 C on the Cerenkov
ring can be proposed8 :

��� 
 C ��� � � � ��� � � � � ��
�

(12)

When analyzing photons associated with a given track under a given assignment, one iden-
tifies the largest observed arc � � � � and estimates the number of observable (true) Cerenkov pho-
tons to � � � . Then, the theorem given above allows to define the probability

� � ��� / � 0G�
	 � -<� ;� � ��� � � � � ��� 
 C!� :

� � ��� / � 0G�
	 � -<� �

����� �����
� � � ��� 
 C

� ��� 
 ��� � � � � � ��� 
 C
� � � � � ��� 
 C

� ��� 
 ��� � � � ��� ��� 
 C (13)

Following from Figure 1, one certainly has � � � and the number of photons in the exponent
is smaller than the generated one by at least � 20% ; so there is no point in over-subtracting
the photon number by one unit in order to stay consistent with the theorem.

This probability is an important tool in the proposed ring ID.
As stated above, the worst largest (empty) arc, derived from the acceptance value, assumes

that all
����� � ��� ���7F�B���� photons are consecutive and this is certainly an incorrect statement in

general, as the non–accepted part of the ring should generally not be continuous. Generating
Cerenkov photons regularly in azimuth –with, say, one degree steps– and keeping track of the
accepted ones, it is possible to access the actual largest empty arc on the ring with a good
precision. It happens that this true largest empty arc does not lead to improvements compared
to using only the acceptance information carried by � � 
 C . So, we give up using it, saving this
way CPU time.

3.2 Estimating Signal And Background Photons

The ring acceptance � for a track under a given assignment can be derived using a standard
tool of the RICH package (i.e. the RichGeomEffPhotonTracing class). Then, the average
number of observed signal photons

�"!
can be derived :

8If there were no acceptance effect, the average angular distance between two consecutive photons would be�$#&% 	(' ; if there is a hole in the acceptance, assuming that one Cerenkov photon falls inside this hole, the average
angular distance may become twice this mean value. Then, for an acceptance much below 1, Equation (12) looks
a reasonable estimate. For practical purposes, we prevent 	)' in this Equation to be smaller than a minimum of 4.
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Figure 2: Ratio of
�
� defined in Equation (14) and the number of Monte Carlo photons asso-

ciated with the track in DC04 data.

� ! � � � � � � � � �#� 076 
 � � � � (14)

with good accuracy, as the accuracy on the acceptance is well under control. Figure 2 shows the
distribution of the ratio

��!
to the actual number of (observed) Monte Carlo photons associated

with the track considered. The distribution behaves like a Gaussian with a mean quite consistent
with 1 when ��� � in Equation 14 is taken at

( �*� �
, and using the ring by ring acceptance9. The

standard deviation of this distribution reflects the Poisson nature of Cerenkov light emission.
However, mostly due to neighboring tracks, there is a non–negligible background con-

tamination in the photon set associated with a given track at the end of the iterative ring fit
procedure.

It is likely that true signal (Cerenkov) photons are Gaussian distributed around the ring
radius. Instead, background photons have a priori an unknown distribution ; we make the as-
sumption that their distribution is uniform in some interval around the ring radius. Additionally,
photons surviving the fit are all located, at most, at 3 $ from the ring radius[1]. Therefore, un-
der our assumption, counting only photons located at better than 1.28 $ of the ring, one keeps
80% of the (Gaussian) signal while keeping only 43 % of the (flat) background hits. As it is

9The quantity named
�����

in [1] was guessed to be around
��� �	� �
��� ?���

, using essentially technical information
on RICH2 [5]. Instead of � ?��� just quoted, which is free of ring acceptance effects, the value

�
� ��� �
��� ?���
actually

accounts for an averaged acceptance � ���
. The average acceptance of the plot shown in Figure 1 is � ������ �����
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Figure 3: Background estimate as a function of the number of photons located within
�
� ����$ of

the ring (80% probability).

better to have to estimate the smallest possible photon background yield, this interval of 1.28$ on both sides of the ring allows to keep most of the signal while removing about 60% of the
background.

