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Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
† School of Physics and Astronomy,

University of Southampton, Sounthampton, SO17 1BJ, UK
‡ CERN, Theory Division, Geneva 23, Ch-1211, Switzerland

⋄ INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy

Abstract

We study thermal leptogenesis in classes of neutrino mass models based on the
seesaw mechanism with three right-handed neutrinos and sequential right-handed
neutrino dominance. The flavour-dependent Boltzmann equations are solved ap-
propriate to both the Standard Model and the Minimal Supersymmetric Standard
Model. Within these classes of models we investigate constraints and expectations
on the individual decay asymmetries and washout parameters from the present
data on neutrino masses and mixings. In many cases of physical interest flavour
effects are shown to have important consequences for the estimation of the pro-
duced baryon asymmetry in leptogenesis. We also establish and analyze the link
between the leptonic CP violating phase δ, observable in neutrino oscillations, and
the CP violation required for leptogenesis, where flavour-dependent effects have a
significant effect. In general our results show that flavour-dependent effects cannot
be ignored when dealing with three right-handed neutrino models.
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1 Introduction

Thermal leptogenesis [1] is an attractive and minimal mechanism to generate the baryon
asymmetry of the Universe nB/nγ ≈ (6.10± 0.21)× 10−10, or, normalised to the entropy
density, YB ≈ (0.87 ± 0.03) × 10−10 [2]. A lepton asymmetry is dynamically gener-
ated and then converted into a baryon asymmetry due to (B + L)-violating sphaleron
interactions [3] which exist in the Standard Model (SM) and its minimal supersymmet-
ric extension, the MSSM. Leptogenesis can be implemented within the “Seesaw”(type
I) model [4], consisting of the SM (MSSM) plus three right-handed (RH) Majorana
neutrinos (and their superpartners) with a hierarchical spectrum. In the simplest case,
the lightest of the RH neutrinos is produced by thermal scattering after inflation, and
subsequently decays out-of-equilibrium in a lepton number and CP-violating way, thus
satisfying Sakharov’s constraints [5].

The asymmetry is commonly calculated by solving a Boltzmann equation for the
total lepton asymmetry (flavour-independent approximation) and for the abundance of
the lightest RH neutrino [6, 7, 8]. However, this flavour-independent treatment is rigor-
ously correct only when the interactions mediated by charged lepton Yukawa couplings
are out of equilibrium. The impact of flavour in thermal leptogenesis has been first
addressed in Ref. [9] and then studied in detail [10, 11, 12], including the quantum oscil-
lations/correlations of the asymmetries in lepton flavour space [10]. It was shown that
the Boltzmann equations describing the asymmetries in flavour space have additional
terms which can significantly affect the result for the final baryon asymmetry. This is
because leptogenesis involves the production and destruction of right-handed neutrinos,
and of a lepton asymmetry that is distributed among distinguishable flavours. The pro-
cesses which wash out lepton number are flavour-dependent, e.g., the inverse decays from
electrons can destroy the lepton asymmetry carried by, and only by, the electrons. The
asymmetries in each flavour are therefore washed out differently, and will appear with
different weights in the final formula for the baryon asymmetry. This is physically in-
equivalent to the treatment of washout in the flavour-independent approximation, where
indistinguishable leptons propagate between decays and inverse decays, so inverse decays
from all flavours are taken to wash out asymmetries in any flavour. Flavour-dependent
effects in leptogenesis have been studied in the two right-handed neutrino model [12],
where they have been shown to be relevant. It remains to be seen how important these
effects are in more general neutrino mass models with three right-handed neutrinos.

The latest experimental data on neutrino oscillations is consistent with (approxi-
mate) tri-bimaximal mixing [13]. The fact that the tri-bimaximal neutrino mixing ma-
trix involves square roots of simple ratios motivates models in which the mixing angles
are independent of the mass eigenvalues. One such class of models are seesaw models
with sequential dominance (SD) of right-handed neutrinos [14]. In SD, a neutrino mass
hierarchy is shown to result from having one of the right-handed neutrinos give the
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dominant contribution to the seesaw mechanism, while a second right-handed neutrino
gives the leading sub-dominant contribution, leading to a neutrino mass matrix with
naturally small determinant. In a basis where the right-handed neutrino mass matrix
is diagonal, the atmospheric and solar neutrino mixing angles are determined in terms
of ratios of Yukawa couplings involving the dominant and subdominant right-handed
neutrinos, respectively. If these Yukawa couplings are simply related in some way, then
it is possible for simple neutrino mixing angle relations, such as appear in tri-bimaximal
neutrino mixing, to emerge in a simple and natural way, independently of the neutrino
mass eigenvalues. If SD is combined with vacuum alignment in flavour models then
tri-bimaximal neutrino mixing can be readily achieved [16, 17]. The SD mechanism has
been widely applied to a large variety of unified flavour models involving three right-
handed neutrinos [15], and it is therefore of interest to see how important the effects of
flavour-dependent leptogenesis are in this more general framework.

In this paper we study thermal leptogenesis in classes of neutrino mass models based
on the seesaw mechanism with sequential dominance, taking into account lepton flavour
in the Boltzmann equations. We generalize the issue of including flavour effects in the
Boltzmann equations to the supersymmetric case. Within this class of model we inves-
tigate constraints and expectations on the individual decay asymmetries and washout
parameters from the present data on neutrino masses and mixings. Flavour effects are
shown to have important consequences for the estimation of the produced baryon asym-
metry in this class of models. Flavour-independent leptogenesis has previously been
considered for sequential dominance models in [18]. The present analysis clearly goes
well beyond the previous analysis by considering the important flavour-dependent ef-
fects. Also the link between the leptogenesis phase and the MNS neutrino oscillation
phase has been explored in sequential dominance in [19]. Here we shall revisit this link
in the light of flavour effects and obtain new links between the cosmology and neutrino
oscillation physics.

The remainder of the paper is set out as follows: In Sec. 2, we review the treatment
of flavour in the Boltzmann equations and generalize it to the case of the MSSM. Sec. 3
contains a review of sequential dominance (SD) in the seesaw mechanism. In Sec. 4,
we investigate leptogenesis in neutrino mass models with SD, taking into account lep-
ton flavour in the Boltzmann equations. Generic properties of the decay asymmetries
and washout parameters are derived in Sec. 4.1 and the link between the leptonic CP
violating phase δ, observable in neutrino oscillations, and the CP violation required
for leptogenesis is established in Sec. 4.2. Sec. 4.3 contains examples to illustrate our
results. In Sec. 5 we conclude.
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2 Flavour Matters in Leptogenesis

2.1 Temperatures where Flavour Matters

In the SM extended by right-handed (singlet) neutrinos Ni (i = 1, 2, 3) with Majorana
masses Mi, the additional terms of the Lagrangian are given by

L = −(λν)αi(ℓ
α · H) N i − 1

2
N i(MRR)ijN

Cj + H.c. , (1)

where the dot indicates the SU(2)L-invariant product, (ℓα ·H) := ℓα
a (iτ2)

ab(H)b, with τA

(A ∈ {1, 2, 3}) being the Pauli matrices. ℓα (α = e, µ, τ) are the lepton SU(2)L-doublets
and H is the Higgs field which develops a vacuum expectation value (vev) of 〈H0〉 ≡ vu =
175 GeV in its neutral component after electroweak symmetry breaking. We will work
in a basis where the charged lepton Yukawa matrix and the mass matrix of the right-
handed neutrinos are diagonal, i.e. λe = diag(ye, yµ, yτ) and MRR = diag(M1, M2, M3),
respectively. We will assume a hierarchical spectrum of right-handed neutrino masses,
M1 ≪ M2 ≪ M3, in the following.

In the SM, the flavour-independent formulae to describe leptogenesis are only ap-
propriate when the dynamics takes place at temperatures larger than about 1012 GeV,
before the charged lepton Yukawa couplings come into equilibrium, estimating the inter-
action rate for a Yukawa coupling yα as Γτ ≈ 5×10−3 y2

α T [20]. However, if leptogenesis
occurs at smaller temperatures T ∼ M1, where M1 is the mass of the lightest RH neu-
trino, then one has to distinguish two possible cases. If 105 GeV ≪ M1 ≪ 109 GeV,
then charged µ and τ Yukawa couplings are in thermal equilibrium and all flavours in
the Boltzmann equations are to be treated separately. For 109 GeV ≪ M1 ≪ 1012 GeV,
only the τ Yukawa coupling is in equilibrium and is treated separately in the Boltzmann
equations, while the e and µ flavours are indistinguishable.

In the MSSM, extended by singlet superfields N̂C
i (i = 1, 2, 3) containing the right-

handed neutrinos N i as fermionic components, we use a notation analogous to the SM.
The additional terms of the superpotential are given by

W = (λν)αj(ℓ̂
α · Ĥu) N̂Cj +

1

2
N̂Ci(MRR)ijN̂

Cj , (2)

where hats denote superfields. In the MSSM, the vev of the Higgs field Hu, which
couples to the right-handed neutrinos, is given by 〈H0

u〉 ≡ vu = sin(β) × 175 GeV, with
tan β defined as usual as the ratio of the vevs of the Higgs fields which couple to up-type
quarks (and right-handed neutrinos) and down-type quarks (and charged leptons).

