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Six-dimensional beam-beam kick including coupled motion
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The six-dimensional beam-beam interaction as developed in 1992 by Hirata, Moshammer, and Rug-
giero has been extended to include linear coupled motion and an arbitrary crossing plane. The technique
of symplectic mapping in the six-dimensional phase space, called synchrobeam mapping, is applied to
investigate the beam-beam kick within a solenoid. A linear beam-beam model including coupling is
discussed in detail, also in the framework of a six-dimensional symplectic dispersion formalism.

PACS numbers: 41.85.—p, 29.27.—a

. INTRODUCTION Equation (1.1) is valid for the case of uncoupled motion.
The aim of this report is to extend the formalism to include

The beam-beam interaction is studied in storage rings,. . . . .
six-dimensional linear coupling.

using the formalism developed by Hirata, Moshammer, This paper is organized as follows: In Sec. Il the

and Ruggiero [synchrobeam mapping (SBM) and %eam-beam kick is studied in the most general form. The

Lorentz boost transformi_ng the COI."Sion with a CrOSSingtilted cross section induced by coupling, which is needed
angle to a head-on collision]. In this approach the stronqn Sec. II, is calculated in Appendix A, ’ In Appendix B

bL.mCh IS spllt_longltudlnally Into sevferal shce_s, where eaChwe describe methods to construct SBM solutions for a so-
slice is described by an electrostatic potential of the form

lenoid field which allow us to investigate the beam-beam
Ux,y: 311, S53) = _Ip kick within a solenoid. The SBM solution is obtained
T Y0 by the use of a generating function, Lie series, or by an
integration method. A linear model of the beam-beam

du. kick including coupling is studied in Appendices C and D,
0 \/2211 + ”\/2233 +ou concerning the derivation of the linear beam-beam matrix,

(1.1)  the tune shift caused by a beam-beam kick and a linear six-

Here r, is the classical particle radiug, is the Lorentz ~dimensional dispersion formalism including the beam-

factor of the test particle, arll is the6 X 6 phase-space beam interaction. Last, a summary of the results is
envelope matrix of the strong bunch defined by presented in Sec. lll. The 6D beam-beam formalism has

been incorporated in the tracking programsp [3] and
S = (XGX) — (XX),  hj=1,....6, (12) D g prog (3]

SIXTRACK [4].
where the lowercase, y and the uppercase, Y stand for
the transverse coordinates of the test particle and the strong. BEAM-BEAM KICK FOR COUPLED MOTION
bunph with X' = (X’PX.; Y,Py;Z,Pz)", rfespectlvgly. . In A. The electromagnetic field due to a tilted bunch
addition, a new technique of symplectic mapping in the
six-dimensional phase space, called synchrobeam map- The generalization of the analysis in Refs. [1,2] by in-
ping, has been introduced by these authors in Ref. [1]. Itluding coupling and a tilted strong bunch (caused by
allows one to include the bunch length effect at the col-coupling) can be achieved in a straightforward manner by
lision point and the energy variation caused by the electridescribing the particle motion in the framework of the fully
field of the opposite bunch. This mapping is formulatedcoupled six-dimensional formalism and by replacing the
only for head-on collision, but Hirata has shown that aelectric potential/ of Eq. (1.1) for an untilted bunch by a
crossing angle can be eliminated by a Lorentz boost [2]. new potential

82

. o[ eXIO(—Aﬁ—u - 3
Sy) = -+ 2 The Z0t gy, (2.1)

Yo Jo \/2211 + u\/2§33 + u

% p(_L _ L)
ex 23, +u 2333 +u

U(x,y; 311, 233:0) = UG, §; 311,
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where the symbol " denotes quantities in the coupled . 1
frame of reference. The coupling has to be considered for sing = —sgn{(21; — Z33) 213} > (1 — cos26),

the test particle as well as for the strong bunch. (2.4)
cosf = l(1 + cos26).
1. Test particle | 2

The potential (2.1) is obtained from (1.1) by introducing
a rotated coordinate system of the test particle (for details

2. Strong bunch

see Appendix A) For the strong beam we have the same transfor-
mation (2.2) for X and Y among the coordinates
% = xcosf + ysing, $ = —xsing + ycosd, X = (X,Px;Y,Py;Z,Pz)". The linear particle motion

(2.2)  can be represented as a superposition of eigenmodes as
shown in [5]. Denoting by J; and ¢, (k = I,11,11I) the
where 6 denotes the coupling angle of the strong bunch  action-angle variables

iven by! _
T X0 = Y VRBse + 5], @5
) 253 k=LILII
sin2f = —sgn(Z11 — 233) ; where #(s) (k = I,11,11I) describes the eigenmotion
\/[211 — S5 + 430 with the linear 6D transfer matrix from longitudinal
_ osition s to s,
C0260 = sgn(Xy; — 233) i~ %) g ’ . _ -
\/[211 _ 233]2 + 42%3 Uk(s) M(s,so)vk(so), (2-6)
23 with
=tan2f = —5—— . (2.3) M(so + L,so)0k(s0) = e 2" T(s0) (27
(L is the circumference of the accelerator and Q; the tune
or for the kth mode). The rotated 3, can be expressed by the

| elements of the unrotated 3, matrix

A

3 =X = %{[211 + 23] + son(E — 233)\/[211 — S + 4351,
(2.8)

S =) = %{[211 + 23] —son(E — 233)\/[211 — S + 435}

These elements are a function of the eigenvectors |

Conversely to Ref. [2], the crossing angle 2¢ can be

Sn=&H= D 2wavy, chosen in an arbitrary crossing plane (i-s), defined by
k=LIL.I an angle a (see Fig. 1). We can write the components
s . of the strong bunch in a Cartesian coordinate system
33 =(r?) = 72 2Nkvi3vis s (29  (x,v,z;P,.P,,P,) defined for the laboratory frame and
k=r oriented according to the ideal orbit of the test particle as
3 =(XY) = Z Jelvivgs + v sl P, = Psin2¢ cosa, P, = Psin2¢ sina,
k=IL11,111
E, = \/211, E, = \/233 (2.10)
a) y b.) X
are the principal axes of the liptical cross section
X2 72 -
e (2.12) I
E,  E; e Ny N s
in the (X-¥) plane. @\

We have chosen 9 = —6,, defined in Appendix A since the

strong bunch rotates in the opposite direction of the test particle. FIG. 1. (a) defines the crossing plane angle « in the (x-y)
In a double-ring machine, such as the Large Hadron Collider, plane and (b) depicts the total crossing angle 2¢ in the (¥-s)
this is not necessarily true. plane.
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with P the momentum of the bunch. 1 0 0 O
B. Lorentz boost Lo —-10
00 0 1

The Lorentz boost as described by Hirata consists of a
transformation of Cartesian to accelerator coordinates and
a Lorentz boost which makes the collision between the
bunches head-on. This is necessary because the 6D beam-
beam interaction is only described for a head-on collision.
In addition, we include the crossing plane angle « in our
formalism.