Then, an estimate of the background yield within
�
� ��� $ around the ring radius is given

by the difference between
� � � � � ��� $�� – the number of photons surviving the fit and located

within 1.28 $ of the ring – and 0.8
��!

(see Equation (14)) – the average number of expected
signal photons in the same interval ( � � � ����$ ). The upper Figure 3 shows this estimate of the
background photon yield

� � ��� versus
� � � � � ��� $�� ; the lower Figure 3 shows, superimposed, the

profile and a spline fit of it. This spline fit clearly represents a reasonable parametrization of
the background yield as a function of

� � � � � ��� $�� . This is confirmed by Figure 4 ; here, the
difference between : � ��' ��� 
�� � � � � � � ��� $�� � � � ��� � (15)
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Figure 4: Residual (milliradians) and pull of the number of observed true Cerenkov photons
located on the ring within

�
� ��� $ .

our estimate of the photon signal yield, and10 �
� �
���

� , i.e. the residual, looks reasonably
Gaussian and is well centered ; the lower Figure 4 shows the ratio of this residual to

� �
� �
� !

,
i.e. the pull, assuming the error is Poisson–like. This pull clearly departs from Gaussian but
looks nevertheless acceptable.

The probability of this pull Pr(
� ��' ��� 
 � ) is thus considered as another relevant piece of infor-

mation.
10 	�� ' is the number of true Monte Carlo photons as given in the DST for the track considered. It can be

considered as sampled out of a Poisson distribution of mean 	�� .
 � � 	�� is an estimate of the Monte Carlo signal

photon yield within � ? � ��� 
 of the ring.
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4 The Best ID Decision

As a summary, we have defined 4 probabilities for each track under each possible mass
assignment :

� Pr(ringFit), the ring fit probability,

� Pr( � � ), the probability of the fit Cerenkov angle compared to the expected one,

� Pr(worstArc), the probability of the largest arc between photons consecutive in azimuth,

� Pr(
� � ' ��� 
 � ), the probability of the estimated Cerenkov photon yield within the photons

surviving the ring fit iteration procedure.

Pr(ringFit), Pr( ��� ) and Pr(
� ��' ��� 
�� ) have the usual shape expected from a � � probability,

i.e. a flat distribution with a peak located around zero probabilities as illustrated by the first
three distributions shown in Figure 5. Instead, Pr(worstArc) is a two–peak distribution, one
located around zero probabilities, the other located toward unit probabilities ; this is illustrated
by the distribution in Figure 5d. This two–peak structure reflects an expected property : the
largest observed arc on a ring is either favored or disfavored with little room for intermediate
situations.

The desirable criterion to define the best (ring) ID should correspond to the assignment for
which the product :

� + ������� � 68��� � 68/�
 /
	�	 ��� � ��� � � � � � � 68
��� 6 �"��� � � �����2��� � � ��� / � 0G�
	 � - ��� � � ������� ����� �8��!
(16)

is the largest. At low momenta, the value of Pr(worstArc) frequently suppresses the probability
of some assignments compared to others for the same track. This is a pure geometric effect : at
low momenta, the ring radii are much better separated than at high momenta ; in this case, the
largest empty arc on the ring can vary significantly from one assignment to the other.

This criterion basically determines our decision choice. However two remarks which will
be expressed below affect the practical use of this criterion.

4.1 Threshold Probabilities

It happens sometimes that one among the probabilities defined in Section 3 lies in the zero
probability peak region for several assignments, while all other probabilities share the same
order of magnitude. In this case, the relevant question is to what extend the precise value of
this � zero probability should be trusted ? or, stated otherwise, whether the precise numerical
value of a very low probability should have a decisive role in the mass assignment choice.

