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The six-dimensional beam-beam interaction as developed in 1992 by Hirata, Moshammer, an
giero has been extended to include linear coupled motion and an arbitrary crossing plane. The te
of symplectic mapping in the six-dimensional phase space, called synchrobeam mapping, is ap
investigate the beam-beam kick within a solenoid. A linear beam-beam model including coupl
discussed in detail, also in the framework of a six-dimensional symplectic dispersion formalism.
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I. INTRODUCTION

The beam-beam interaction is studied in storage rin
using the formalism developed by Hirata, Moshamm
and Ruggiero [synchrobeam mapping (SBM) and
Lorentz boost transforming the collision with a crossi
angle to a head-on collision]. In this approach the str
bunch is split longitudinally into several slices, where ea
slice is described by an electrostatic potential of the fo

U�x, y; S11, S33� � 2
rp
g0

3
Z `

0

exp�2 x2

2S111u 2
y2

2S331u �p
2S11 1 u

p
2S33 1 u

du .

(1.1)

Hererp is the classical particle radius,g0 is the Lorentz
factor of the test particle, andS is the6 3 6 phase-space
envelope matrix of the strong bunch defined by

Sij � �XiXj� 2 �Xi� �Xj�, i, j � 1, . . . , 6 , (1.2)

where the lowercasex, y and the uppercaseX, Y stand for
the transverse coordinates of the test particle and the st
bunch with �X � �X,PX ;Y ,PY ;Z,PZ�T , respectively. In
addition, a new technique of symplectic mapping in
six-dimensional phase space, called synchrobeam m
ping, has been introduced by these authors in Ref. [1
allows one to include the bunch length effect at the c
lision point and the energy variation caused by the elec
field of the opposite bunch. This mapping is formulat
only for head-on collision, but Hirata has shown tha
crossing angle can be eliminated by a Lorentz boost [2
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Equation (1.1) is valid for the case of uncoupled motio
The aim of this report is to extend the formalism to inclu
six-dimensional linear coupling.

This paper is organized as follows: In Sec. II t
beam-beam kick is studied in the most general form. T
tilted cross section induced by coupling, which is need
in Sec. II, is calculated in Appendix A. In Appendix
we describe methods to construct SBM solutions for a
lenoid field which allow us to investigate the beam-be
kick within a solenoid. The SBM solution is obtaine
by the use of a generating function, Lie series, or by
integration method. A linear model of the beam-be
kick including coupling is studied in Appendices C and
concerning the derivation of the linear beam-beam mat
the tune shift caused by a beam-beam kick and a linear
dimensional dispersion formalism including the bea
beam interaction. Last, a summary of the results
presented in Sec. III. The 6D beam-beam formalism
been incorporated in the tracking programsMAD [3] and
SIXTRACK [4].

II. BEAM-BEAM KICK FOR COUPLED MOTION

A. The electromagnetic field due to a tilted bunch

The generalization of the analysis in Refs. [1,2] by
cluding coupling and a tilted strong bunch (caused
coupling) can be achieved in a straightforward manner
describing the particle motion in the framework of the fu
coupled six-dimensional formalism and by replacing t
electric potentialU of Eq. (1.1) for an untilted bunch by
new potential
Û�x, y; Ŝ11, Ŝ33; u� � U�x̂, ŷ; Ŝ11, Ŝ33� � 2
rp
g0

Z `

0

exp�2 x̂2

2Ŝ111u
2

ŷ2

2Ŝ331u
�q

2Ŝ11 1 u
q

2Ŝ33 1 u
du , (2.1)
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where the symbol ˆ denotes quantities in the coupled
frame of reference. The coupling has to be considered for
the test particle as well as for the strong bunch.

1. Test particle

The potential (2.1) is obtained from (1.1) by introducing
a rotated coordinate system of the test particle (for details
see Appendix A)

x̂ � x cosu 1 y sinu, ŷ � 2x sinu 1 y cosu ,
(2.2)

where u denotes the coupling angle of the strong bunch
given by1

sin2u � 2sgn�S11 2 S33�
2S13q

�S11 2 S33�2 1 4S
2
13

,

cos2u � sgn�S11 2 S33�
�S11 2 S33�q

�S11 2 S33�2 1 4S
2
13

�) tan2u � 2
2S13

S11 2 S33
, (2.3)

or
124002-2
sinu � 2sgn	�S11 2 S33�S13


s
1
2

�1 2 cos2u� ,

cos u �

s
1
2

�1 1 cos2u� .