In the MSSM, the flavour-independent formulae can only be applied for temperatures
larger than (1+ tan2 β)× 1012 GeV, since the squared charged lepton Yukawa couplings
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in the MSSM are multiplied by this factor. Consequently, charged µ and τ lepton
Yukawa couplings are in thermal equilibrium for (1 + tan2 β) × 105 GeV ≪ M1 ≪
(1 + tan2 β) × 109 GeV and all flavours in the Boltzmann equations are to be treated
separately. For (1 + tan2 β) × 109 GeV ≪ M1 ≪ (1 + tan2 β) × 1012 GeV, only the τ
Yukawa coupling is in equilibrium and only the τ flavour is treated separately in the
Boltzmann equations, while the e and µ flavours are indistinguishable.

In what follows we will concern ourselves mainly with the regime where all flavours
in the Boltzmann equations are to be treated separately, i.e. 105 GeV ≪ M1 ≪ 109 GeV
in the SM and (1+tan2 β)×105 GeV ≪ M1 ≪ (1+tan2 β)×109 GeV in the MSSM. We
will comment on the other two regimes and point out the differences between flavour-
independent approximation and the flavour-dependent treatment, where lepton flavour
is taken into account correctly in the Boltzmann equations. We start with the SM and
then turn to the MSSM.

2.2 The Boltzmann Equations in the SM

In the regime where all lepton flavours are to be treated seperately, the Boltzmann
equations in the SM are given by

dYN1

dz
=

−z

sH(M1)
(γD + γS,∆L=1)

(
YN1

Y eq
N1

− 1

)
, (3)

dY∆α

dz
=

−z

sH(M1)

[
ε1,α(γD + γS,∆L=1)

(
YN1

Y eq
N1

− 1

)
− (

γα
D

2
+ γα

W,∆L=1)

∑
β AαβY∆β

Y eq
ℓ

]
,(4)

where there is no sum over α in the last term on the right-side of Eq. (4) and where
z = M1/T with T being the temperature. YN1

is the density of the lightest right-
handed neutrino N1 with mass M1. Y∆α are defined as Y∆α ≡ YB/3 − YLα, where
YLα are the total lepton number densities for the flavours α = e, µ, τ and where YB is
the total baryon density. It is appropriate to solve the Boltzmann equations for Y∆α

instead of for the number densities Yα of the lepton doublets ℓα, since ∆α ≡ B/3 − Lα

is conserved by sphalerons and by the other SM interactions. For all number densities
Y , normalization to the entropy density s is understood. Y eq

N1
and Y eq

ℓ stand for the
corresponding equilibrium number densities. γD is the thermally averaged total decay
rate of N1 and γS,∆L=1 represents the rates for the ∆L = 1 scattering processes in the
thermal bath. Notice, in particular, that γS,∆L=1 contributes to the asymmetry, as was
recently pointed out in [12].

The corresponding flavour-dependent rates for washout processes involving the lep-
ton flavour α are γα

D (from inverse decays involving leptons ℓα) and γα
W,∆L=1. For brevity,
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we have not displayed further contributions from ∆L = 2 scatterings, which can be ne-
glected under conditions we will specify below. ε1,α is the decay asymmetry of N1 and
H(T ) is the Hubble parameter.

The matrix A, which appears in the washout term, is defined by Yα =
∑

β Aαβ Y∆β
.

The values of its elements depend on which interactions, in addition to the weak and
strong sphalerons, are in thermal equilibrium at the temperatures where leptogenesis
takes place. Below 109 GeV in the SM, A is given by [12]

ASM =



−151/179 20/179 20/179
25/358 −344/537 14/537
25/358 14/537 −344/537


 . (5)

Between 109 and 1012 GeV in the SM, regarding the leptons only the interaction me-
diated by the τ Yukawa coupling is in equilibrium, and the lepton asymmetries and
B/3 − Lα asymmetries in the e and µ flavour can be combined to Y2 ≡ Ye+µ and
Y∆2

≡ Y∆e+∆µ. In this temperature range, A is given by [12]

ASM =

(
−920/589 120/589
30/589 −390/589

)
. (6)

Above 1012 GeV in the SM we recover the flavour-independent treatment, where all
asymmetries can be combined to Y∆ ≡ Y∆e+∆µ+∆τ , and A is given by ASM = −1.

Eqs. (3) and (4) can be safely used in the range of temperatures in which the lepton
Yukawa reactions for each flavour are fully in equilibrium. Indeed, for values of M1 close
to 109 GeV in the SM the reactions induced by the muon Yukawa coupling are about
to be in equilibrium and the quantum oscillations of the asymmetries Yeµ might not
have been dumped fast enough to be neglected. Eqs. (4) may be generalized to include
quantum oscillations, following Ref. [10]. However, preliminary numerical simulations
have shown that the off diagonal terms change the final diagonal lepton asymmetries
by factors of order unity and therefore, from now on, we will safely neglect them and
restrict ourselves to Eqs. (3) and (4).

One can implement the relevant parameters for connecting leptogenesis to neutrino
models directly in the Boltzmann equations, following [12]. Let us therefore introduce,
in addition to the decay asymmetries ε1,α, the parameters Kα, which control the washout
processes for the asymmetry in an individual lepton flavour α and K, which controls
the source of RH neutrinos in the thermal bath, as

Kα ≡ ΓN1ℓα + ΓN1ℓα

H(M1)
, K ≡

∑

α

Kα , Kα = K
(λ†

ν)1α(λν)α1

(λ†
νλν)11

. (7)
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H(M1) is the Hubble parameter at T = M1, given by H(M1) ≈ 1.66
√

g∗M
2
1 /Mp with

gSM
∗ = 106.75 being the effective number of degrees of freedom in the SM, λν denotes

the neutrino Yukawa matrix (using left-right notation) and ΓN1ℓα (ΓN1ℓα
) is the decay

rate of N1 into Higgs and lepton doublet ℓα (or conjugate final states, respectively). The
thermally averaged decay rate γD is then given in terms of ΓN1ℓα by

γD(z) =
∑

α

γα
D , γα

D(z) = s Y eq
N1

K1(z)

K2(z)
(ΓN1ℓα + ΓN1ℓα

) , (8)

where K1 and K2 are the modified Bessel functions of the second kind. This allows to
replace

γD(z)

sH(M1)
= K

K1(z)

K2(z)
Y eq

N1
,

γα
D(z)

sH(M1)
= Kα

K1(z)

K2(z)
Y eq

N1
, (9)

in Eqs. (3) and (4). Defining in addition two functions f1 and f2 by

γD + γS,∆L=1 ≡ γDf1 ,
γα

D

2
+ γα

W,∆L=1 ≡ γα
Df2 , (10)

we can re-write the Boltzmann equations with correct flavour treatment in a simplified
form as follows [12]:

dYN1

dz
= −K z

K1(z)

K2(z)
f1(z) (YN1

− Y eq
N1

) , (11)

dY∆α

dz
= − ε1,α K z

K1(z)

K2(z)
f1(z) (YN1

− Y eq
N1

) + Kα z
K1(z)

K2(z)
f2(z) Y eq

N1

∑
β AαβY∆β

Y eq
ℓ

. (12)

The function f1(z) accounts for the presence of ∆L = 1 scatterings and f2(z) accounts for
scatterings in the washout term of the asymmetry [6, 7]. In our numerical computations
we only include processes mediated by neutrino and top Yukawa couplings, following
Ref. [7]. This means, we neglect ∆L = 1 scatterings involving gauge bosons [22, 6] and
thermal corrections [6], but we take into account corrections from renormalization group
running between electroweak scale and M1 [9, 23]. We also neglect ∆L = 2 scatterings,
which is a good approximation as long as Kα ≫ 10 × M1/(1014 GeV) [12]. Finally,
according to the usual assumptions for computing the damping rates in the Boltzmann
equations, i.e. that elastic scattering rates are fast and that the phase space densities for
both, fermions and scalars, can be approximated as f(Ei, T ) = (ni/n

eq
i )e−Ei/T , where

neq
i = gi

2π
Tm2

i K2(mi/T ) with gi being the number of degrees of freedom, we use

Y eq
ℓ ≈ 45

π4g∗
, Y eq

N1
(z) ≈ 45

2π4g∗
z2 K2(z) . (13)
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The final lepton asymmetry in each flavour is governed by three sets of parameters,
which can be computed within a neutrino model: ε1,α, Kα and K =

∑
α Kα. ε1,α are the

decay asymmetries of the lightest right-handed neutrino N1 into Higgs Hu and lepton
doublet ℓα, defined as

ε1,α =
ΓN1ℓα − ΓN1ℓα∑
α(ΓN1ℓα + ΓN1ℓα

)
, (14)

with the decay rates ΓN1ℓα = Γ(N1 → Huℓα) and ΓN1ℓα
= Γ(N1 → H∗

uℓα). SU(2)L-
indices in the final state, not displayed explicitly, are summed over. In the SM, the
tree-level decay rates are