1. Transformation from Cartesian to accelerator
coordinates

The following relations of Ref. [2] remain valid:

ct z(s)

x(s)

Xc _
iy Al 70| (213
yc y(s)
where
-1 01 0
_4-1_| 0 1 0 0
0 0 0 1
and
E/C — Po Pz
Dxc Px
= poB , 2.15
Pzc — Po po2 h ( )
Pyc Py
with
1/ cos¢ — CoSa Sing
— COSa tang 1
0 — CoSa Sing
— Sina tang 0

and po being the momentum of the test particle. They
describe the connection between the Cartesian coordinate
(xc, pxciye, Pycizes Poc; E, 1) with E = cp and the
accelerator coordinate X = (x, py;y, py; 2, pz; h, s) of the
test particle with the Hamiltonian

h(pesPysp2) = pe + 1= 3f(pe + 172 = p2 = p2.

(2.17)
In this case we applied the ultrarelativistic approximation
vy = C.
The Lorentz transformation

1/cos¢p —sing —tangpsing O
| —tang 1 tan¢ 0

Ly = 0 —sing COS¢ 0 (2.18)
0 0 0 1

used in Ref. [2] makes the collision as if head-on for
a = 0 so that the synchrobeam mapping can be applied.

2. Arbitrary crossing plane

We now include the crossing plane angle a by the fol-
lowing similarity transformation:

In order to interpret L in Eq. (2.19) we may introduce a new coordinate system

()= (o ) (0):

L=R'L,R (2.19)
with
1 0 0 0
0 cose 0 sSna
R=1o 0o 1 o (2.20)
0 —sna 0 cosa
| orLis
—tang sing — sina sing
cosa tang 0
cos¢ —sina sing (2.21)
sina tang 1
(2.22)

corresponding to R. Then the crossing plane is identical to the (¥-s) plane (see Fig. 1). Since L, can be written in the

form
1/cosp —tangp 0 O 1 0 0 0
L. —| —tang 1/cos¢g 0 0 0 cos¢p sng O
=0 0 0 1 0[]0 —sing cosp 0
Lo o o0 1/\o o 0o 1) (223)
Boost in thedirection of Rotation in the
the rotated X axis (s-X) plane
124002-3 124002-3
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we define a second coordinate system

() (3 ) e

Inserting Eq. (2.12) into Eq. (2.27), we get for the trans-
formed momentum of the strong bunch (E/c = P) P} =
0, Py = 0 since

_ _ o P; = —P(cosa tang — Sin2¢ cosa
Then we are left with a boost in the direction of x repre- n ¢ D)
senting the rotated X axis, Cosa tan¢ Cos2¢
= —P cosa tang (1 — 2cos’¢ + cos’¢p — sin*¢)
t*\ _(1/cosp —tang \(t 225
) \ —tang 1/cosp J\x ) (2.25) =0, (228)
P; = —P(sina tang + sina tang cos2¢
3. Full Lorentz boost . — Sn2¢ sina)
As aresult of the Lorentz boost we have '
T T For the_test particle.px =p, =0, E = cpo is trans-
formed into p} = p; =0 and E* = cpy = cpo COSP,
X* X . L X Ty
. | =L , (2.26) i.e., the collision is indeed head-on.
Z* Z Using Eqg. (2.21), the full Lorentz transformation is
Y Y therefore a transformation from the accelerator coordi-
nates to Cartesian coordinates, the L orentz transformation,
B/ E/ and again a backwards transformation to the accelerator
P*C - ¢ coordinates
Pif =L PX (2.27)
P% Pi x(0) — x*(s") (2.29)
| leading to
25 (s™) z(0) 1/ cos¢ 0 0 0 z(0)
X)) | -1 x(0) | _ | cosatang 1 0 0 x(0)
s* =4 LA B 0 — C0Sa Singg  coSs¢p — Sina Sing 0o |’ (2.30)
y*(s¥) y(0) Sina tang 0 0 1 y(0)
and
pH(sY) .(0) 1 —cosatang  tan’ gl:aw —sinatang \ / , (o)
n* po- | h 0 0 1/ cos’¢ 0 h ‘
py(s%) py(0) 0 0 — Sina % 1/ cos¢ py(0)
From Eq. (2.30) we have | with
s* = —x(0)cosa sing — y(0)sina sing , (2.32)
: : . wi = (x,y,2),
so that, in genera, s = 0 is not necessarily transformed (2.35)
to s* = 0. Since we need a transformation from x(0) to e ax W (Pl pya P pg)- '

X*(0"), an additional transformation
F(s) = F(0)

has to be performed.
Following Ref. [2], the transformation (2.33) can be
written as a first-order Taylor expansion

(2.33)

w; (07) = wi(s") — 7dwé (?) s* = wi(s") — his*
s
= wi(s*) + h;sing[x(0)cosa + y(0)sina],

(2.34)

124002-4

" ap;

Furthermore, we obtain from (2.31) and the Hamiltonian
(2.17)

h(px, py, Pz; Po)

h*(py, Py P2 Po) = oS

= h(py.py.piipy).  (2.36)

Combining the transformations (2.30), (2.31), and (2.34),
we finally obtain the equations

124002-4
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x* = zcosatang + x + hi[xcosa sing + ysinasing] = zcosa tang + x[1 + h} cosa sing] + yh; Sina sing ,

y' =zsSnatang + y + hj[xcosasing + ysnasng] = zsinatang + y[1 + hjsinasing] + xh; cosa sing,

. Z . L Px tang (2.37)
¥ = —— + hl[xcosa sing + ysSinasing], ‘= —— — hcoSsa ——,
< Cos¢ <L ¢ + ysnasing] P CoS¢ Cos¢
= — hsha ——, s = — cosa tang — p, Sina tang + htan
Py ™ Cos = P; = Pz — Dx ¢ — pysina tang ¢

representing the result of a Lorentz boost applied to the | 3 .

coordinates of the test particle which makes the collision Fy(%,5,2;p% py,pz) = Xpx + Ipy + r;
. COS¢
as if head-on.

The transformation £ of Eq. (2.37) can be represented + Ztang[p; cosa + p; sina]
as the combination of a scale transformation + sing[x cosa + ¥ Sina]

e o x x X h*(p:, ps, pl). 241

(X, ¥, 2, Px, Py, Pz) = (X,9,%; Px» Pys P2) (2.38) (Pr> Py P2) (241)

Thus £ isonly quasisymplectic; the Jacobian of thistrans-

with formation is 1/cos’¢. This lack of symplecticity is re-
. . . stored in the backwards transformation £ ~! after having
re=L Y=y 7L (2.39)  applied the beam-beam force.
= _ _Px . _ Py - _ Pz
P cosg Py ™ cosp P2 cos C. Beam-beam force