(2.4)

2. Strong bunch

For the strong beam we have the same transfor-
mation (2.2) for X and Y among the coordinates
�X � �X,PX ;Y ,PY ;Z,PZ�T . The linear particle motion
can be represented as a superposition of eigenmodes as
shown in [5]. Denoting by Jk and fk (k � I, II, III) the
action-angle variables

�X�s� �
X

k�I,II,III

p
Jk � �yk�s�e2ifk 1 �y�

ke
ifk� , (2.5)

where �yk�s� (k � I, II, III) describes the eigenmotion
with the linear 6D transfer matrix from longitudinal
position s0 to s,

�yk�s� � M�s,s0� �yk�s0� , (2.6)

with

M�s0 1 L, s0� �yk�s0� � e2i2pQk �yk�s0� (2.7)

(L is the circumference of the accelerator and Qk the tune
for the kth mode). The rotated Ŝ can be expressed by the
elements of the unrotated S matrix
Ŝ11 � �X̂2� �
1
2

	�S11 1 S33� 1 sgn�S11 2 S33�
q

�S11 2 S33�2 1 4S
2
13 
 ,

Ŝ33 � �Ŷ2� �
1
2

	�S11 1 S33� 2 sgn�S11 2 S33�
q

�S11 2 S33�2 1 4S
2
13 
 .

(2.8)
These elements are a function of the eigenvectors

S11 � �X2� �
X

k�I,II,III

2Jkyk1y�
k1 ,

S33 � �Y2� �
X

k�I,II,III

2Jkyk3y�
k3 , (2.9)

S13 � �XY� �
X

k�I,II,III

Jk�yk1y�
k3 1 y�

k1yk3� .

Note that

E1 �
q

Ŝ11, E2 �
q

Ŝ33 (2.10)

are the principal axes of the elliptical cross section

X̂2

E1
1
Ŷ2

E2
� 1 (2.11)

in the �X̂-Ŷ � plane.

1We have chosen u � 2up defined in Appendix A since the
strong bunch rotates in the opposite direction of the test particle.
In a double-ring machine, such as the Large Hadron Collider,
this is not necessarily true.
Conversely to Ref. [2], the crossing angle 2f can be
chosen in an arbitrary crossing plane (x̃-s), defined by
an angle a (see Fig. 1). We can write the components
of the strong bunch in a Cartesian coordinate system
�X, Y ,Z;Px ,Py ,Py� defined for the laboratory frame and
oriented according to the ideal orbit of the test particle as

Px � P sin2f cosa, Py � P sin2f sina ,

Pz � 2P cos2f , (2.12)

x

y

x~
α s

 2φ

x~a.) b.)

FIG. 1. (a) defines the crossing plane angle a in the (x-y)
plane and (b) depicts the total crossing angle 2f in the (x̃-s)
plane.
124002-2
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with P the momentum of the bunch.

B. Lorentz boost

The Lorentz boost as described by Hirata consists of a
transformation of Cartesian to accelerator coordinates and
a Lorentz boost which makes the collision between the
bunches head-on. This is necessary because the 6D beam-
beam interaction is only described for a head-on collision.
In addition, we include the crossing plane angle a in our
formalism.

1. Transformation from Cartesian to accelerator
coordinates

The following relations of Ref. [2] remain valid:0BBB@
ct
xC
zC
yC

1CCCA � A

0BBB@
z�s�
x�s�
s
y�s�

1CCCA , (2.13)

where

A � A21 �

0BBB@
21 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

1CCCA , (2.14)

and 0BBB@
E�c 2 p0
pxC

pzC 2 p0
pyC

1CCCA � p0B

0BBB@
pz
px
h
py

1CCCA , (2.15)

with
124002-3
B � B21 �

0BBB@
1 0 0 0
0 1 0 0
1 0 21 0
0 0 0 1

1CCCA (2.16)

and p0 being the momentum of the test particle. They
describe the connection between the Cartesian coordinate
�xC ,pxC ; yC ,pyC ; zC,pzC ;E, t� with E � cp and the
accelerator coordinate �x � �x,px; y,py ; z,pz; h, s� of the
test particle with the Hamiltonian

h�px ,py ,pz� � pz 1 1 2
q

�pz 1 1�2 2 p2
x 2 p2

y .
(2.17)

In this case we applied the ultrarelativistic approximation
y0 � c.