ΓSM
N1ℓα

+ ΓSM
N1ℓα

= M1
(λ†

ν)1α(λν)α1

8π
. (15)

The decay asymmetry (arising at one-loop order) is [24, 25]

ǫSM
1,α =

1

8π

∑
J=2,3 Im

[
(λ†

ν)1α[λ†
νλν ]1J (λT

ν )Jα

]

(λ†
νλν)11

gSM

(
M2

J

M2
1

)
, (16)

with the loop function g in the SM given by

gSM(x) =
√

x

[
1

1 − x
+ 1 − (1 + x) ln

(
1 + x

x

)]
x≫1−→ − 3

2
√

x
. (17)

Alternatively to Kα and K defined in Eq. (7), the parameters m̃1,α and m̃1 will be used
in following, which we define as

m̃1,α ≡ (λ†
ν)1α(λν)α1

v2
u

M1

, m̃1 ≡
∑

α

m̃1,α , (18)

with vu = 175 GeV. They are related to Kα and K by

K =
m̃1

m∗
, or equivalently Kα =

m̃1,α

m∗
, with m∗

SM ≈ 1.08 × 10−3 eV . (19)

2.3 The Boltzmann Equations in the MSSM

In the MSSM, the density Y eN1
of right-handed sneutrinos as well as the densities Yeα

of the slepton doublets have to be included in the Boltzmann equations. Denoting the

7



total (particle and sparticle) B/3 − Lα asymmetries as Ŷ∆α, the simplified Boltzmann
equations are given by

dYN1

dz
= − 2K z

K1(z)

K2(z)
f1(z) (YN1

− Y eq
N1

) , (20)

dY eN1

dz
= − 2K z

K1(z)

K2(z)
f1(z) (Y eN1

− Y eq
eN1

) , (21)

dŶ∆α

dz
= − (ε1,α + ε1,eα) K z

K1(z)

K2(z)
f1(z) (YN1

− Y eq
N1

)

− (εe1,α + εe1,eα) K z
K1(z)

K2(z)
f1(z) (Y eN1

− Y eq
eN1

)

+ Kα z
K1(z)

K2(z)
f2(z)

∑
β AαβŶ∆β

Ŷ eq
α

(Y eq
N1

+ Y eq
eN1

) . (22)

The matrix A is defined via the relation Ŷα =
∑

β Aαβ Ŷ∆α, with Ŷα ≡ Yα + Yeα being
the combined densities for lepton and slepton doublets.

To obtain Eqs. (20) - (22) we have made use of the fact that the tree level decay
rates satisfy

ΓN1ℓα + ΓN1ℓα
= ΓN1

eℓα
+ ΓN1

eℓ∗α
= Γ eN∗

1
ℓα

= Γ eN1ℓα
= Γ eN1

eℓα
= Γ eN∗

1
eℓ∗α

, (23)

with ΓN1ℓα +ΓN1ℓα
given in Eq. (15), leading to the identities

Kα =
ΓN1ℓα+ΓN1ℓα

H(M1)
=

ΓN1
eℓα
+ΓN1

eℓ∗α

H(M1)
=

Γ eN∗

1
ℓα

H(M1)
=

Γ eN1ℓα

H(M1)
=

Γ eN1
eℓα

H(M1)
=

Γ eN∗

1
eℓ∗α

H(M1)
, (24)

with K, Kα (and m̃1, m̃1,α) being defined analogously to the SM case (c.f. Eqs. (7) and
(18)). From Eq. (19), we find

m∗
MSSM ≈ sin2(β) × 1.58 × 10−3 eV , (25)

using gMSSM
∗ = 228.75 for computing H(M1). m∗

MSSM relates K, Kα to m̃1, m̃1,α in
the MSSM by the analogous of Eq. (19). In this conventions, the functions f1 and
f2 in the Boltzmann equations are approximately unchanged (apart from an obvious
modification in one of the scattering terms, which has only small effects). Note that
vu = sin(β)×175 GeV in the MSSM. In Eqs. (20) and (21), processes with particles and
superpartners are combined, leading to the additional factor of 2 on the right-side of the
equations. Ignoring supersymmetry breaking, the right-handed neutrinos and sneutrinos
have equal mass M1. With the usual approximation of taking Boltzmann statistics for
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both, fermions and scalars, we have used Y eq
eℓ

≈ Y eq
ℓ to combine the washout terms for

leptons and sleptons in the last term in Eq. (22). Correspondingly, for the density Y eq
eN1

of the right-handed sneutrinos we use

Y eq
eN1

(z) ≈ 45

2π4g∗
z2 K2(z) . (26)

ε1,α, ε1,eα, εe1,α and εe1,eα are the decay asymmetries for the decay of neutrino into Higgs
and lepton, neutrino into Higgsino and slepton, sneutrino into Higgsino and lepton, and
sneutrino into Higgs and slepton, respectively, defined by

ε1,α =
ΓN1ℓα − ΓN1ℓα∑
α(ΓN1ℓα + ΓN1ℓα

)
, ε1,eα =

ΓN1
eℓα
− ΓN1

eℓ∗α∑
α(ΓN1

eℓα
+ ΓN1

eℓ∗α
)

,

εe1,α =
Γ eN∗

1
ℓα
− Γ eN1ℓα∑

α(Γ eN∗

1
ℓα

+ Γ eN1ℓα
)

, εe1,eα =
Γ eN1

eℓα
− Γ eN∗

1
eℓ∗α∑

α(Γ eN1
eℓα

+ Γ eN∗

1
eℓ∗α

)
. (27)

In the MSSM, the four decay asymmetries are equal, εMSSM
1,α = εMSSM

1,eα = εMSSM
e1,α

= εMSSM
e1,eα

,

and given by [24, 25]

εMSSM
1,α =

1

8π

∑
J=2,3 Im

[
(λ†

ν)1α[λ†
νλν ]1J (λT

ν )Jα

]

(λ†
νλν)11

gMSSM

(
M2

J

M2
1

)
, (28)

with

gMSSM(x) =
√

x

[
2

1 − x
− ln

(
1 + x

x

)]
x≫1−→ − 3√

x
. (29)

The matrix A depends on which MSSM interactions are in thermal equilibrium at the
temperatures where leptogenesis takes place. Below (1 + tan2 β) × 109 GeV, where the
Boltzmann equations are solved for the individual asymmetries Ŷ∆e, Ŷ∆µ and Ŷ∆τ , A is
given by

AMSSM =



−93/110 6/55 6/55

3/40 −19/30 1/30
3/40 1/30 −19/30


 . (30)

Between (1 + tan2 β) × 109 and (1 + tan2 β) × 1012 GeV, where the relevant flavour-
dependent asymmetries are Ŷ∆2

≡ Ŷ∆e+∆µ and Ŷ∆τ , we find

AMSSM =

(
−541/761 152/761
46/761 −494/761

)
, (31)

and above (1 + tan2 β) × 1012 GeV, we recover the flavour-independent treatment with
AMSSM = −1.
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2.4 Solving the Boltzmann Equations in the SM and MSSM

Solving the Boltzmann equations, for z from 0 to ∞, in the SM or in the MSSM yields
the final B/3−Lα asymmetries Y SM

∆α
or Ŷ MSSM

∆α
in the individual flavours. It is convenient

to parameterize the produced asymmetries in terms of an efficiency factor ηα which, in
the approximation that the small off-diagonal elements of A are neglected, is a function
of AααKα (no sum over α) and K, i.e. ηα = η(AααKα, K), as

Y SM
∆α

= ηSM
α εSM

1,α Y eq
N1

(z ≪ 1) , (32)

Ŷ MSSM
∆α

= ηMSSM
α εMSSM

1,α

[
Y eq

N1
(z ≪ 1) + Y eq

eN1

(z ≪ 1)
]
, (33)

generalizing the notation of [6] to the flavour-dependent treatment. Beyond the approx-
imations of Secs. 2.2 and 2.3, the efficiency factors also depend on M1, and they depend
on tan β in the MSSM. Y eq

N1
(z ≪ 1) and Y eq

eN1

(z ≪ 1) are the number densities of the

neutrino and sneutrino at T ≫ M1, if they were in thermal equilibrium, normalized
with respect to the entropy density. In the Boltzmann approximation, they are given
by

Y eq
N1

(z ≪ 1) ≈ Y eq
eN1

(z ≪ 1) ≈ 45

π4g∗
. (34)

Eqs. (32) and (33) define the flavour-dependent efficiency factor in the SM and in the
MSSM, and it can be computed by means of the Boltzmann equations [10, 12] and its
MSSM generalizations in Eqs. (20) - (22), where lepton flavour is taken into account
correctly. The equilibrium number densities in Eqs. (32) and (33) serve as a normal-

ization. A thermal population N1 (and Ñ1) decaying completely out of equilibrium
(without washout effects) would lead to ηα = 1. Of course, K/Kα ≥ 1 always holds
by definition but K can be significantly larger than Kα. η(AααKα, K) is shown as a
function of AααKα in the MSSM for fixed values of K/|AααKα| = 2, 5 and 100 in Fig. 1.
In the SM, η has the same qualitative (and a similar quantitative) behavior.