We approximate the strong bunch by a number of dlices.
Each dlice is represented by its Z*(0*) coordinate, which
shall be denoted by Zt . Taking into account only terms
linear with respect to dynamical variables in L, the first
resulting from the generating function and second momenta of the particle distribution at the lo-
| cations of the slices are given by

and a canonical transformation

(%,5,2: x> Py- P2) — 7, y", 2% pipy.py)  (2440)

xt = ztcosasing, PL=0 vt =2ztsnasng, pPi=0 Pl=0,

1 1 1
Eirl = 31, 222 = @ S0, 2;3 = 333, :{4 = @244, Eirz = @ S, (2.42)
1 1 1 1
2'1f3 = 213, 2'1f4 = @ 214, 2;3 = @ 223, '2f4 = @224, EL = @ 234~
Inserting Eq. (2.42) into Egs. (2.3) and (2.8) one obtains | In order to calculate the beam-beam kick, we need to
transform Efl and 2;% aswell as 9T from the interaction
ot — o EL =3 EL =3 EL =3, point (1P) to the collision point (CP). The distance between
’ ’ ’ @ ;13) the two points is given by
P A Al
i.e., the cross section of the strong bunch remains un- §=S5("2" = 2 : (2.44)
changed.
| Using Egs. (2.3), (2.8), and (2.42) we obtain
- 1
$h(9) = 2{I2hs) + b + szl - shenishe - shop + axher,
(2.45)

$1(9) = 2{I2hs) + 35 - szl - shenishe) - shop + axhery,

i.e., we obtain the same result for a slice and the whole bunch, respectively. In a drift space (e.g., the horizontal plane),

X(S) = X(0) + Px(0)S, Px(S) = Px(0), (2.46)

124002-5 124002-5
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we have

TS = 310 + 235005 + 350052 = 311(0) + 251(0)¢ + 320)¢? = Si1(e),

s58) = 350) + 235005 + 35L0)S? = 333(0) + 2334(0)0 + Su0)¢? = Si(e). (2.47)

shs) = 250 + 250) + L)1 + 250052 = 3130) + [2140) + S230)]¢ + S2u0)e? = Si3(e).

S
cos¢ *

where ¢ = Thus,

She) =20e),  2505) = Sx(e).

2.48
01 (s) = 0(p), (248)

with 311, 333, and 6 given by (2.3) and (2.8).

The real collision between the test particle and the slice
takes place at S; see Eq. (2.44). To calculate the beam-
beam interaction, three subsequent transformations have
to be performed. First, the test particle at the IP is brought
to the CP by a drift. Then the beam-beam interaction
is applied and finally the position of the test particle is
brought back to the IP. This set of transformationsiscalled
the SBM.?

It is convenient to introduce a new set of canonical vari-
ables at the collision point

=x* 4+ Spr - xT(zh),

X- =
§ =y" +Sp; - Yi(zh), (2.49)
8 =17,
and
1_7: = P:, 1_7: = P: > (2.50)
e )P+ ()
p:=p: - -

Here we have assumed a drift space between the IP and the
CP. In these new variables, the SBM transformation can
be written as a concatenation of three symplectic transfor-
mations,

exp(— : D :)exp(: Hyp :)exp(: D 3), (2.51)

2The SBM as described in detail in Ref. [1] can be represented
by aHamiltonian H = H,, (x*)5(s*)with 7, definedimplic-
itly by exp(: Hpp 1) = [z exp(: n*UG", 9% 211, 233) ¢ ) de-
scribing the interaction of atest particle in the weak bunch with
a slice of the strong bunch represented by Z*t.

124002-6

| where

#\2 *\2
(P + (py) S

D(S) = 2

(2.52)

Note that there is an additional transformation, i.e., a shift

by xt(zt) and YT (z1); see Eq. (2.49). In Appendix B,

D(S) is calculated in the presence of a solenaid field.
The particle-dice interaction at the CP finally leads to

ko= =3k L —*)

(x*,5%.77) — (37,5".2 (253)

and

1_7* . 1_7x _ n*Fﬂj, px . 1_7x _ n*F*,
* ! ! Y Y Y7 (254)

-k -k £ *
pz_’pz_an’

where n* is the number of particles in the dlice, i.e, the
total number N* divided by the number of slices, and

A N N
Fy= - UG5 20(e) 23(9):0(9)),
A N N
Fy = PEr (&, 57 211(), 233(0); 0(9))
; (2.55)
F; = py= OG5 211(), 233(); 0(9))

1 0 , a a
7 35 V@7 20(e). 253(0):6(9))

with U given by Eq. (2.1).
Introducing the variables

X = wix" 4wy, o= —wakt + wiy”
(2.56)
[see Eq. (2.2)] with
w] = C0s6, wy = sing y (257)

we can also write

124002-6
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Fi = S5 UGy Se) Snle) = wile) 3 UGy 5 210 Se) — wale) 37 UGy Sui(). 2l

* J ERNE TR 3
Fy = a5 U(x",y"5211(e), 233(0))
= wa(p) e Ux™,y 5 211(e), 233(9)) + wile)
X ay
Fr= 2 LUy Sne). 3ale)
z 2 98 X5Y 5211 @), 233(@
ou ., . / . 1 oUu
= + +
o [wi(e)x™ + wi(e)y ]2COS¢ oy
aU & 1 U & 1
+ =2 s + = 2@ s
DO 2 Ccos¢ 9333 2 cos¢

[—wh(@)x™ + wi(e)y"]

- U2y 201(9), 233(0))

(2.58)

1
2 CoS¢

with U defined in Eqg. (1.1) and the symbol ’ indicating a | o020 = co26 — SN = 2¢cos20 — 1 = 1 — 2sin%6

differentiation with respect to ¢. .

Expressions for theterms aU /ax*, dU /oy*, dU /3211,
and 90U /9333 appearing in Eq. (2.58) can be found in
Ref. [1] [see Egs. (21), (22), (86), and (87)] for a tri-
Gaussian distribution.

Theterms X1, (¢) and 45(¢) may be obtained by using
Egs. (2.8) and (2.9) and by taking into account that the
eigenvectors vy (s) (k = I,11,111) obey the equations of
motion. For a drift space® they read

4. _ a4
s Vi1 Vk2, ds Vi3 Vik4 ,
2.59
P P . (2.59)
) = — v = .
ds k2 ds k4

Using Eq. (2.3) we obtain

$h(e) = Co + Crcod26(p)] — Crsin[20(9)],
$ha() = Co — Crcod26(p)] + Crsin[20()],
(2.60)
with

Co = 212(0) + 234(0) + (2220) + 244(0)) e,
C1 = 212(0) — 234(0) + (222(0) — 244(0)) e,
Cy = 214(0) + 223(0) + 224(0)¢ .
(2.61)

The quantitiesw; and w, are determined by Egs. (2.3) and
(2.57). Last, in order to calculate wi(s) and wj(s) we use
the relations

3In this case Eq. (2.47) can aso serve to calculate the terms
S1(e), Z33(e), and Xi3(¢) appearing in 2, and 233.

124002-7

wi(s) = & oS = yomg o= COS26,
wh(s) = L 8ind = — ;g - cOS26,

(2.62)
where the trigonometric functions are taken from
Egs. (2.3) and (2.4).

Going back to the original coordinates, the explicit form
for the complete SBM is given by

* * * * * * ES *
xnew =X + Sn Fx’ px,new = px - n Fx >

* * * * * * £ *
Ynew = Y + Sn Fy> py,new:py _nFy’

Znew = 2 s

e (2.63)
* — * _ >{:F>i<

pz,new pz n Z

1 Y S n*F!
_E|:an<px_ 2x>

* * * ’/l*F‘\>1<
+n Fy<py - —2' >}

. SUMMARY

We have studied the beam-beam interaction for coupled
motion in the framework of the weak-strong formalism tak-
ing into account atilted cross section of the strong beamin-
duced by linear coupling. This coupling has been included
in the 6D beam-beam formalism of Hirata, Moshammer,
and Ruggiero.