The Lorentz transformation

L0 �

0BBB@
1� cosf 2 sinf 2 tanf sinf 0
2 tanf 1 tanf 0

0 2 sinf cosf 0
0 0 0 1

1CCCA (2.18)

used in Ref. [2] makes the collision as if head-on for
a � 0 so that the synchrobeam mapping can be applied.

2. Arbitrary crossing plane

We now include the crossing plane angle a by the fol-
lowing similarity transformation:

L � R21L0R (2.19)

with

R �

0BBB@
1 0 0 0
0 cosa 0 sina

0 0 1 0
0 2 sina 0 cosa

1CCCA (2.20)

or L is
0BBB@
1� cosf 2 cosa sinf 2 tanf sinf 2 sina sinf

2 cosa tanf 1 cosa tanf 0
0 2 cosa sinf cosf 2 sina sinf

2 sina tanf 0 sina tanf 1

1CCCA . (2.21)

In order to interpret L in Eq. (2.19) we may introduce a new coordinate systemµ
x̃
ỹ

∂
�

µ
cosa sina

2 sina cosa

∂ µ
x
y

∂
, (2.22)

corresponding to R. Then the crossing plane is identical to the �x̃-s� plane (see Fig. 1). Since L0 can be written in the
form

L0 �

0BBB@
1� cosf 2 tanf 0 0
2 tanf 1� cosf 0 0

0 0 1 0
0 0 0 1

1CCCA
| {z }

0BBB@
1 0 0 0
0 cosf sinf 0
0 2 sinf cosf 0
0 0 0 1

1CCCA
| {z }

Boost in the direction of Rotation in the

(2.23)

the rotated x̃ axis �s-x̃� plane
124002-3
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we define a second coordinate systemµ
x̄
s̄

∂
�

µ
cosf sinf

2 sinf cosf

∂ µ
x̃
s

∂
. (2.24)

Then we are left with a boost in the direction of x̄ repre-
senting the rotated x̃ axis,µ

t�

x̄�

∂
�

µ
1� cosf 2 tanf

2 tanf 1� cosf

∂ µ
t
x̄

∂
. (2.25)

3. Full Lorentz boost

As a result of the Lorentz boost we have0BBB@
cT�

X�

Z�

Y�

1CCCA � L

0BBB@
cT
X
Z
Y

1CCCA , (2.26)

0BBB@
E��c
P�
X

P�
Z
P�
Y

1CCCA � L

0BBB@
E�c
PX
PZ
PY

1CCCA . (2.27)
124002-4
Inserting Eq. (2.12) into Eq. (2.27), we get for the trans-
formed momentum of the strong bunch (E�c � P) P�

x �
0, P�

y � 0 since

P�
x � 2P�cosa tanf 2 sin2f cosa

1 cosa tanf cos2f�

� 2P cosa tanf
°
1 2 2 cos2f 1 cos2f 2 sin2f

¢
� 0 , (2.28)

P�
y � 2P�sina tanf 1 sina tanf cos2f

2 sin2f sina�
� 0 .

For the test particle px � py � 0, E � cp0 is trans-
formed into p�

x � p�
y � 0 and E� � cp�

0 � cp0 cosf,
i.e., the collision is indeed head-on.