What is more relevant than the differences in the flavour-dependent efficiency fac-
tors (c.f. Fig. 1) is that the total baryon asymmetry is the sum of each individual lep-
ton asymmetries, which is weighted by the corresponding efficiency factor [10, 11, 12].
Therefore, upon summing over the lepton asymmetries, the total baryon number is
generically not proportional to the sum over the CP asymmetries, ε1 =

∑
α ε1,α as

in the flavour-independent approximation where the lepton flavour is neglected in the
Boltzmann equations. In Eq. (12), this corresponds to replacing Y∆α by the “one-
single” flavour Y∆ = Y∆e+∆µ+∆τ (the total lepton asymmetry), the flavour dependent
decay asymmetries by ε1, the washout parameters by K =

∑
α Kα, and the matrix

A by −1. The produced asymmetry in the flavour-independent approximation is then

10



-2 -1 0 1 2
log10 ÈAΑΑ KΑ È

0

0.05

0.1

0.15

0.2

Η
Α

K
���������������������������������
È AΑΑ  KΑ È

= 2

K
���������������������������������
È AΑΑ  KΑ È

= 5

K
���������������������������������
È AΑΑ  KΑ È

= 100

Figure 1: Flavour-dependent efficiency factor η(AααKα, K) in the MSSM as a function of AααKα, for
fixed values of K/|AααKα| = 2, 5 and 100, obtained from solving the flavour-dependent Boltzmann
equations [12] generalized to the MSSM (with tanβ = 50, as an example), as displayed in Eqs. (20)
- (22). For larger K/|AααKα| the plot looks virtually like for K/|AααKα| = 100. More relevant
than the differences in the flavour-dependent efficiency factors for different K/|AααKα| is that the
total baryon asymmetry is the sum of each individual lepton asymmetries, which is weighted by the
corresponding efficiency factor. As explained in the text, this can change the amount of the produced
baryon asymmetry dramatically, compared to the flavour-independent approximation [10, 11, 12].

given by Y = ε1 ηind(K) Y eq
N1

(z ≪ 1), where the flavour-independent efficiency factor
ηind(K) is related to η(AααKα, K) in Eq. (32) by ηind(x) = η(−x, x). In other words,
in the flavour-independent approximation the total baryon asymmetry is a function of
(
∑

α ε1,α) × ηind (
∑

β Kβ). In the correct flavour treatment the baryon asymmetry is a
function of

∑
α ε1,αη (AααKα, K). If N1 decays about equally to all flavours and pro-

duces about the equal asymmetry in all flavours, then (neglecting the effects of A for the
moment) one expects that the flavour-independent approximation underestimates the
asymmetry by roughly a factor of three for the case of strong washout and overestimates
by a factor of three for the case of weak wash out. The approximate factor of three can
be understood with the analytic approximations presented in [12], from which we can
see that in the case of weak (strong) washout for all flavours, the efficiencies are roughly
(inverse) proportional to Kα. However, as we will see, there are situations in the SD
models where the difference is much more dramatic.

Let us note at this point how to generalize the above discussion for the range
109 GeV ≪ M1 ≪ 1012 GeV in the SM and (1 + tan2 β) × 109 GeV ≪ M1 ≪ (1 +
tan2 β)× 1012 GeV in the MSSM, where only the τ is in equilibrium and is treated sep-
arately in the Boltzmann equations, while the e and µ flavours are indistinguishable. In
this case, following [10, 12], one can combine the asymmetries for the e and µ flavours to

11



a combined density Y∆2
= Y∆e+∆µ in the Boltzmann equations, where Kα is substituted

by K2 = Ke + Kµ. The corresponding decay asymmetry is ε1,2 = ε1,e + ε1,µ. Above
1012 GeV in the SM and above (1+tan2 β)×1012 GeV in the MSSM, we can combine all
asymmetries for the e, µ and τ flavours to a combined density Y∆ = Y∆e+∆µ+∆τ in the
Boltzmann equations and substitute Kα by K = Ke + Kµ + Kτ . The decay asymmetry
then reduces to the flavour-independent one, ε1 = ε1,e + ε1,µ + ε1,τ .

The produced lepton asymmetries are partly converted into a final baryon asymmetry
by sphalerons. For all temperature ranges, the produced baryon asymmetry (normalized
to the entropy density) can be computed from the densities Y SM

∆α
and Ŷ MSSM

∆α
in the SM

and MSSM, respectively, as

Y SM
B =

12

37

∑

α

Y SM
∆α

, (35)

Y MSSM
B =

10

31

∑

α

Ŷ MSSM
∆α

. (36)

3 Sequential Dominance

To understand how sequential dominance works, we begin by writing the right-handed
neutrino Majorana mass matrix MRR in a diagonal basis as

MRR =




MA 0 0
0 MB 0
0 0 MC



 . (37)

Note that, as stated earlier, we work in a basis where the charged lepton Yukawa matrix
is diagonal. In this basis we write the neutrino (Dirac) Yukawa matrix λν in terms of
(1, 3) column vectors Ai, Bi, Ci as

λν =
(
A B C

)
, (38)

using left-right convention as in Eqs. (1) and (2). The Dirac neutrino mass matrix is
then given by mν

LR = λνvu. The term for the light neutrino masses in the effective
Lagrangian (after electroweak symmetry breking), resulting from integrating out the
massive right handed neutrinos, is

Lν
eff =

(νT
i Ai)(A

T
j νj)

MA

+
(νT

i Bi)(B
T
j νj)

MB

+
(νT

i Ci)(C
T
j νj)

MC

(39)
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where νi (i = 1, 2, 3) are the left-handed neutrino fields. Sequential dominance then
corresponds to the third term being negligible, the second term subdominant and the
first term dominant:

AiAj

MA
≫ BiBj

MB
≫ CiCj

MC
. (40)

In addition, we shall shortly see that small θ13 and almost maximal θ23 require that

|A1| ≪ |A2| ≈ |A2|. (41)

Without loss of generality, then, we shall label the dominant right-handed neutrino and
Yukawa couplings as A, the subdominant ones as B, and the almost decoupled (sub-
subdominant) ones as C. Note that the mass ordering of right-handed neutrinos is not
yet specified. Again without loss of generality we shall order the right-handed neutrino
masses as M1 < M2 < M3, and subsequently identify MA, MB, MC with M1, M2, M3 in
all possible ways. The following results for the masses and mixing angles are independent
of the mass ordering of the right-handed neutrinos.

Writing Aα = |Aα|eiφA1 , Bα = |Bα|eiφB1 , Cα = |Cα|eiφC1 and working in the mass
basis of the charged leptons, under the SD condition Eq. (40), we obtain for the lepton
mixing angles [14]:

tan θ23 ≈ |A2|
|A3|

, (42a)

tan θ12 ≈ |B1|
c23|B2| cos φ̃2 − s23|B3| cos φ̃3

, (42b)

θ13 ≈ ei(φ̃+φB1
−φA2

) |B1|(A∗
2B2 + A∗

3B3)

[|A2|2 + |A3|2]3/2

MA

MB

+
ei(φ̃+φA1

−φA2
)|A1|√

|A2|2 + |A3|2
, (42c)

and for the masses

m3 ≈ (|A2|2 + |A3|2)v2

MA
, (43a)

m2 ≈ |B1|2v2

s2
12MB

, (43b)

m1 ≈ O(|C|2v2/MC) . (43c)
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We would like to note that tri-bimaximal mixing [13] corresponds to the choice [16]:

|A1| = 0, (44)

|A2| = |A3|, (45)

|B1| = |B2| = |B3|, (46)

A†B = 0. (47)

This is called constrained sequential dominance (CSD) [16].

Let us now turn to the issue of leptonic CP phases in SD. In particular we will
consider the MNS phase δ, relevant for neutrino oscillations, and then study in Sec. 4.2
how it is linked to CP violation required for leptogenesis. As in [19] the MNS phase δ
is fixed by the requirement that we have already imposed in Eq. (42b) that tan(θ12) is
real and positive,

c23|B2| sin φ̃2 ≈ s23|B3| sin φ̃3 , (48)

c23|B2| cos φ̃2 − s23|B3| cos φ̃3 > 0 , (49)

where

φ̃2 ≡ φB2
− φB1

− φ̃ + δ ,

φ̃3 ≡ φB3
− φB1

+ φA2
− φA3

− φ̃ + δ . (50)

The phase φ̃ is fixed by the requirement (not yet imposed in Eq. (42c)) that the angle θ13

is real and positive. In general this condition is rather complicated since the expression
for θ13 is a sum of two terms. However if, for example, A1 = 0 then φ̃ is fixed by:

φ̃ ≈ φA2
− φB1

− ζ (51)

where

ζ = arg (A∗
2B2 + A∗

3B3) . (52)

Eq. (52) may be expressed as

tan ζ ≈ |B2|s23s2 + |B3|c23s3

|B2|s23c2 + |B3|c23c3

. (53)

Inserting φ̃ of Eq. (51) into Eqs. (48), (50), we obtain a relation which can be expressed
as

tan(ζ + δ) ≈ |B2|c23s2 − |B3|s23s3

−|B2|c23c2 + |B3|s23c3
. (54)
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In Eqs. (53), (54) we have written si = sin ζi, ci = cos ζi, where we have defined

ζ2 ≡ φB2
− φA2

, ζ3 ≡ φB3
− φA3

, (55)

which are invariant under a charged lepton phase transformation. The reason why the
seesaw parameters only involve two invariant phases rather than the usual six, is due
to the SD assumption in Eq. (40) that has the effect of effectively decoupling the right-
handed neutrino of mass MC from the seesaw mechanism, which removes three phases,
together with the further assumption (in this case) of A1 = 0, which removes another
phase.