The extended formalism aso allows for an arbitrary
crossing plane. Furthermore, a SBM solution for sole-
noid fields is derived which alows one to investigate the
beam-beam kick within a solenoid.

A linear model of the beam-beam kick, due to a tilted
cross section of the strong bunch, is investigated in detail
in Appendices C and D (beam-beam matrix and dispersion
formalism including beam-beam interaction).

124002-7
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The equations derived in this report have been incorpo-
rated into the tracking codes MAD and SIXTRACK.
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APPENDIX A: CALCULATION OF THE
COUPLING ANGLE IN THE X-Y PLANE

The aim of this Appendix is to determine the angle 6
by which the principal axes of the beam ellipse are tilted
in the physical (X-Y) plane.

Linear particle motion can be written as a superposition
of the three eigenvectors v, (k = 1,11,11I)

> VI s)e T + pi(s)e’?],  (AL)
k=I11,111

with X = (X, Px,Y, Py, Z, P;)T. For the eigenvectors,
vi(s) = M(s, s0)vi(so) (A2)

X(s) =

holds, with
M(so + L,s0)0i(s0) = e 2723, (s0), (A3)

where L is the circumference of the accelerator and Qy is
the tune for the kth mode. They obey the orthogonality
relations [5] (¥ = (§7)*

U, (50)J 0k (s0) = =07 (s0)J V- (s0) = i,

- . . (A4)
v, (50)J0,(s9) = 0, otherwise,
with
Uy = U (A5)
and
0O -1 0 0 0 O
1 0 0 0 0 O
10 0 0 -1 0 O
=10 0o 1 0 0 o (A6)
0O 0 0 0 0 -1
O 0 0 o 1 o0
In particular, one has
X = Z \/ﬁ[vkle_"d’k + v,fleid’k],
k=I111111
B (A7)
Y = Z \/Jk [vkge_id’k + v,f3ei¢k].
k=I111111

The rotation of the coordinates in the physical plane are

given by
X = Xcosh + Ysiné, Y = —Xsind + Y cosh.

(A8)

124002-8

The rotated horizontal coordinate X reads

5((0) = Z \/ﬁ[(vkl CosH + wvy3 Sinﬁ)e_"‘f’k
k=IL11,111
+ (v}, cosf + vi3sinf)e’?:].

(A9)
Averaging over the phase angles ¢, we arrive at

1 .
E<X2(0)> = Z Jk{[vkl CosH + w3 Slne]
k=I11,I11

X [vf, cosd + v;;sind]}
(A10)

leading to
E,(6) = E;cos’0 + E;sin’f + E,G,sin20, (All)
and using Eq. (2.9) we obtain

2 __ O
Ex =2 Z kaklvkl = 211 )
k=IL11,111

E\z) =2 Z kak3v;:3 = 233 ,

k=I111,111 (A12)

Z Tilvavis + viqvis] = 23,
k=I,11,I11

E.G, = E,G, =

Ej(0) = (X*(0)).
For the vertical plane a similar solution can be obtained,
E;(0) = E;sin°0 + E;cos’0 — E,G, sin20
= EX0 + 7/2). (A13)

En(0),E,(68) are the maxima of the least squared ampli-
tudes of the particle motion in the 6 direction.

The principal axes E;, E, can be found by maximizing
E;(0) — E2(0). Thisyields 6,

2E.G,

tan260, = ﬁ . (Al14)

Choosing
. 2E, Gy E; — E]

S0, = =, 0020, = —— ~,  (A15)
we obtain
E}0,) = E} = 7{[E2 + EZ] + N} = (X?), A1)
EX0,) = E} = 3{[E2 + E}] - N} = (1%,
where N = t\/[E)% — E}PP + 4(E.G,)* . The sign of

N may be chosen in such a way that cos26, becomes
positive,
N = sgn(E? — E2)|J[E2 — E2P + 4(E,G,)?,
(A17)
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FIG. 2. Cross section of the averaged plane (X-Y).

e, —w/4=6, = 7TA/4,.\ The beam dllipse with respect
to the principal axes (X,Y) can be written as

?2 ?2
— + = =1. (A18)
Eq E5

Figure 2 illustrates the relation between E,, Ey, Gy, Gy,

E, E,, and 0[,.
Equation (18) can be rewritten for the averaged coordi-
nates X and Y,

-2 v -2
E;X" —2E.GXY + E}Y = EJE; = €,

with
€ = E}(E; —

(A19)

G;) = E}(E; — G;), (A20)
which has the following solution using an arbitrary

angle ¢

X E, 0N
(50) = (& Jeoss + (= Jan
(A21)

Note that Egs. (A19) and (A20), which define the beam
cross section, are the result of a many particle treatment
due to the averaging process described in Eq. (A10) (see
Refs. [5-7]).

Last, we can rewrite tan26,, as

sing, = sgn{(E2 — Eyz)ExGx}\/ % (1 — co20,),
(A22)

cosd, = \/%(1 + cos26,).

Coupling angle in the physical X-Y plane

Although the coupling angle is defined for a muilti-
particle system it is instructive to relate it to the physical
plane (X-Y) of single particle motion. Inthisplane, motion
is restricted to a parallelogram which is tilted due to the
linear coupling.

124002-9

(b)

FIG. 3. (Color) Numerical calculation of the single particle mo-
tion in the (X-Y) plane The action ratios between horizontal and
vertical motion planes are 1:10, 10:1, and 1:1 in parts (a), (b),
and (c), respectively. The angle 6, is given in degrees. The
ellipse represents the cross section of the averaged (X-Y) plane.
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Numerical simulations were carried out for a FODO
structure including considerable skew quadrupole compo-
nents. Three particles have been tracked over 1000 turns
for mainly horizontal motion, mainly vertical motion, and
for aJ; = Jy; beam in Figs. 3(a), 3(b), and 3(c), respec-
tively. In the limit of one dominant plane of motion [see
Fig. 3(a) or 3(b)] the calculated coupling angle is the
angle by which the longer side of the parallelogram is
tilted. For the intermediate case the coupling angle goes to
zero when the ellipse approaches the circle; see Fig. 3(c).

Note that a zero coupling angle does not imply that
the motion is decoupled, but, instead, it means that the
eigenplanes are not tilted with respect to the uncoupled
case.

APPENDIX B: SYNCHROBEAM MAPPING
WITHIN SOLENOID FIELDS

The synchrobeam map is described by Eq. (2.51). It
consists of atransformation from the I P to the CP, followed
by the beam-beam kick and the backwards transformation
to the IP. In this Appendix the transformation D(S) from
the IP to the CP is generaized to include solenoid fields.
For a particle within a solenoid field one obtains in linear
approximation in §

e dH dH
X=x+S—:7, P, =P, — S—,

opi ox*

OH . . OH
yjr=y"+S , p, =p, — S . (BL
o _ e, (09 s s JOH
=z +8S—7/, P, =p. —S——

op; N N az*

with S given by Eq. (2.44)
A
S =S@Ezh = - (82)

2

The normal coordinates are taken at the interaction point
while the barred coordinates are taken at the collision
point. In the following we skip the symbol *, which indi-
cates the Lorentz transformation of the coordinates of the
test particle. Note that we temporarily ignore the contri-
bution of the strong beam [see Eq. (2.49)].