Using Eq. (2.21), the full Lorentz transformation is
therefore a transformation from the accelerator coordi-
nates to Cartesian coordinates, the Lorentz transformation,
and again a backwards transformation to the accelerator
coordinates

�x�0� ! �x��s�� (2.29)

leading to
0BBB@
z��s��
x��s��
s�

y��s��

1CCCA � A21LA

0BBB@
z�0�
x�0�

0
y�0�

1CCCA �

0BBB@
1� cosf 0 0 0

cosa tanf 1 0 0
0 2 cosa sinf cosf 2 sina sinf

sina tanf 0 0 1

1CCCA
0BBB@
z�0�
x�0�

0
y�0�

1CCCA , (2.30)

and

0BBB@
p�
z �s��
p�
x �s��
h�

p�
y �s��

1CCCA �
p0

p�
0
B21LB

0BBB@
pz�0�
px�0�
h

py�0�

1CCCA �

0BBB@
1 2 cosa tanf tan2f 2 sina tanf

0 1� cosf 2 cosa tanf

cosf 0
0 0 1� cos2f 0
0 0 2 sina

tanf

cosf 1� cosf

1CCCA
0BBB@
pz�0�
px�0�
h

py�0�

1CCCA . (2.31)
From Eq. (2.30) we have

s� � 2x�0� cosa sinf 2 y�0� sina sinf , (2.32)

so that, in general, s � 0 is not necessarily transformed
to s� � 0. Since we need a transformation from �x�0� to
�x��0��, an additional transformation

�x��s�� ! �x��0�� (2.33)

has to be performed.
Following Ref. [2], the transformation (2.33) can be

written as a first-order Taylor expansion

w�
i �0�� � w�

i �s�� 2
dw�

i �0��
ds�

s� � w�
i �s�� 2 h�

i s
�

� w�
i �s�� 1 h�

i sinf�x�0� cosa 1 y�0� sina� ,
(2.34)
with

wi � �x, y, z� ,

h�
i �

≠

≠p�
i
h��p�

x ,p
�
y ,p

�
z ;p

�
0 � .

(2.35)

Furthermore, we obtain from (2.31) and the Hamiltonian
(2.17)

h��p�
x ,p

�
y ,p

�
z ;p

�
0 � �

h�px ,py,pz ;p0�
cos2f

� h�p�
x ,p�

y ,p�
z ;p

�
0� . (2.36)

Combining the transformations (2.30), (2.31), and (2.34),
we finally obtain the equations
124002-4
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x� � z cosa tanf 1 x 1 h�
x�x cosa sinf 1 y sina sinf� � z cosa tanf 1 x�1 1 h�

x cosa sinf� 1 yh�
x sina sinf ,

y� � z sina tanf 1 y 1 h�
y�x cosa sinf 1 y sina sinf� � z sina tanf 1 y�1 1 h�

y sina sinf� 1 xh�
y cosa sinf ,

z� �
z

cosf
1 h�

z�x cosa sinf 1 y sina sinf� , p�
x �

px
cosf

2 h cosa
tanf

cosf
,

(2.37)

p�
y �

py
cosf

2 h sina
tanf

cosf
, p�

z � pz 2 px cosa tanf 2 py sina tanf 1 h tan2f
representing the result of a Lorentz boost applied to the
coordinates of the test particle which makes the collision
as if head-on.

The transformation L of Eq. (2.37) can be represented
as the combination of a scale transformation

�x,y, z;px ,py ,pz� ! �x̃, ỹ, z̃; p̃x , p̃y, p̃z� (2.38)

with

x̃ � x, ỹ � y, z̃ � z ,

p̃x �
px

cosf
, p̃y �

py
cosf

, p̃z �
pz

cosf

(2.39)

and a canonical transformation

�x̃, ỹ, z̃; p̃x , p̃y, p̃z� ! �x�, y�, z�;p�
x ,p

�
y ,p

�
z � (2.40)

resulting from the generating function
124002-5
F2�x̃, ỹ, z̃;p�
x ,p

�
y ,p�

z � � x̃p�
x 1 ỹp�

y 1
z̃

cosf
p�
z

1 z̃ tanf�p�
x cosa 1 p�

y sina�
1 sinf�x̃ cosa 1 ỹ sina�
3 h��p�

x ,p
�
y ,p

�
z � . (2.41)

Thus L is only quasisymplectic; the Jacobian of this trans-
formation is 1� cos3f. This lack of symplecticity is re-
stored in the backwards transformation L 21 after having
applied the beam-beam force.