4 Flavour Matters in Leptogenesis with Sequential

Dominance

Let us now consider leptogenesis in neutrino mass models with sequential dominance
(SD), taking into account lepton flavour in the Boltzmann equations. In SD, there are
three classes of models with different characteristic predictions for leptogenesis. They
differ by the role of the lightest right-handed neutrino in SD, which can either be the
dominant one M1 = MA, the subdominant one M1 = MB or the subsubdominant one
M1 = MC (which, in the SD limit, only contributes to m1 but has a negligible effect on
the neutrino mixing angles and CP phases). The possible form of the neutrino Yukawa
matrix λν is then given by

λν = (A, B, C) or λν = (A, C, B) , for M1 = MA, (56)

λν = (B, A, C) or λν = (B, C, A) , for M1 = MB, (57)

λν = (C, A, B) or λν = (C, B, A) , for M1 = MC , (58)

using the notation of Sec. 3, where we have ordered the columns according to MRR =
diag(M1, M2, M3) where M1 < M2 < M3. The flavour specific decay asymmetries ε1,α

and washout parameters m̃1,α, calculated from Eqs. (16) and (18), are given in Tab. 1
for the three classes of SD.

4.1 Decay Asymmetries and Washout Parameters

We can now derive theoretical expectations and constraints on the flavour specific decay
asymmetries and washout parameters from requiring consistency with the present neu-
trino data in the classes of neutrino mass models discussed above. The experimental re-
sults from neutrino oscillations indicate nearly maximal mixing θ23 ≈ 45◦, large, but non-
maximal mixing θ12 ≈ 33◦ and small mixing θ13 . 13◦, as well as small neutrino mass
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Type of SD ε1,α m̃1,α

M1 = MA −3M1

16π

{
Im

[
A∗

αBα(A†B)
]

MB (A†A)
+

Im
[
A∗

αCα(A†C)
]

MC (A†A)

}
|Aα|2v2

u

M1

M1 = MB −3M1

16π

{
Im

[
B∗

αAα(B†A)
]

MA (B†B)
+

Im
[
B∗

αCα(B†C)
]

MC (B†B)

}
|Bα|2v2

u

M1

M1 = MC −3M1

16π

{
Im

[
C∗

αAα(C†A)
]

MA(C†C)
+

Im
[
C∗

αBα(C†B)
]

MB(C†C)

}
|Cα|2v2

u

M1

Table 1: Flavour specific decay asymmetries ε1,α for the decay of the lightest right-handed neutrino
with mass M1 (in the limit M1 ≪ M2, M3) and washout parameters m̃1,α in classes of models with
sequential right-handed neutrino dominance (SD) in the SM. The MSSM decay asymmetries are a
factor of 2 larger, in the considered limit.

squared differences ∆m2
31 = m2

3−m2
1 ≈ 2.2×10−3 eV2 and ∆m2

21 = m2
2−m2

1 ≈ 8.1×10−5

eV2 [21]. In neutrino mass models satisfying SD, the neutrino Yukawa couplings and
the masses of the right-handed neutrinos are related to the neutrino masses and mixings
by Eqs. (42) and (43).

We will focus first on the case where all three flavours are treated separately in the
Boltzmann equations. As discussed in Sec. 2, this is the case for temperatures below
109 GeV in the SM and below (1 + tan2 β) × 109 GeV in the MSSM. Typical examples
where this case is relevant are thus unified models of flavour with large tan β. We will
then comment on the two remaining cases, where (i) the e and µ flavour are combined
in the Boltzmann equations and only the τ is treated independently and (ii) where all
flavours are combined and the treatment becomes flavour-independent, in Sec. 4.1.3.

4.1.1 Properties of the Decay Asymmetries ε1,α

The decay asymmetries ε1,α of Tab. 1 contain contributions from the two heavier right-
handed neutrinos with masses M2 and M3. Using the SD conditions of Eq. (40), we
see that the largest contributions to the decay asymmetries stem from the terms in
Tab. 1 containing MA, followed by the contributions containing MB, and finally terms
containing MC give the smallest contributions which vanish in the limit m1 → 0. In
the following, we will neglect the contributions to the decay asymmetry containing
MC , keeping in mind that they may be important when the leading contributions are
suppressed, for instance due to a configuration of complex phases or due to a particular
structure of the neutrino Yukawa couplings Ai and Bi. In the following, we will compare
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the flavour specific decay asymmetries with the maximally possible decay asymmetry

εmax =
3

16π

M1

v2
u

m3 , (59)

which provides an upper bound on the decay asymmetry ε1 in the SM in the flavour-
independent approximation. In the MSSM, the maximal decay asymmetry is a factor of
2 larger. The flavour specific decay asymmetries can be constrained in the three cases
as follows:

• In the case M1 = MA, assuming that the sub-dominant right-handed neutrino
provides the leading contribution to the decay asymmetry and that the term con-
taining MC can be neglected, the flavour-specific asymmetries are given by

ε1,α ≈ −3M1

16π

Im
[
A∗

αBα(A†B)
]

MB (A†A)
. (60)

Using |A1| ≪ |A2| ≈ |A3|, as suggested by and Eqs. (42c) and (42a) and the
smallness of θ13 together with the approximate maximality of θ23, we can constrain
ε1,β with β ∈ {µ, τ} and ε1,e as follows:

|ε1,β| ≈
∣∣∣∣∣
3M1

16π

Im
[
A∗

βBβ(A†B)
]

MB (A†A)

∣∣∣∣∣ ≤
∣∣∣∣
3M1

16π

[ |A3||Bβ||A3|(|B2| + |B3|)]
MB 2|A3|2

∣∣∣∣

≤
∣∣∣∣
3M1

16π

1

2

[ |Bβ|(|B2| + |B3|)]
MB

∣∣∣∣ ≈ εmax O
(

m2

m3

)
, (61)

|ε1,e| . εmax O
(

m2

m3

) |A1|
|A3|

∣∣∣∣
[ |B1|(|B2| + |B3|)]

MB

∣∣∣∣ ≪ εmax O
(

m2

m3

)
. (62)

The estimate in the last step of Eqs. (61) and (62) is based on the SD conditions
in Eq. (40) and on Eq. (42b). The latter states that in order to generate large
mixing θ12 ≈ 33◦, |B2| and/or |B3| have to be of the same order as |B1|, which
in turn is related to m2 by Eq. (43b). We conclude that |ε1,µ| and |ε1,τ | are
somewhat suppressed compared to the maximally possible value εmax as was found
for ε1 =

∑
α ε1,α in the flavour-independent treatment in [18]. The value of |ε1,e|

given in Eq. (62) is suppressed compared to |ε1,µ| and |ε1,τ | due to |A1| ≪ |A2|, |A3|
and it is related to the mixing angle θ13, as can be seen from Eq. (42c).

17



Type of SD relation for ε1,e relation for ε1,µ relation for ε1,τ

M1 = MA ≪ O(m2

m3

)εmax . O(m2

m3

)εmax . O(m2

m3

)εmax

M1 = MB ≪ εmax . εmax . εmax

M1 = MC . O(m2

m3

)εmax . εmax . εmax

Table 2: Constraints and theoretical expectations on the flavour specific decay asymmetries from
consistency with low energy neutrino observables in classes of models with SD in the SM, in the limit
M1 ≪ M2, M3. εmax, the upper bound on the decay asymmetry, is given by 3

16π
M1

v2
u

m3. In the MSSM,

the decay asymmetries are a factor of 2 larger.

• In the case M1 = MB, using again |A1| ≪ |A2| ≈ |A3|, we find that we can
constrain the decay asymmetries ε1,β, with β ∈ {µ, τ}, and ε1,e as

|ε1,β| ≈
∣∣∣∣∣
3M1

16π

Im
[
B∗

βAβ(B†A)
]

MA (B†B)

∣∣∣∣∣ ≤
∣∣∣∣
3M1

16π

[ |Bβ| |A3|2(|B2| + |B3|)]
MA (B†B)

∣∣∣∣

= εmax 1

2

∣∣∣∣
[ |Bβ|(|B2| + |B3|)]

(B†B)

∣∣∣∣ ≤ εmax (63)

|ε1,e| . εmax 1

2

|A1|
|A3|

∣∣∣∣
[ |B1|(|B2| + |B3|)]

(B†B)

∣∣∣∣ ≪ εmax . (64)

For |ε1,β|, the maximal value εmax can be nearly saturated, whereas |ε1,e| is sup-
pressed due to |A1| ≪ |A2|, |A3| as in the case M1 = MA.