In order to invetigate the problem, we show in Figure 6 the low probability peak structure
for each of the relevant probabilities. This clearly shows that very small probabilities have
a range of several orders of magnitude. What happens with some frequency is that all prob-
abilities except for one (say, Pr(worstArc) for illustrative purpose) are of the same order of

12



Figure 5: Probability distributions for the MCTruth assignment. a) Probability of the fit
Cerenkov angle. b) Probability of the estimated (true) Cerenkov photons yield. c) Ring fit
probability. d) Probability of the largest arc on the Cerenkov ring ; note, for this plot that there
are two peaks.

magnitude. Now, if for two different assignments we have, for instance, Pr(worstArc) =
��� ���

and
�*� �
	 � respectively, the PID criterion defined above will definitely favor the former against

the latter, whatever is the value of the rest of the product. Taking into account the approxima-
tions performed, one could consider that this is an undesirable drawback.

In order to circumvent this problem, we have introduced a threshold probability : If all
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Figure 6: Low value region of the probability distributions. The information plotted is the
decimal logarithm of each probability. a) the (decimal logarithm) probability of the fit Cerenkov
angle. b) the (decimal logarithm) of the estimated Cerenkov photons yield probability. c) the
(decimal logarithm) of the ring fit probability. d) the (decimal logarithm) of the largest arc
probability.

assignments for which a fit has been obtained have one given probability always below some
threshold, this probability is removed from the PID criterion. For the different probabilities,
we have set this threshold to a common value (Pr( � ) =

�*� � �

) ; obviously, this is equivalent to
introducing a minimum probability.
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One may note that threshold value can be different for different probability kinds and that
the precise values can be chosen somewhat smaller without influencing dramatically the PID
performance.

4.2 Unambiguous Photon Yield, The UPY Criterion

Another situation appears with a noticeable frequency and should be handled with some
care ; this is when some probability products are numerically very close to each other. The
kind of situation11 is when the two largest probabilities are, for instance, 10% and 12% for
which one naturally chooses the latter, while clearly the former is as well justified.

So, below some threshold, uneasy to fix numerically, choosing the largest probability prod-
uct (even corrected as stated in the Subsection just above) is doubtful. If we had exhausted all
the available information, this would nevertheless be the most appropriate choice12.

However, there is still one piece of information which has not been used : The unambiguous
photon yield for a track. Indeed, in the LHCb environment, most of background hits found
when examining the photon populations along the possible rings associated with a given track
are mostly signal photons of tracks close in azimuth to the track considered. Therefore, an
interesting piece of information is whether a given photon appearing as associated with one
track under a given mass assignment is also associated with other tracks. If not, such a photon
is called unambiguous, otherwise it is classified ambiguous.

After a first pass, examining all possible assignments for all tracks, one determines for each
track and each assignment how many of its photons have also been associated with other tracks
by the ring fit procedure. One may infer that the assignment for a track which has the largest
number of photons not associated with other tracks is the right assignment.

Practically, for each track, one keeps the two best assignments following from the criterion
defined above and selects as PID the one which corresponds to the largest unambiguous photon
yield. For equal unambiguous photon yields, one selects the assignment associated with the
largest value of the PID criterion defined above. We name this procedure, the unambiguous
photon yield (UPY) criterion.

In Figures 7 and 8 the PID performance of the ring fit algorithm using or not the UPY
criterion are shown. In order to get these plots, one has used only RICH2 data.

For sake of completeness : one defines the efficiency for light particles as the ratio of the
number of particles identified as light among the light particles (relying on the MC truth) to
the number of generated light particles. Purity is defined as the number of reconstructed light
particles among generated light particles divided by the number of particles reconstructed as
light ; misidentification is 1 - purity. Mutatis mutandis, the corresponding definitions for heavy
particles can be derived.