C. Beam-beam force

We approximate the strong bunch by a number of slices.
Each slice is represented by its Z��0�� coordinate, which
shall be denoted by Zy . Taking into account only terms
linear with respect to dynamical variables in L , the first
and second momenta of the particle distribution at the lo-
cations of the slices are given by
Xy � Zy cosa sinf, P
y
X � 0, Yy � Zy sina sinf, P

y
Y � 0, P

y
Z � 0 ,

S
y
11 � S11, S

y
22 �

1
cos2f

S22, S
y
33 � S33, S

y
44 �

1
cos2f

S44, S
y
12 �

1
cosf

S12 , (2.42)

S
y
13 � S13, S

y
14 �

1
cosf

S14, S
y
23 �

1
cosf

S23, S
y
24 �

1
cos2f

S24, S
y
34 �

1
cosf

S34 .
Inserting Eq. (2.42) into Eqs. (2.3) and (2.8) one obtains

uy � u, Ŝ
y
11 � Ŝ11, Ŝ

y
33 � Ŝ33, Ŝ

y
13 � Ŝ13 ,

(2.43)

i.e., the cross section of the strong bunch remains un-
changed.
In order to calculate the beam-beam kick, we need to
transform Ŝ

y
11 and Ŝ

y
33 as well as uy from the interaction

point (IP) to the collision point (CP). The distance between
the two points is given by

S � S�z�,Zy� �
z� 2 Zy

2
. (2.44)

Using Eqs. (2.3), (2.8), and (2.42) we obtain
Ŝ
y
11�S� �

1
2

	�Sy
11�S� 1 S

y
33�S�� 1 sgn�Sy

11�S� 2 S
y
33�S��

q
�Sy

11�S� 2 S
y
33�S��2 1 4S

y
13�S�2 
 ,

Ŝ
y
33�S� �

1
2

	�Sy
11�S� 1 S

y
33�S�� 2 sgn�Sy

11�S� 2 S
y
33�S��

q
�Sy

11�S� 2 S
y
33�S��2 1 4S

y
13�S�2 
 ,

(2.45)

i.e., we obtain the same result for a slice and the whole bunch, respectively. In a drift space (e.g., the horizontal plane),

X�S� � X�0� 1 PX�0�S, PX�S� � PX �0� , (2.46)
124002-5
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we have

S
y
11�S� � S

y
11�0� 1 2S

y
12�0�S 1 S

y
22�0�S2 � S11�0� 1 2S12�0�w 1 S22�0�w2 � S11�w� ,

S
y
33�S� � S

y
33�0� 1 2S

y
34�0�S 1 S

y
44�0�S2 � S33�0� 1 2S34�0�w 1 S44�0�w2 � S33�w� , (2.47)

S
y
13�S� � S

y
13�0� 1 �Sy

14�0� 1 S
y
23�0��S 1 S

y
24�0�S2 � S13�0� 1 �S14�0� 1 S23�0��w 1 S24�0�w2 � S13�w� ,
where w �
S

cos f . Thus,

Ŝ
y
11�S� � Ŝ11�w� , Ŝ

y
33�S� � Ŝ33�w� ,

uy�S� � u�w� ,
(2.48)

with Ŝ11, Ŝ33, and u given by (2.3) and (2.8).
The real collision between the test particle and the slice

takes place at S; see Eq. (2.44). To calculate the beam-
beam interaction, three subsequent transformations have
to be performed. First, the test particle at the IP is brought
to the CP by a drift. Then the beam-beam interaction
is applied and finally the position of the test particle is
brought back to the IP. This set of transformations is called
the SBM.2

It is convenient to introduce a new set of canonical vari-
ables at the collision point

x̄� � x� 1 Sp�
x 2 Xy�Zy� ,

ȳ� � y� 1 Sp�
y 2 Yy�Zy� , (2.49)

z̄� � z�,

and

p̄�
x � p�

x , p̄�
y � p�

y ,

p̄�
z � p�

z 2
�p�

x �2 1 �p�
y �2

4
.

(2.50)

Here we have assumed a drift space between the IP and the
CP. In these new variables, the SBM transformation can
be written as a concatenation of three symplectic transfor-
mations,

exp�2 : D :� exp�: Hbb :� exp�: D :� , (2.51)

2The SBM as described in detail in Ref. [1] can be represented
by a Hamiltonian H � Hbb��x��d�s��with Hbb defined implic-
itly by exp�: Hbb :� �

Q
Zy exp ��� : n�U�x̂�, ŷ�; Ŝ11, Ŝ33� : ��� de-

scribing the interaction of a test particle in the weak bunch with
a slice of the strong bunch represented by Zy.
124002-6
where

D�S� �
�p�

x �2 1 �p�
y �2

2
S . (2.52)

Note that there is an additional transformation, i.e., a shift
by Xy�Zy� and Yy�Zy�; see Eq. (2.49). In Appendix B,
D�S� is calculated in the presence of a solenoid field.