• In the case M1 = MC , the decay asymmetries ε1,α obtain contributions from the
right-handed neutrinos with masses MA and MB. Using analogous estimates than
for the case M1 = MB, we can show that the contribution from the right-handed
neutrino with mass MA allows decay asymmetries |ε1,µ| and |ε1,τ | close to the up-
per bound εmax similar to the result for ε1 in the flavour-independent treatment
in [18], but due to |A1| ≪ |A2| ≈ |A3| the decay asymmetry ε1,e is suppressed.
From MB, using estimates as for the case M1 = MA, all decay asymmetries can
get contributions |ε1,α| . O(m2/m3) εmax. We will return to the case M1 = MC in
Sec. 4.3.3, where we discuss the specific example of tri-bimaximal mixing via con-
strained sequential dominance (CSD). There we will also present explicit formulae
for the decay asymmetries which illustrate the above statements.

The above derived constraints on the decay asymmetries ε1,α in the classes of models
under consideration are summarized in Tab. 2.
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4.1.2 Properties of the Washout Parameters m̃1,α

• In the case M1 = MA, comparing the formula for m3 in Eq. (43a) with the formulae
for the washout parameters m̃1,α in Tab. 1 yields

m̃1,µ = m̃1,τ ≈ 1

2
m3 . (65)

Since for hierarchical light neutrino masses m3 ≈
√

∆m2
31 ≈ 0.05 eV, we find

that for these flavours we are constrained to be in the strong washout regime,
where m̃1,α ≫ m∗ (c.f. Fig. 1). On the contrary, m̃1,e is significantly smaller
since |A1| ≪ |A2|, |A3| and m̃1,e is thus typically in the weak (optimal) region for
m̃1,e ≪ m∗ (m̃1,e ≈ m∗).

Note that in the flavour-independent approximation, the washout parameter would
be given by m̃1 =

∑
α m̃1,α ≈ m3. The fact that we expect weak (or optimal)

washout for m̃e thus provides an important difference between flavour-dependent
leptogenesis compared to the flavour-independent approximation. We will analyze
this situation in more detail in Sec. 4.3.1.

• In the case M1 = MB, from comparing the formula for m2 in Eq. (43b) with the
formula for the washout parameter m̃1,e in Tab. 1, we infer that

m̃1,e ≈ s2
12m2 . (66)

Furthermore, from Eq. (42b) and from the SD conditions Eq. (40) it follows that
B2 and/or B3 are of the order of B1 in order to generate large neutrino mixing
θ12, leading to the expectations

m̃1,µ and/or m̃1,τ = O(m2) . (67)

• In the case M1 = MC , Eq. (43c) implies that the washout parameters m̃1,α are
typically . O(m1) and therefore, with a hierarchical neutrino mass spectrum
m1 ≪ m2 < m3, they are in general in the weak (or optimal) washout region.

A summary of the above derived constraints on the washout parameters m̃1,α in the
classes of models with sequential dominance is given in Tab. 3.
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Type of SD washout by m̃1,e washout by m̃1,µ washout by m̃1,τ

M1 = MA weak/optimal strong, m̃1,µ ≈ 1
2
m3 strong, m̃1,τ ≈ 1

2
m3

M1 = MB optimal, m̃1,e ≈ s2
12m2 . O(m2)

∗ . O(m2)
∗

M1 = MC weak/optimal weak/optimal weak/optimal

Table 3: Flavour specific type of washout for the considered classes of models. (∗At least one out of
m̃1,µ, m̃1,τ has to be O(m2) for M1 = MB.)

4.1.3 Remaining Cases: Only yτ in Equilibrium and the Flavour-Independent

Case

As discussed in Sec. 2, all three flavours are only treated differently for temperatures
smaller than 109 GeV in the SM and larger than (1 + tan2 β) × 109 GeV in the MSSM.

In the temperature ranges 109 GeV ≪ M1 ≪ 1012 GeV in the SM and (1+ tan2 β)×
109GeV ≪ M1 ≪ (1+tan2 β)×1012GeV in the MSSM, only the yτ is in equilibrium and
thus only the τ flavour is treated separately in the Boltzmann equations while the e and
µ flavours are indistinguishable. In this temperature range, one can use the combined
decay asymmetry and washout parameter

ε1,2 ≡ ε1,e + ε1,µ , (68)

m̃1,2 ≡ m̃1,e + m̃1,µ , (69)

instead of ε1,e, ε1,µ and m̃1,e, m̃1,µ and solve the Boltzmann equations for Y∆2
≡ Y∆e+∆µ

and Y∆τ .

Above 1012 GeV in the SM and (1 + tan2 β) × 1012 GeV in the MSSM, all flavours
are combined to the flavour-independent decay asymmetry and washout parameter

ε1 ≡ ε1,e + ε1,µ + ε1,τ , (70)

m̃1 ≡ m̃1,e + m̃1,µ + m̃1,τ (71)

and one can solve the Boltzmann equations for the total asymmetry Y∆ ≡ Y∆e+∆µ+∆τ .

The properties of the decay asymmetries and washout parameters in these two cases
can be discussed analogously to Secs. 4.1.1 and 4.1.2. The results are presented in
Tabs. 4 and 5.
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Type of SD ε1,2 ε1,τ washout by m̃1,2 washout by m̃1,τ

M1 = MA . O(m2

m3

)εmax . O(m2

m3

)εmax m̃1,2 ≈ 1
2
m3 m̃1,τ ≈ 1

2
m3

M1 = MB . εmax . εmax . O(m2) . O(m2)

M1 = MC . εmax . εmax weak/optimal weak/optimal

Table 4: Constraints and theoretical expectations on the flavour specific decay asymmetries and the
flavour specific type of washout for the case where only the tau Yukawa coupling yτ is in thermal
equilibrium. For the e and µ flavours, the combined quantities ε1,2 = ε1,e +ε1,µ and m̃1,2 = m̃1,e +m̃1,µ

are considered.

Type of SD relation for ε1 washout by m̃1

M1 = MA . O(m2

m3

)εmax strong, m̃1 = m3

M1 = MB . εmax . O(m2)

M1 = MC . εmax weak/optimal

Table 5: Constraints and theoretical expectations on the flavour specific decay asymmetries and the
flavour specific type of washout for the case where no charged lepton Yukawa coupling is in equilibrium.
All flavours are combined effectively to a single flavour in the Boltzmann equations and the relevant
quantities are the flavour-independent ones, ε1 = ε1,e + ε1,µ + ε1,τ and m̃1 ≡ m̃1,e + m̃1,µ + m̃1,τ .

4.2 Leptonic CP Violation and the MNS - Leptogenesis Link

In [19] it was shown how, in the case of SD where the lightest right-handed neutrino was
the dominant one, there was a link between the MNS Dirac CP violating phase δ which
appears in neutrino oscillations and the phase which is relevant for leptogenesis. However
the analysis in [19] was based on the flavour-independent formulation of leptogenesis,
and it is therefore interesting to revisit this analysis in the light of flavour-dependent
leptogenesis.

Eqs. (54) and (55) show explicitly that the MNS Dirac CP violating phase δ is a
function of only two seesaw phases ζ2, ζ3, as in [19]. Since these are the only remaining
seesaw phases it must also be the case that leptogenesis must depend also on these
same two phases. This opens up the possibility of a link between the leptogenesis phase
and the oscillation MNS phase δ, as in [19]. In the flavour-independent treatment of
leptogenesis in [19] the relevant leptogenesis phase was ζ and the leptogenesis-MNS
link was given by Eqs. (53), (54). However, in the present case, flavour-dependent
leptogenesis will depend on both phases ζ2, ζ3, as we now discuss.
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• For the case M1 = MA, assuming that A1 = 0, we have

ε1,α ≈ −3M1

16π

Im
[
A∗

αBα(A†B)
]

MB (A†A)
. (72)

From this result it is clear that

ε1,e = 0,

ε1,µ ∝ +|A2||B2| sin(ζ + ζ2),

ε1,τ ∝ +|A3||B3| sin(ζ + ζ3). (73)

From the previous section we see that

YB ∝ Y∆µ + Y∆τ (74)

with Yα given in Eq. (32). Since the efficiency factor ηµ depends on m̃1,µ ≈
|A2|2v2/MA and ητ depends on m̃1,τ ≈ |A3|2v2/MA, with |A2| ≈ |A3| we see that,
ηµ ≈ ητ , and

YB ∝ |B2| sin(ζ + ζ2) + |B3| sin(ζ + ζ3), (75)

which shows explicitly how leptogenesis depends on the two phases ζ2, ζ3 in this
case.