It is most convenient to symplectify Eq. (B1) such that
the total SBM transformation is symplectic by definition.
In the following, three methods of symplectification shall
be described and applied by using the Hamiltonian of a
solenoid field. The last method is evaluated for arbitrary
energies.

A. Generating function
We introduce the generating function
FZ(X’px;yvﬁy;Z7l_7Z) = x1_7x + )’1_7; + sz

+ SH(X,I_?x;y,I_?y;Z,ﬁz)
(B3)

124002-10

in analogy to the method applied by Forest and Ohmi for
the symplectic integration of complex wigglers [8,9]. The
transformation equations due to F, take the form

oF oH
X = _2 =x+ 85—,
Py 0Py
oF, oH
=—=p,+ 55—,
Px ax Px ax
oF oH
y= a__z =yt S5,
Py Py (B4)
aF, oH
=2 =p, + §—,
Py dy Py dy
oF oH
z= _2 =z+S5S——,
ap; ap;
OF, 1 oH
R A T L
Pz 0z Pz ) 0z

For a solenoid field (with strength H) the Hamiltonian
reads

1
H(x, prsy, Pyizo p2) = 7 ilpe + yH]?

+ [p, — xHT}. (B5)
The corresponding generating function is
FZ(X’ﬁx;yvpy;Z7l_7Z) = Xﬁx + )’1_7; + Z1_7z
S .
+ 5 {lpe + yHT
+[py — xHT}. (B6)
Thus,
oF
X = _2 =x + S[p, + yH],
0Py
0F, _ _
Px = E = Px — S[Py — xH]H,
_ or, _
y=?=y+S[P}' — xH],
Py (B7)
oF, B B
Py =y =Py + S[px + yHIH,
_ 0k
I=—=2z,
ap;
oF, B 1 _
Pz = ? = p; + Z{[Px + yH]2 + [Py - XH]Z}-

From Egs. (B7) we get

124002-10
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X —Spr=x+ SyH,
v = Shy =y — SxH,
or

1 =S 0 0 X
0O 1 0 —SH Pr | _
o o0 1 =S v
0 SH 0 1 Dy
Using the relation
1 =S 0 0 -1
0O 1 0 —SH _ 1
o o0 1 =S 1 + (SH)?
0 SH 0 1
we obtain from (B9)
X 1
Dx | _ 1 —SH?
y 1+ (SH)? | —SH
Py S2H?

In particular, we have

SH[py, — xH] + [p, + yH]
1 + (SH)? ’

px + yH =

Inserting Egs. (B12) into (B7), we finally get
1 [px+yHP +[py — xHP
Pz = Pz ™y 1 + (SH)?

Note that z remains unchanged [see Eq. (B7)].
Note that, for H = 0 (drift space), we obtain from
Egs. (B7), (B11), and (B13) the transformation equations

(B13)

)_C=)C+pr, Px = Px»

y=y+ Spy» 1_7}' = Dy (814)

_ _ 1
Z =2, Pzzpz_z(pxz‘—i_p,\z))’
which are the same as Egs. (2.49) and (2.50) without the

extra terms due to the strong beam.

B. Lie series

In the following we again skip the symbol * which indi-
cates the Lorentz transformation of the coordinates of the
test particle. The canonical equations of motion

dx _ 9H dp. _ 9H
ds opy ds ox
dpy
dy o dpy A gy
ds ap, ds ay
dz _ aH dp. _ dH
ds ap, ds iz

due to a Hamiltonian

124002-11

Py

Dx — SpyH = p, — SxH?, (B8)
py + Sp.H = p, — SyH?,
1 0 SH 0 X
—-SH? 1 0 0 P
—-SH 0 1 0 y (B9)
0 0 —SH? 1 Dy
1+ S2 S 0 SH
0 1 0 SH
0 —-S?H 1+ (SH?* S |’ (B10)
0 —SH 0 1
S SH S°H X
1 —S’H?® SH Px
—-SH —SH> 1 Dy
—SH[p, + yH] + [p, — xH
H = [p yH] + [py — xH] (B12)
1 + (SH)?
|
H(x) = H(x,pe.y, Py, 2, P2) (B16)
can be integrated by Lie series [10,11]
X(s) = expl(s — so)DJ% (B17)
with
-)—C) = (x9pX’y7p}"Z7pZ)T9
%= Pe Py 2, p2)0 (B18)
X = ;C(So),
and
0 N 0 N
D— [ H(x)}— - [—H(x)}
Opx ox ox 0P«
0 0 0 0
+ [—5{(})}— - [—5{(})}—
ap,y ay ay apy
0 N 9 .
+ [ H(x)} — - [—H(x)} (B19)
ap: 9z 2 ap:

In particular, we get for the map from the IP to the CP

scp=sSpp + S

X(scp) = exp(SD)Z,

x = X(sip),

(B20)

which is not symplectic in genera due to the factor S.
In order to symplectify Eqg. (B20), we introduce a new

Hamiltonian

Hpu () = SH (%)

(B21)
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by modifying the longitudinal coordinates of motion, leading to the canonical map