The particle-slice interaction at the CP finally leads to

�x̄�, ȳ�, z̄�� ! �x̄�, ȳ�, z̄�� (2.53)

and

p̄�
x ! p̄�

x 2 n�F�
x , p̄�

y ! p̄�
y 2 n�F�

y ,

p̄�
z ! p̄�

z 2 n�F�
z ,

(2.54)

where n� is the number of particles in the slice, i.e., the
total number N� divided by the number of slices, and

F�
x �

≠

≠x̄�
Û���x̄�, ȳ�; Ŝ11�w�, Ŝ33�w�; u�w���� ,

F�
y �

≠

≠ȳ�
Û���x̄�, ȳ�; Ŝ11�w�, Ŝ33�w�; u�w���� ,

F�
z �

≠

≠z̄�
Û���x̄�, ȳ�; Ŝ11�w�, Ŝ33�w�; u�w����

(2.55)

�
1
2

≠

≠S
Û���x̄�, ȳ�; Ŝ11�w�, Ŝ33�w�; u�w���� ,

with Û given by Eq. (2.1).
Introducing the variables

x� � w1x̄
� 1 w2ȳ

�, y� � 2w2x̄
� 1 w1ȳ

�

(2.56)

[see Eq. (2.2)] with

w1 � cosu, w2 � sinu , (2.57)

we can also write
124002-6
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F�
x �

≠

≠x̄�
U���x�, y�; Ŝ11�w�, Ŝ33�w���� � w1�w�

≠

≠x�
U���x�, y�; Ŝ11�w�, Ŝ33�w���� 2 w2�w�

≠

≠y�
U���x�, y�; Ŝ11�w�, Ŝ33�w���� ,

F�
y �

≠

≠ȳ�
U���x�, y�; Ŝ11�w�, Ŝ33�w����

� w2�w�
≠

≠x�
U���x�, y�; Ŝ11�w�, Ŝ33�w���� 1 w1�w�

≠

≠y�
U���x�, y�; Ŝ11�w�, Ŝ33�w���� ,

F�
z �

1
2

≠

≠S
U���x�, y�; Ŝ11�w�, Ŝ33�w����

(2.58)

�
≠U

≠x�
�w0

1�w�x̄� 1 w0
2�w�ȳ��

1
2 cosf

1
≠U

≠y�
�2w0

2�w�x̄� 1 w0
1�w�ȳ��

1
2 cosf

1
≠U

≠Ŝ11
Ŝ0

11�w�
1

2 cosf
1

≠U

≠Ŝ33
Ŝ0

33�w�
1

2 cosf
,

with U defined in Eq. (1.1) and the symbol 9 indicating a
differentiation with respect to w.

Expressions for the terms ≠U�≠x�, ≠U�≠y�, ≠U�≠Ŝ11,

and ≠U�≠Ŝ33 appearing in Eq. (2.58) can be found in
Ref. [1] [see Eqs. (21), (22), (86), and (87)] for a tri-
Gaussian distribution.

The terms Ŝ
0
11�w� and Ŝ

0
33�w� may be obtained by using

Eqs. (2.8) and (2.9) and by taking into account that the
eigenvectors �yk�s� (k � I, II, III) obey the equations of
motion. For a drift space3 they read

d

ds
yk1 � yk2,

d

ds
yk3 � yk4 ,

d

ds
yk2 �

d

ds
yk4 � 0 .