• For the case M1 = MB, assuming that A1 = 0, we have

ε1,α ≈ −3M1

16π

Im
[
B∗

αAα(B†A)
]

MB (B†B)
. (76)

From this result it is clear that

ε1,e = 0,

ε1,µ ∝ −|A2||B2| sin(ζ + ζ2),

ε1,τ ∝ −|A3||B3| sin(ζ + ζ3). (77)

Since now ηµ depends on the washout parameter m̃1,µ ≈ |B2|2v2/MB and ητ de-
pends on m̃1,τ ≈ |B3|2v2/MB, the two efficiencies are in general unequal in this
case, and with |A2| ≈ |A3| we see that,

YB ∝ −ηµ|B2| sin(ζ + ζ2) − ητ |B3| sin(ζ + ζ3), (78)

which shows explicitly how leptogenesis depends on the two phases ζ2, ζ3 in this
case.
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• Clearly, for the case M1 = MC , there is no leptogenesis-MNS link since leptogenesis
will depend on phases associated with the right-handed neutrino of mass MC ,
which does not contribute significantly to the seesaw mechanism, and therefore
these phases will not significantly contribute to the MNS phases.

The leptogenesis-MNS link in the flavour-dependent case is therefore rather similar
to the link in the flavour-independent case, namely the connection between leptogenesis
and δ is made via the remaining two seesaw phases ζ2, ζ3 which are responsible for both
leptogenesis and δ. These two phases fix δ as in Eqs. (54), (55), which are valid for all
types of SD, including the cases M1 = MA and M1 = MB. However the two phases ζ2, ζ3

contribute to leptogenesis differently for the cases M1 = MA and M1 = MB, as shown in
Eqs. (75) and (78), where both these results differ from the flavour-independent result
in which leptogenesis is a simple function of ζ .

In order to obtain a more precise leptogenesis-MNS link, one can reduce the number
of phases still further by assuming an additional zero Yukawa coupling, in addition to
assuming that A1 = 0. For example if we additionally assume that B3 = 0, which
implies that ε1,τ = 0, then this removes the phase ζ3, and we find that ζ = ζ2. From
Eqs. (48) - (52), we obtain for the MNS phase δ [19]:

δ = −2ζ . (79)

Under the same assumption that B3 = 0 (as well as A1 = 0), for the case M1 = MA we
see that

YB ∝ + sin(2ζ), (80)

while for the case M1 = MB we see that

YB ∝ − sin(2ζ), (81)

where in both cases leptogenesis depends on a single phase ζ , which is directly related
to the MNS phase δ in Eq. (79). The sign of the CP violating phase δ measurable
in high precision neutrino oscillation experiments, or more precisely the sign of sin(δ),
therefore will depend on whether M1 = MA or M1 = MB. If M1 = MA then sin(δ)
must be negative since baryon asymmetry of the universe in Eq. (80) must be positive.
If M1 = MB then sin(δ) must be positive since baryon asymmetry of the universe in
Eq. (81) must be positive. Thus the measured sign of the oscillation phase δ is capable
of distinguishing between the two types of SD, namely M1 = MA or M1 = MB, under
the assumption of the two texture zeroes A1 = 0 and B3 = 0.1

1A different possible choice of two texture zeros, which can be discussed analogously, is A1 = B2 = 0.
In this case, the relation between δ and ζ would be given by δ = −2ζ + π, leading to the prediction of
the opposite sign of sin(δ) from the observed baryon asymmetry.
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4.3 Examples

4.3.1 The Role of A1 in the Case M1 = MA

As we have remarked in the discussion of the flavour specific washout factors m̃1,α,
one particularly interesting difference between flavour-dependent treatment and flavour-
independent approximation is the possibility to have an optimal washout parameter m̃1,e

and strong washout in the flavours µ and τ since in the flavour-independent treatment
this leads to a strong total washout. We will therefore discuss the role of A1 in the case
M1 = MA, sometimes also called light sequential dominance (LSD), in more detail.

Let us start with the special case is A1 = 0, where due to |A2| ≈ |A3| required by
θ23 ≈ 45◦ (c.f. Eq. (42a)) the washout parameters satisfy

m̃1,µ ≈ m̃1,τ ≈ 1

2
m3 , leading to ηµ ≈ ητ ≈ η

(
Aττ

1

2

m3

m∗
,
m3

m∗

)
. (82)

We can now estimate for the baryon-to-entropy density in the MSSM, using Eqs. (33)
and (35),

YB ≈ −10

31
η

(
Aττ

1

2

m3

m∗
,
m3

m∗

)
(ε1,µ + ε1,τ )

[
Y eq

N1
(z ≫ 1) + Y eq

eN1

(z ≫ 1)
]
. (83)

Apart from minor modifications in the efficiency factor, the flavour-dependent treatment
is thus similar to the flavour-independent approximation in this case [18].

The importance of a flavour-dependent treatment becomes clear if we allow for a non-
zero A1 ≪ A2 ≈ A3. As we have discussed above, m̃1,e can now be optimal whereas m̃1,µ

and m̃1,τ correspond to a strong washout. In the flavour-independent approximation,
the total washout parameter m̃1 =

∑
α m̃1,α ≈ m3 implies strong washout. In Fig. 2,

the flavour-dependent treatment is compared to the flavour-independent approximation
in an example with non-zero A1. Dashed lines correspond to the flavour-independent
approximation and solid lines stand for the same examples with flavour-effects included.
For non-zero A1/A2 above roughly 0.05, the produced baryon asymmetry is significantly
enhanced in the flavour-dependent case (more than two orders of magnitude in this
example for A1/A2 = 0.2) because this induces an efficiency in the e-flavour which
is close to optimal. In the flavour-independent approximation, the common efficiency
factor ηind(m̃1/m

∗) is much lower due to the strong washout.
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Figure 2: Example in the MSSM (with large tanβ = 50), which illustrates the difference between
flavour-dependent treatment and flavour-independent approximation for the case M1 = MA if A1 is
non-zero. We have chosen φA1

= −π
2
, φB3

= π, φA2
= φA3

= φB3
= φCi

= 0, B3 = 0, Ci = 0. The
other parameters are determined from the experimental data assuming SD. For the parameters under
consideration, θ13 remains below the present experimental upper bound.

4.3.2 Leptogenesis and Tri-Bimaximal Mixing

As discussed in Sec. 3, tri-bimaximal mixing can be realized in SD in a natural way
via vacuum alignment and is sometimes referred to as constrained sequential dominance
(CSD) [16]. As can be seen directly from Eq. (47), which states that A†B = B†A = 0,
together with the formulae for the decay asymmetries ε1,α (c.f. Tab. 1), in CSD the
MSSM decay asymmetries reduce to

ε1,α = −3M1

8π

Im
[
A∗

αCα(A†C)
]

MC (A†A)
. εmax O

(
m1

m3

)
for M1 = MA, and (84)

ε1,α = −3M1

8π

Im
[
B∗

αCα(B†C)
]

MC (B†B)
. εmax O

(
m1

m3

)
for M1 = MB. (85)

For M1 = MA and M1 = MB, the decay asymmetries are thus suppressed by m1/m3.

We would like to remark at this point that in realistic models, tri-bimaximal mixing is
typically realized for the neutrino mass matrix in a basis where the charged lepton mass
matrix is not entirely diagonal. However, including such charged lepton corrections do
not change the above conclusions since A†B = B†A = 0 remains unchanged by a change
to the basis where the charged lepton mass matrix is diagonal, even though the lepton
mixing is no longer exactly tri-bimaximal. In this respect, the conclusions are the same
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in leptogenesis with correct flavour-dependent treatment and in the flavour-independent
approximation.2 In general, however, we stress that charged lepton corrections [26] do
have an effect on leptogenesis in the flavour-dependent treatment, in contrast to the
flavour-independent approximation.

In contrast to the cases M1 = MA and M1 = MB, tri-bimaximal mixing via CSD
has excellent prospects for leptogenesis in the classes of models with M1 = MC , as we
now discuss.

4.3.3 Tri-Bimaximal Mixing and CP phases in the Case M1 = MC

To be explicit, let us consider the specific choice A = (0, a,−a), B = (b, b, b) with real
a and b and furthermore a texture zero in the (1,1)-element of λν , i.e. C of the form
C = (0, C2, C3). Then, ε1,e = 0 and the remaining two decay asymmetries in the MSSM
simplify to

ε1,µ = −3M1

8π

{
Im [C∗

2a
2(C∗

2 − C∗
3 )]

MA(C†C)
+

Im [C∗
2b

2(C∗
2 + C∗

3)]

MB(C†C)

}

≈ − 3M1

8πv2

{
Im [C∗

2 (C∗
2 − C∗

3)]

(C†C)

m3

2
+

Im [C∗
2(C

∗
2 + C∗

3)]

(C†C)
s2
12m2

}
, (86)

ε1,τ = −3M1

8π

{
Im [−C∗

3a
2(C∗

2 − C∗
3)]

MA(C†C)
+

Im [C∗
3b

2(C∗
2 + C∗

3)]

MB(C†C)

}

= − 3M1

8πv2

{
Im [−C∗

3 (C∗
2 − C∗

3 )]

(C†C)

m3

2
+

Im [C∗
3 (C∗

2 + C∗
3)]

(C†C)
s2
12m2

}
. (87)

One can see that the two terms from the dominant (subdominant) RH neutrinos can
easily contribute ≈ εmax (≈ εmaxs2

12m2/m3) to the decay asymmetries. This is nearly
the optimal case for leptogenesis with hierarchical neutrinos. Furthermore, the washout
parameters m̃1,α are O(m1), which allows optimal efficiencies ηα if m1 ≈ m∗ ≈ 10−3 eV.