X(scp) = exp(Dspm)¥ (B22)
with
d N d N d N d d N d
Dswa = | 7= Haon(® | 2= = | £ 3o |7 + | 22 Howah) | = | 2 Howalh) | 55
Dx d 0x apy dy dy apy
d d d d
+ Hspm() | — — | — Hspu( }
oo Haan) | -~ | o e ]
1 ., 0
=SD — — H (X (B23)
2 ap;
and D given by Eq. (B19). resulting in
Using the Hamiltonian
! {exp[Dspu 1}z = z (B27)
=y 2 _ 2
HE) = S Alpc + yHY + [py — xHF}  (B24)
of a solenoid, we obtain 1 .
; ; Dspmp; = —55‘[(36)
D =[p:+yHl-— +[py — xHIH ap )
; ; = = lps + yHY + [py — xHT},
+[py — xH]@ —[px + yH]HJ, | (B28)
y >
| 5 [Dspml’p. = _ESD}[(X) =0,
Dsgm = SD — —{[p, + yH* + [p, — xHT*} .
4 ap: [DSBM]VPZ =0 forv>1,
(B25)
For the longitudinal coordinates we then get
° ? = {eolDsmlr:
D = SDz =
seuz = 5Dz =0, (B26) =p:— e+ yHT + [py — xHT’}. (B29)
[DSBM]VZ =0 forv €N,
| For the transverse coordinates we have
X px + yH 0 1 H 0 X
pr | _ pyH — xH? -H> 0 0 H D
Dssm| "y | =5 "p, — xH -H 0 0 1 ||y | (B30)
Py —psH — yH? N0 -H -H 0)\p
C
X X X X X
[Dssnl”| [ | =577 T = s7er| T | = dexplDspult | | = {explsc | (B31)
Py Py Py Py Py
In order to calculate exp[SC], we write
C=C, +C, (B32)
with
0 1 0 0 0 0 1 0
| -H* 0 0 o© B 0 0 01
S=l o o o 1| &LTH 4 0 0ol (B33)
0 0 —H?> 0 0O -1 0 0
124002-12 124002-12
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and
Ci-Cr=0C, C,= exp[SC] = exp[SC,]exp[SC,]. (B34)
Furthermore, we obtain
0 1/H 0 0
2n _ (__1\npy2n 2n+1 _ (__1\npy2n _ (_1\npy2n+1 —H 0 0 0
[CP" = (-'"H™,  [C "' = (~1)"H¥C, = (-1)'H o o o UH (B35)
0 0 —-H 0
(with I a4 X 4 unity matrix), and thus
0 1/H 0 0
- | - 1 -H 0 0 0
— 1 A 2n1 + 1}1 A 2n+1
0 0 —-H 0
0 1/H 0 0
. -H 0 0 0 .
= [ COsAf + 0 0 0 1/H sinAf, (B36)
0 0 —-H 0
resulting in
cosag ¢ 0 0
| —HsinAé cosA@ 0 0
xp[SC,] = 0 0 cosA ande (B37)
0 0 —HsinA6 cosAf
with A9 = SH.
In a similar way one can derive
1
[£2]2n — (_1)nH2nI_, [£2]2n+1 — (_1)nH2n+1|:ﬁ£2i|, (B38)
yielding
COSA 6 0 SinA6 0
_ 1 . _ 0 cosAd 0 SinA6
exp[SC,] = IcosAd + [ﬁgz}snAe = | _snaAs 0 cosA g 0 (B39)
0 —sinAg 0 COSA 6
Inserting Egs. (B37) and (B39) into Eqg. (B34), we finally obtain [see Eq. (B31)]
X X
Px Px
i = 1&Xp|D
5 {exp[Dspml} y
Dy Py
coshp I 0 0 cosAf 0  snAd 0 x
_ —HsSnAO cosA6 0 ,OA 0 COSA 6 0 SinAG Dx (B40)
0 0 cosAp 320 —snAg 0  cosAd O y
0 0 —HsSinAf cosAé 0 —SinAg 0 cosAd Dy

Equations (B11) and (B40) are both symplectic approxi- | by introducing an artificial parameter  and solving the
mations of the solenoid kick. The approximationsagreein  canonical equations of motion
first-order with respect to A9 = SH. In particular, in the

limit of H = 0, which represents a drift space, they give 3 = d L 5= _J 2 g_[SBM (B41)
the same results [see Eq. (B14)]. dr

C. Integration method ]Egrng)]T = 1 with J given by (A6) [see Egs. (B17) and

Moreover, we will generalize the function for arbitrary We demonstrate this by using the new Hamiltonian

energy. The map %(sip) — X(scp) can aso be obtained  (again denoted by #)
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gp — Hobxpry.py)

0+p] (B42)

with

1
Holx, psy,py) = 5 Alpx + yHT* + [py — xHT},

(B43)
thus generalizing the Hamiltonian 2 in Egs. (B5) and
(B24) by taking into account an arbitrary energy of the

particles [due to the denominator [1 + p.]in Eq. (B41)].
Then we have

.7‘[0()(, Px>Ys py)

Hsgm = S B44
SBM 0+ p. (B44)
leading to the equations of mation
o = d Hspm _ [py + yH]
dpx 1+ p]~°
, dHsem  Lpy — xH]H
Px = — =S ’
ox [1+ p.]
Y = d Hspwm _g [py — xH]
Ipy [1+p]"°
ol = _0Hsem _ _S[Px + yH|H
Y dy [1+p] °
(B45)
;L d Hspwm
o = ZIIsBM
ap;
_ S [px+yHP + [py — xHP
2 [1 + pz]2 |
r_ d Hspm
P, 0z
_ _ L Dpc +yHP + [py — xHP
4 [1+ p.]
From Egs. (B45) we get
d aH, aH,
5 g-[ 9 X 9 ) = ! + !
= 0(x, P, ¥, Py) ax * T P
L 9, ot ajh(opC
ay Ipy -
=0
= HO(X’px»yvpy)
= const. (B46)

124002-14

Thus Eq. (B45) takes the initial value

- _i g{o(x’px’yvpy)

z B47
BT ] (547
with the solution
_ . 1 HO(X,Px,y’Py)
pz(T) - [1 + Pz]\/l 2 [1 4 pz]2 T 1
g-[ X
5[+ a1 — & olx, p yp})_l,
2 [1+ pz]2
(B48)
where we have used
pz =p:0),  p. = pA(1). (B49)
From Egs. (B45) we obtain
d z -7t :Z/(1+Pz)_(Z_ZT)pz/, —0
dr [1 + pz] [1 + pz]2
z—zt 20 - 27t
[1+p] [1+ p0)]
7 — 71
= — B50
[+ p.] (850
and thus after the synchrobeam mapping we get
1 HO(X’Px’y7P~)
s _ 71 — _ 71 AR AR L
AR (R / )\/1 T (B51)
Finally, Egs. (B45) can be written as
, 1z -2zt
x'=——=—[p, + yH],
20+ p] [px + yH]
I 1 z- zt _
Px= 50T pz][p} xH]H ,
B52)
o Lz=zt (
y 2 [1 + pz] [p} 'XH:|9
, 1 z -2zt
= —— 0 +
Py x5 +pz][px yH]H ,

leading again to Eq. (B40) for A7 =1 and Af =
SH/(1 + p,).
APPENDIX C: LINEAR BEAM-BEAM MODEL

In this appendix we derive the linear beam-beam model
for asingle dlice. Using Eq. (1.1) for the whole bunch at
the IP, we can write [using Eq. (2.2)]

124002-14



PRST-AB 3 SIX-DIMENSIONAL BEAM-BEAM KICK INCLUDING ... 124002 (2000)