(2.59)

Using Eq. (2.3) we obtain

Ŝ0
11�w� � C0 1 C1 cos�2u�w�� 2 C2 sin�2u�w�� ,

Ŝ0
33�w� � C0 2 C1 cos�2u�w�� 1 C2 sin�2u�w�� ,

(2.60)

with

C0 � S12�0� 1 S34�0� 1 ���S22�0� 1 S44�0����w ,

C1 � S12�0� 2 S34�0� 1 ���S22�0� 2 S44�0����w ,

C2 � S14�0� 1 S23�0� 1 2S24�0�w .
(2.61)

The quantities w1 and w2 are determined by Eqs. (2.3) and
(2.57). Last, in order to calculate w0

1�s� and w0
2�s� we use

the relations

3In this case Eq. (2.47) can also serve to calculate the terms
S

0
11�w�, S

0
33�w�, and S

0
13�w� appearing in Ŝ

0
11 and Ŝ

0
33.
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cos2u � cos2u 2 sin2u � 2 cos2u 2 1 � 1 2 2 sin2u

�)

(
w 0

1�s� � d
ds cosu �

1
4 cosu

d
ds cos2u ,

w0
2�s� � d

ds sinu � 2
1

4 sinu

d
ds cos2u ,

(2.62)

where the trigonometric functions are taken from
Eqs. (2.3) and (2.4).

Going back to the original coordinates, the explicit form
for the complete SBM is given by

x�
new � x� 1 Sn�F�

x , p�
x,new � p�

x 2 n�F�
x ,

y�
new � y� 1 Sn�F�

y , p�
y,new � p�

y 2 n�F�
y ,

z�
new � z�,

p�
z,new � p�

z 2 n�F�
z

(2.63)

2
1
2

∑
n�F�

x

µ
p�
x 2

n�F�
x

2

∂

1 n�F�
y

µ
p�
y 2

n�F�
y

2

∂∏
.

III. SUMMARY

We have studied the beam-beam interaction for coupled
motion in the framework of the weak-strong formalism tak-
ing into account a tilted cross section of the strong beam in-
duced by linear coupling. This coupling has been included
in the 6D beam-beam formalism of Hirata, Moshammer,
and Ruggiero.

The extended formalism also allows for an arbitrary
crossing plane. Furthermore, a SBM solution for sole-
noid fields is derived which allows one to investigate the
beam-beam kick within a solenoid.

A linear model of the beam-beam kick, due to a tilted
cross section of the strong bunch, is investigated in detail
in Appendices C and D (beam-beam matrix and dispersion
formalism including beam-beam interaction).
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The equations derived in this report have been incorpo-
rated into the tracking codes MAD and SIXTRACK.
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APPENDIX A: CALCULATION OF THE
COUPLING ANGLE IN THE X-Y PLANE

The aim of this Appendix is to determine the angle u

by which the principal axes of the beam ellipse are tilted
in the physical (X-Y) plane.

Linear particle motion can be written as a superposition
of the three eigenvectors �yk (k � I, II, III)

�X�s� �
X

k�I,II,III

p
Jk � �yk�s�e2ifk 1 �y�

k�s�e
ifk � , (A1)

with �X � �X,PX ,Y ,PY ,Z,PZ�T . For the eigenvectors,

�yk�s� � M�s, s0� �yk�s0� (A2)

holds, with

M�s0 1 L, s0� �yk�s0� � e2i2pQk �yk�s0� , (A3)

where L is the circumference of the accelerator and Qk is
the tune for the kth mode. They obey the orthogonality
relations [5] ( �y1

k � � �yTk ��

�y1
k �s0�J �yk�s0� � 2 �y1

2k�s0�J �y2k�s0� � i ,

�y1
m �s0�J �yn�s0� � 0, otherwise,

(A4)

with

�y2k � �y�
k (A5)

and

J �

0BBBBBBB@

0 21 0 0 0 0
1 0 0 0 0 0
0 0 0 21 0 0
0 0 1 0 0 0
0 0 0 0 0 21
0 0 0 0 1 0

1CCCCCCCA . (A6)

In particular, one has

X �
X

k�I,II,III

p
Jk �yk1e

2ifk 1 y�
k1e

ifk � ,

Y �
X

k�I,II,III

p
Jk �yk3e

2ifk 1 y�
k3e

ifk � .
(A7)

The rotation of the coordinates in the physical plane are
given by

X̃ � X cosu 1 Y sinu, Ỹ � 2X sinu 1 Y cosu .
(A8)
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The rotated horizontal coordinate X̃ reads