Let us now discuss under which conditions flavour effects are important, or play
only a minor role. Similar to the discussion in Sec. 4.3.1, when the relevant washout
parameters are equal, as this would in our example be the case for |C2| = |C3|, the
situation is similar to the flavour-independent approximation. On the other hand, it
is clear that if the washout parameters differ for the µ and τ flavour, the produced
asymmetry in the flavour-dependent treatment will differ in general from the flavour-
independent approximation.

2Note that in the R-matrix parameterization with R = 1, where all mixings and phases in λν are
introduced via the leptonic mixing matrix UMNS, all flavour-specific decay asymmetries also vanish
exactly as in the flavour-independent, since they are proportional to (λ†

νλν)1J which is zero for 1 6= J .
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In addition, the values of the decay asymmetries depend strongly on the complex
phases, in our simplified example on the two phases φC2

and φC3
of C2 and C3, re-

spectively. If |C2| 6= |C3| and φC2
6= φC3

, the differences between flavour-dependent
treatment and flavour-independent approximation can be even more dramatic: To illus-
trate this, let us focus on the dominant terms proportional to m3 in ε1,µ and ε1,τ given
in Eqs. (86) and (87), which are proportional to

ε1,µ ∝ Im [C∗
2(C

∗
2 − C∗

3 )] , (88)

ε1,τ ∝ Im [−C∗
3 (C∗

2 − C∗
3)] . (89)

On the other hand, in the flavour-independent approximation, the leading contribution
to the decay asymmetry ε1 =

∑
α ε1,α = ε1,µ + ε1,τ is proportional to

ε1 ∝ Im
[
(C∗

2 − C∗
3 )2

]
. (90)

We can now imagine the situation that Im [(C∗
2 − C∗

3)
2] vanishes exactly, which would

correspond to a choice of phases φC2
and φC3

such that Arg(C2 −C3) ∈ {0, π
2
} (mod π).

Obviously, the phases φC2
and φC3

can be chosen to satisfy this (for given |C2| 6= |C3|)
also with non-trivial φC2

, φC3
/∈ {0, π

2
}, for instance with

sin(φC2
)

sin(φC3
)

=
|C3|
|C2|

, (91)

which implies Im [(C∗
2 − C∗

3 )] = 0. Then, we have a situation where

ε1,µ = −ε1,τ =: ε̂ (92)

are non-zero, whereas the corresponding (leading) contribution to ε1 vanishes exactly.
Since the washout parameters are different, the leading contribution to the decay asym-
metries, using Eqs. (33) and (35) in the MSSM, can thus generates a baryon asymmetry
of

YB ≈ −10

31
(ηµ − ητ ) ε̂

[
Y eq

N1
(z ≫ 1) + Y eq

eN1

(z ≫ 1)
]

, (93)

proportional to the difference of the efficiencies ηµ = η(Aµµm̃1,µ/m
∗, (

∑
α m̃1,α)/m∗) and

ητ = η(Aττm̃1,τ/m
∗, (

∑
α m̃1,α)/m∗). Let us consider the MSSM with tanβ = 50 as an

example, such that all flavours are to be treated independently for temperatures below
about 2.5× 1012 GeV. The flavour-specific washout parameters m̃1,µ and m̃1,τ are given
by C2

2v
2
u/M1 and C2

3v
2
u/M1, respectively (c.f. Tab. 1). For instance, m̃1,τ ≈ m∗ (Kτ ≈ 1)

could lead to a nearly optimal efficiency factor ητ , while C2 ≪ C3, and correspondingly
m̃1,µ ≪ m∗ (Kµ ≪ 1), could imply a very low efficiency ηµ ≪ ητ (c.f. Fig. 1). According
to Eq. (93), in the correct flavour-dependent treatment a baryon asymmetry can be
generated, while in the flavour-independent approximation (in leading order in SD) it
would vanish. This situation is illustrated in Fig. 3.
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Figure 3: Evolution of the flavour specific B/3−Lα asymmetries Y∆µ
and Y∆τ

as a function of z = M1/T
for the example of tri-bimaximal mixing via CSD, with M1 = MC and the choice C1 = 0. Complex
phases φC2

and φC3
are chosen as in Eq. (91), leading to ε1,τ = −ε1,µ. While the flavour-independent

approximation yields zero lepton asymmetry Yind, the two flavour-specific asymmetries evolve differently
for different flavour-specific washout parameters Kµ = m̃1,µ/m∗ and Kτ = m̃1,τ/m∗, allowing a final
baryon asymmetry to be produced (c.f. Eq. (93)). This situation can be realized, for example, with
M1 = MC = 1.85×1011 GeV, |C1| = 0, |C2| = 1.69×10−4, |C3| = 3.09×10−3, φC2

= −π/2, φC3
= 0.028

and MA = 5 × 1012 GeV, |A1| = 0, |A2| = |A3| = 0.063, φA2
= 0, φA3

= 0. The subdominant SD
contribution to the decay asymmetries vanishes for B2 = 0, φB3

= φC3
. The decay asymmetries are

given by ǫ1,τ ≈ −10−6, ǫ1,µ ≈ 10−6, and the washout parameters are Kτ ≈ 1, Kµ ≈ 3 × 10−3.

5 Summary and Conclusions

We have studied thermal leptogenesis in a class of neutrino mass models based on the see-
saw mechanism and SD, taking into account lepton flavour in the Boltzmann equations
in both the SM and MSSM. SD models are a very well motivated class of models which
have been widely applied to unified flavour models, and thus are quite representative
of the general class of three right-handed neutrino models where the importance of
flavour-dependent leptogenesis effects has hitherto not been evaluated.

In general, flavour-dependent effects of leptogenesis are relevant at low enough tem-
peratures (set by the lightest right-handed neutrino mass) such that at least one charged
lepton flavour is in thermal equilibrium. When this condition is met, flavour-dependent
effects are important when the efficiency factors ηα differ significantly for the distin-
guishable flavours. The efficiency factors ηα depend on m̃1,α which in SD are determined
from the magnitudes of the Yukawa couplings of the lightest right-handed neutrino to
the different lepton flavours, as indicated in Tab. 1.
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If the dominant right-handed neutrino is the lightest one, then only ηe may differ,
since |A2| ≈ |A3| implies that ηµ ≈ ητ , and flavour-dependent effects are only important
when A1 6= 0, corresponding to non-zero texture element in the (1,1)-element of the
neutrino Yukawa matrix λν . We have studied this case numerically and shown that
dramatic effects can result. Moreover, we have also seen that, even with A1 = 0,
flavour-dependent effects are relevant for the leptogenesis-MNS link since the decay
asymmetries ǫ1,µ, ǫ1,τ may differ due to B2 6= B3. An extreme example of this is when
there are two zero textures in the dominant and leading subdominant parts of λν , for
instance A1 = B3 = 0, in which case the cosmological CP violating phase for leptogenesis
is directly related to the CP violating phase δ of the MNS matrix observable in neutrino
oscillations. Furthermore, the baryon asymmetry of the universe under this conditions
determines the sign of the MNS phase δ (i.e. the sign of sin(δ)) for the case where the
lightest right-handed neutrino is the dominant one. We have shown that this phase is
opposite to the case where the lightest right-handed neutrino is the leading subdominant
one, enabling the two types of SD to be distinguished experimentally.

For the case that the lightest right-handed neutrino is the almost decoupled one, there
is no leptogenesis-MNS link. Nevertheless this case is amongst the most promising for
thermal leptogenesis since the efficiencies may be optimal. Although this is also true
in the flavour-independent treatment, flavour-dependent effects are expected to play an
important role when the efficiences are unequal, corresponding to the magnitudes of the
Yukawa couplings |Cα| being unequal. Unlike the previous case, this can be achieved
with a zero texture in the (1,1)-element of λν corresponding to C1 = 0, since here we can
have |C2| 6= |C3| since these couplings are unconstrained by neutrino phenomenology,
and so in general may be quite different. Thus very large flavour-dependent effects
can be present in this case, an extreme example being when ǫ1,µ and ǫ1,τ are equal
and opposite which would lead to a zero result in the flavour-independent case, but a
non-zero result in the flavour-dependent case due to the different efficiency factors.

In conclusion, we have seen that in many cases flavour-dependent effects may be
important for leptogenesis in SD models involving three right-handed neutrinos due
to the efficiencies of the distinguishable flavours being different. The effects range from
factors of three, up to differences of a few orders of magnitude, or in extreme cases having
a large non-zero flavour-dependent result for cases where the flavour-independent result
gives zero. In other cases the flavour-dependence of leptogenesis is not important for the
asymmetry, due to the efficiencies of distinguishable flavours being equal, as in the case
when the lightest right-handed neutrino dominates the see-saw mechanism, and there
is a zero texture in the (1,1)-element of λν . However even in this case the relationship
between leptogenesis phases and the MNS phase is affected by flavour-dependent effects
due to the lepton asymmetries being unequal. We conclude that flavour-dependent
effects cannot be ignored when dealing with three right-handed neutrino models.
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