. 0 ol 2 " d S A . d A &
px = —N ar U, 9:211,233) = —N {COSH FYS U(%,9:211,233) — sind 7% U(X,y;211,233)},
(C1)
x 0 A B & ol d A & d A &
py = —N P UR,9;211,233) = =N {Sm@ — U(R,9:211,233) + cosd — U(X,y;211,233)}~
y ox ay
For small values | with focal length /1 and f, defined by
2 << 3, P < Sa3, (C2
.. 1 2N*r)
the behavior is linear [12], - = ﬁ
fi volEr + E)E°
. 0 & & 1 . (C4)
N gU(fC,)A/; 1, 233) = JTJ? 1 2N*r,
1 (C3) f2 vo(Er + E2)Ey’
d A& 1
N* N U -i:’ A; ) 2 = —3 > . -
a9 (£.9; 201, 233) f2 Y and with E; and E, taken from Appendix A [Eq. (A16)].
| Thus,
1 1 . 0sf + ys —xsind + yco .
px=—fc—cose+y—sm0=—[xcse ysme]coseJr[ x Siné ycse]smﬁ
fi /2 fi f2
(cos20 N sin29> 1(1 1) .
- _ - == - 2 ,
o 2\ )
1 1 [xcosh + ysind] [ ind + ycosd] (C9)
N : o x C ySsin . —xSn y Ci
, = —X—9sinf — y —cosf = — sinf — cosd
Py fi 1 fi /2
1 <1 1> Smg e cos20>
(= = 2 _
2\fi |2 fi n )
In matrix form we may write | The equations of motion (C6) can be obtained from the
R R Hamiltonian
X(sip + 0) = Ty, X(sp — 0) (C6) | |
with Hyp = {E Fix* + EFzy2 + ny]'ﬁ(s —sw).  (C9)
10 0 000 Note that 7', in (C7) contains quadrupole components
-Fr 1 —-F 0 00 (F, and F»), focusing in both transverse planes. In addition
T,, = 0o 0 1 000 (C7)  there appears askew quadrupole component (F) resulting
- —F 0 —-F, 1 00 from the rotation angle @ of the cross section due to the
0o 0 0 010 strong beam (F vanishes for § = 0).
0 0 0 0 0 1
and APPENDIX D: DISPERSION FORMALISM
INCLUDING THE BEAM-BEAM KICK
F, = ficosze + fisinza, A. Canonical transformation
1 2
The Hamiltonian for the whole ring consisting of
Fy = isinza + icosze (C8) bending magnets, quadrupoles, skew quadrupoles, and
fi /2 ’ solenoids, including the beam-beam kick in linear form,
reads
F=2(L-L)sne
2\ f1 2 ’ H = 5‘[0 + .7‘[},}7 (Dl)
| with [13,14]
11 1
Holx,y,25 pe Py, p238) = 5 ?P? = Ko + yKyIp: + S Alpx + yHY + [py — xHT}
0

1 1,1 eV(s) 2
+ AR+ gl? + (KT — gyt — 2Nayh = o2t VO, TWCOS% (D2)

27 B E
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(h is the harmonic number, V(s) is the rf voltage of the
cavity, and ¢, isthe rf phase), where the following abbre-
viations have been introduced:

= (%)
poc dx x:yZO,

Nzli<aﬂx_a3y> |
x=y=0

o9
Il

2 poc \ ax ay
1

H=—--—-8,0,0s), (D3)
2 poc

KX = L By(ov 0’ S) >
pboc

K, = ——— B,(0,0,5).
poc

Note that the second term of the Hamiltonian is due to so-
lenoid fields (H) which have been treated in Appendix B.
H,, is given by Eq. (C9) in Appendix C. The Hamilto-
nian (D1) then leads to the canonical equations of motion

Note that the linear transverse betatron oscillations and
the longitudina motion [Egs. (D4)] are coupled by the
terms

pK., p.Ky,, and — [xK, + yK,], (D5)

respectively, i.e., depending on the curvature of the orbit
in the bending magnets.

In order to simplify these equations we introduce
dispersion

Di(s)
Ds(s)
Ds(s) |’
Dy(s)

D(s) = D(s)=D(s + L). (D6)

New variables %, p,, 7, py, Z, p, can be introduced which
satisfy the dispersion relation

X =x — pDy, Px = px — p:D2, (D7)
d - -
—sx=px+yH, y=y — pDs by = py — p:Ds.
d ) .
e p.K, — [K; + glx + Ny This replacement
S
+  — xH|H — |[xF{ + yF|6(s — spp), e e o~
., Lpy H = xFy + yF18(s = sie) (X, px»Ys Py» 2 P2) — (%, P, 5. Py. 2, P.) (DY)
2 Py xH, . . . .
§ (Dg)  ©an be achieved using the generating function [14—17]
d
<Py = peKy — [K} — gly + Nx
FZ(X»%Z’ﬁx»i’yaﬁz) = ]~7x[x - 1~7le] + pxDs
- + yH]H — [yF, + xF]86(s — sip), . - -
., Lpx + vH] [1y ? | r + pyly = peD3] + p.yDs
—z=—xK; + yK,| + 5 p;, 1 5
ds (<K + 9K, ) RS - E[DIDZ + D3D41p?
d 1 eV(s) K 2m + 5
- = —7—2h=Z—cos . Dz<, (D9)
as s T gIt TR, L )
| with the result that
B oF, B oF, B B
X=_—=x— pDy, Px = —_ = px t+ p:Ds,
0Px ox
~ an _ o~ D — (")_Fz = p, + b D
y 3y y pL3, Py dy Py pl4,
B oF, - - -
I=->=z + [=p«D1 + xDy — pyD3 + yD4] — [D1D2 + D3D4]p:
Pz (D10)
=z +{=pD1 + [x — D1p.1D> — pyD3 + [y — D3p.]|D4}
=2z + [=p«Dy + XDy — pyD3 + §D4] = z + [—p.Dy + xD; — pyD3 + yD4],
oF,
P = ? = Pz>»
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and with
) oF 5“
H=5H + 3—2 (D11) Px
A . ~
_ F (D13)
In matrix form, Egs. (D10) read Py
d
I=Ki¢ i=K'%, (D12) p:
| and
1 0 0 0 0 —-D 1 0 0 0 0 D
0 1 0 0 0 —D, 0 1 0 0 0 Dy
o o 1 0o 0o -D; .. | 0 0o 1 0 0 D;
E9=1o 0o o 1 o - =19 0o o 1 o b (D14
D, —-Dy Dy —-D3 1 0 -D, Dy —-Dy D3 1 O
0 0 0 0 0 1 0 0 0 0 0 1
Note that K(s) is symplectic,
K'(s)JK(s) = J (D15)
[with J given by Eq. (A6)].
Taking into account the defining equations for the dispersion in the general case of arbitrary velocity By,
d
—D1 = D2 + HD3 N
ds
d
7 D2 =Dy = HD\JH — [KS + gIDy + ND3 — [F1Dy + FD3]3(s = sip) + K,
(D16)
iD3 = D4 - HD] N
ds
d
ED;; = —[Dz + HD3]H + ND1 - [Kg - g]Dg, - [F1D3 + FD1]5(S - S[p) + K,,
the new Hamiltonian reads
~ | B N N N 1 N N .
H = S Alpe + FHP + [py — ¥HP} + S {K? + gl¥* + [K] — gl5’} — N%5
1 1 27 eV 1
— S [(K:Dy + KyD3) = 1/y3]p? = —5 h == 5= Cospir =42 + [peDy — ¥D2 + pyDs — §Dalf’
B8 L Eo 2
1 1
+ |:5552F1 + 55/2]‘72 + nyi|5(s - SIP). (Dl?)