The effect of the UPY criterion is clear : the efficiency curve for light assignment is sharply
improved, especially at high momentum (i.e. above 100 GeV/ � ). Instead, the heavy assignment

11Of course, this is a general issue, not specific of the ring fit approach.
12Actually, one could consider complex objects consisting each of a track with “weighted” mass assignments ;

even if statistically grounded, this way to proceed is not of common use. This might become rapidly hard to
handle and one generally prefers using each track with one assignment and correct globally for misidentification.
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Figure 7: Efficiency distributions when using the ring fit method. a) Efficiency for e, � , � without
using the UPY criterion, b) efficiency for K,P without using the UPY criterion, c) efficiency for
e, � , � using the UPY criterion, d) efficiency for K,P using the UPY criterion.

is slightly degraded at high momenta (i.e. above 100 GeV/ � ) while its misidentification rate
is significantly improved over the whole momentum range. Keeping in mind that the 3 $
separation is around 110 GeV/ � on average [1], one can consider that the UPY criterion should
indeed be included in the PID decision process13.

13Indeed, this limit around 110 GeV/ � is the actual limit RICH2 3 
 #���� separation. Above this value,
whatever is the performance and whatever is the algorithm, the RICH performance actually does not rely on the
RICH system angular resolution.
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Figure 8: Misidentification distributions when using the ring fit method. a) misidentification
for e, � , � without using the UPY criterion, b) misidentification for K,P without using the UPY
criterion, c) misidentification for e, � , � using the UPY criterion, d) misidentification for K,P
with RingID using the UPY criterion.

5 PID Performance

The Ring Fit identification performance can now be fully compared with the performance
of the Global ID algorithm. Figure 9 shows the efficiency distribution of both algorithms for
heavy and light assignments. The difference of efficiencies for each kind of particles (light or
heavy) is also shown. Clearly, the efficiency for light particles is better at high momentum for
the ring fit algorithm, while the efficiency for heavy is better at high momentum for the Global
ID algorithm. Efficiencies below, say 80 GeV � � , are alike for both algorithms.
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Figure 9: Left side distributions are efficiencies for e, � , � identification with the RingFit and
GlobalID algorithms, Right side distributions are efficiencies for K, P identification with the
RingFit and GlobalID algorithms. a) efficiency for e, � , � with RingFit. b) efficiency for K, P
with RingFit. c) efficiency for e, � , � with GlobalID. d) efficiency for K, P with GlobalID. e)
difference between a) and c). f) difference between b) and d).

Figure 10 displays the corresponding misidentification distributions. For light particles,
the RingFit algorithm exhibits a larger misidentification rate at high momentum, reflecting its
larger efficiency. Instead, the misidentification rate for heavy particles are alike over the whole
momentum range, except at the Cerenkov threshold where, the minimum number of photons
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Figure 10: Left side distributions are misidentification rates for e, � , � with RingFit and Glob-
alID algorithms. Right side distributions are misidentification rates for K, P with RingFit and
GlobalID algorithms. a) misidentification for e, � , � with RingFit. b) misidentification for K, P
with RingFit. c) misidentification for e, � , � with GlobalID. d) misidentification for K, P with
GlobalID. e) difference between a) and c). f) difference between b) and d).

(4) requested in order to perform the ring fit plays certainly a large role.
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6 Conclusions

We have successfully extended the ring fit procedure for RICH2 data in order to get a
standalone algorithm, able to perform particle identification over the whole momentum range
covered by this counter. The ring fit and global ID algorithms exhibit similar identification per-
formance while the statistical information carried by the ring fit algorithm is much better under
control and reliable. Running on only RICH2 data, the computing times for both algorithms
are similar.

The ring fit procedure now includes all information actually relevant to the Cerenkov ef-
fect : ring fit probability, Cerenkov angle probability, largest observed arc on the Cerenkov ring
(accounting for acceptance effects and uniform distribution), estimation of the number of sig-
nal photons, estimation of unambiguous photon yield. Additionally, each of these probability
distributions has its expected shape (flat in general or peaked for the special case of the largest
arc on the Cerenkov ring).

Most of the difference between the algorithms is concentrated in the high momentum region
where (see [1]) the statistical information carried by the global ID algorithm still remains to be
understood.

The next step is to extend the procedure in order to include RICH1 data. This study is
presently under way.
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