Note that the dispersion vector D is the periodic solu- | which disappears when al four dispersion terms
tion of the linearized equations of orbital motion whenthe (D, D2, D3, D4) are equal to zero at the location of

cavities are excluded and p, = 1. the cavities.
The coupling terms [see (D17)] arising from the orbit For further analysis we split the Hamiltonian (D17) into
curvature disappear. Instead, there is aterm three parts,
1
——{z + [p«D1 — ¥D2 + pyD3 — D417 - - - -
2 ’ H =3 + 3 + 52, (D18)
1 27 eV
X —=h— COS@,f _
By L Eo with
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~ 1 B B B 1 5 B .
H® = S Alps + FHF + [py = RHP} + KT + g]¥ + [K] — gl — Ny}
1 1 2w eV 1
— — [(KDy + K,D3) — 1/¥31p7 — —3h =~ ——cosgy — 2°,
2 B L Eo 2
(D19)
1 1 27 eV | - . - _ - - - -
H = —E h T E—OCOSQDrf E [PxDl — XD, + pyD3 — yD4]{22 + [PxDl — XDy + pyD3 — yD4]},
0
2 1, 1,
H? = E F1+Ey Fr, + Fxy S(s — sp),
where we have gathered in H! al terms of the cavities | 0z _ o0 o 9240
producing synchrobetatron coupling and in 7 2 the terms ATx =) PH = Apn = ~Sm 9y,
resulting from the beam-beam interaction. - S
In terms of the variables %, p,, 7, py. %, p., Eq. (D4) AVF = 35;[ — A = —5,, P H . (D21)
then takes the form 0x Ay19yn
. 02 9292
L e e o 40 = 35 a5 T
5= A(O)i + A(l)% + A(Z)% (D20) ox Y19y,
ds In detail, one obtains from Egs. (D19)
(B)
. Asxals 0
with AO(s) = (—“4 . ) (D22)
| Ooxs  A3%a(s)
D,D -D,D D,D -DsD -D 0,
1 2
AV(s) = — V) ;27 oo 0 0 0 0 o o |,
Bo Eo L —D; D —Dy D5 0 0
0 0 0 0 0 O
“F, 0 —F 0 0 0 (D23)
@ _| 0 0 0 000 B
A (S) —F 0 _F2 00 O 6(5‘ SIP)»
0 0 0 0 0 O
0 0 0 0 0 O
with A%, (s) and A%, (s) | B.The eigenvalue spectrum of the orbital revolution
matrix
0 1 H 0 The solution of the original Hamiltonian (D1) can be
—(K; +g+H) O N H written as
—H 0 0 1 |’ - -
N —H _(K\% - g + H2) 0 X (S) = M(S’ SO)X (50)9 (D26)
’ (D24) which defines the linear transfer matrix M (s, s¢) corre-
sponding to the variables (x,y, z; p., py, Pz).
# V) 27 cose 0 ’ M (s, 50) ] M(s,s0) = J . (D27)

(D25)

respectively, and D defined by Eq. (D6).4

Here the matrix A" results from the synchrobetatron
coupling induced by the cavities and A results from the
beam-beam kick.

The tune shiftsinduced by A" and A®) can be obtained
by determining the tunes with and without 74! and 7 >
or by perturbative methods as described in Refs. [18,19].
In a similar way one can calculate the distortion of the
dispersion induced by the beam-beam kick.

124002-18

Thus the (normalized) eigenvectors of the revolution
matrix

M(so + L,s0) 0x(s0) = e 270, (s0),

(D28)
Q- = =0, (k = 1,11,11II)

“Neglecting al kinds of coupling, such as synchrobetatron
coupling [A'(s) = 0] and coupling of betatron motion (N =
H = 0, no skew quadrupoles and no solenoids), we obtain the
dispersion formalism used in Ref. [1].
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obey the orthogonality relations [see Eq. (A4)], wherewe  In particular, one has
have assumed that the stability condition W(so + L. s0) = K(so) M(so + L. s9) K~ (s0) .

Q. rea number (D29) (D35)
is satisfied. For the eigenvectors one gets
Putting Bi(s0) = K(s0) B (s0) (D36)
Ti(s) = Dils)e 2O/, (D30)  since
we obtain from (D28) M(so + L,s0)K(s0)Vr(s0) = K(so)M(so + L, so)

X K~ (s50)K (50) U (50)
K(s0)M(so + L, s0)Uk(s0)

Dels + L) = Dils) (D31)

(Floquet theorem). Using this result, action-angle vari- s R

ables for coupled motion can be introduced as described = ¢ ?T%K(50) Uk (s0) -

in Ref. [18]. (D37)
The introduction of the dispersion has been accom-

plished by the matrix K [see Eq. (D12)] Note that the eigenvalues and thus the Q values remain

unchanged;
2 _ -> > —12 -
X = KX, X = K X . (D32) Qk — Qk . (D38)
Using the transfer matrix M (s, so) we can write The orthogonality relations for the new eigenvectors o/
> 1, Nz are still valid. Furthermore, M (s, so) is symplectic asit is
x(s) = K(s) M(s, 50) K~ (s50) X(s0) , (D33)  Ghtained by a similarity transformation of M with K.
showing that the transfer matrix M (s, so) can be repre- _ _
sented as [20] C. Decoupled motion; Twiss parameters
- _ ~1 In the case of vanishing dispersion within the cavities,
M(s. so) = K(s) M(s. s0) K~ (s0). (D34) the revolution matrix M(so + L, s) has the simple block-
| diagonal form
(B)
M (so + L,sp) 0
~ M (4x4)50 »90 Y(4x2)
M(S(] + L,S()) = ( (2) ), (D39)
Op2x4) M (32)(so + L, s0)
where M ((f)x4)(s0 + L, sg) corresponds to the (transverse) | d 5
betatron motion and M. . ( itudi 25 ¢ = TUK:Dx + KyDy) = 1/%01p:
M (552 (so + L, so) to the (longitudi- ds
nal) synchrotron oscillations. (D40)
Furthermore, the two-dimensional revolution matrix d P, = Lz 2 eV(so) OS2
M §a)(s0 + L. so), which is defined by the equations of ds By L Eo
synchrotron motion | [see Eq. (D25)], can be represented in the form
) _[co27mQ, + a,Sm7Q, B.SMmQ,
Mipa(so + L s0) = ( —y. S0, cos27w Q. + a.SM7Q, (D41)
with | )
b= ¢ ) k=11,
2 0,
B:y:=a; +1 (D42)
- 0
and v = (;j ) ) (D44)
a, = a;(so), B: = B:(s0), ¥: = v:(s0). o= 21 = # B:(s0) e tls0)
(D43) < 122 V2B.(s0) —[e (s0) + i]

R In the absence of skew quadrupoles (N = 0) and
From these equations one sees that the eigenvectors v, (sg)  solenoids (H = 0) [the coupling term Fxy vanishes in
can be written as (D19)], the betatron oscillations are decoupled, leading to
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8) ( ) (Mg)xz)(so + L,so) O@x2) )
M so + L,sg) = (w) s
(x50 0 Opx2) M 552)(so + L, 50)

co27Q,, + a,sSm7Q,,
“Yw sz Q,,

— 2
=a, + 1,

BwsSin2mQ,,

0270y + ay SO, ) (D45)

o)
Méxz)(so + L,so) = (
BwYw (W = X,y) .

As a result, the vectors 5, and 5,, then take a form similar to 5,,,,
-(B) _

NG Zx 0, > [tr) 1 B (s0) i (so _

It iseasy to generalize thistreatment to the coupled case; | [10] K. Heinemann, G. Ripken, and F. Schmidt, DESY Report
see Ref. [18]. No. 95-189, 1995.
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