X̃�u� �
X

k�I,II,III

p
Jk ��yk1 cosu 1 yk3 sinu�e2ifk

1 �y�
k1 cosu 1 y�

k3 sinu�eifk � .
(A9)

Averaging over the phase angles fk we arrive at

1
2

�X̃2�u�� �
X

k�I,II,III

Jk	�yk1 cosu 1 yk3 sinu�

3 �y�
k1 cosu 1 y�

k3 sinu�

(A10)

leading to

E2
h�u� � E2

x cos2u 1 E2
y sin2u 1 ExGx sin2u , (A11)

and using Eq. (2.9) we obtain

E2
x � 2

X
k�I,II,III

Jkyk1y�
k1 � S11 ,

E2
y � 2

X
k�I,II,III

Jkyk3y�
k3 � S33 ,

ExGx � EyGy �
X

k�I,II,III

Jk�yk1y
�
k3 1 y�

k1yk3� � S13 ,

(A12)

E2
h�u� � �X̃2�u�� .

For the vertical plane a similar solution can be obtained,

E2
y�u� � E2

x sin2u 1 E2
y cos2u 2 EyGy sin2u

� E2
h�u 1 p�2� . (A13)

Eh�u�,Ey�u� are the maxima of the least squared ampli-
tudes of the particle motion in the u direction.

The principal axes E1, E2 can be found by maximizing
E2
h�u� 2 E2

y�u�. This yields up

tan2up �
2ExGx
E2
x 2 E2

y
. (A14)

Choosing

sin2up �
2ExGx
N

, cos2up �
E2
x 2 E2

y

N
, (A15)

we obtain

E2
h�up� � E2

1 �
1
2 	�E2

x 1 E2
y� 1 N 
 � �X̂2� ,

E2
y�up � � E2

2 �
1
2 	�E2

x 1 E2
y� 2 N 
 � �Ŷ2� ,

(A16)

where N � 6
q

�E2
x 2 E2

y�2 1 4�ExGx�2 . The sign of
N may be chosen in such a way that cos2up becomes
positive,

N � sgn�E2
x 2 E2

y �
q

�E2
x 2 E2

y �2 1 4�ExGx�2 ,
(A17)
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X̂

X

Y

Ŷ Gy

Gx

Ex

Ey

E 2

E 1

pθ

FIG. 2. Cross section of the averaged plane �X-Y �.

i.e., 2p�4 # up # p�4. The beam ellipse with respect

to the principal axes � X̂, Ŷ � can be written as

X̂
2

E2
1

1
Ŷ

2

E2
2

� 1 . (A18)

Figure 2 illustrates the relation between Ex , Ey, Gx, Gy ,
E1, E2, and up .

Equation (18) can be rewritten for the averaged coordi-
nates X and Y ,

E2
yX

2
2 2ExGxXY 1 E2

xY
2

� E2
1E

2
2 � e2, (A19)

with

e2 � E2
x �E2

y 2 G2
x � � E2

y �E2
x 2 G2

y � , (A20)

which has the following solution using an arbitrary
angle c:µ

X�c�
Y �c�

∂
�

µ
Ex
Gx

∂
cos c 1

µ
0p

E2
y 2 G2

x

∂
sin c.

(A21)

Note that Eqs. (A19) and (A20), which define the beam
cross section, are the result of a many particle treatment
due to the averaging process described in Eq. (A10) (see
Refs. [5–7]).

Last, we can rewrite tan2up as

sinup � sgn	�E2
x 2 E2

y �ExGx 


s
1
2

°
1 2 cos2up

¢
,

cosup �

s
1
2

°
1 1 cos2up

¢
.

(A22)

Coupling angle in the physical X-Y plane

Although the coupling angle is defined for a multi-
particle system it is instructive to relate it to the physical
plane (X-Y) of single particle motion. In this plane, motion
is restricted to a parallelogram which is tilted due to the
linear coupling.
124002-9
θp  = 11.09o

(a)

θp  = 17.29o

(b )

(c)

FIG. 3. (Color) Numerical calculation of the single particle mo-
tion in the �X-Y� plane The action ratios between horizontal and
vertical motion planes are 1:10, 10:1, and 1:1 in parts (a), (b),
and (c), respectively. The angle up is given in degrees. The
ellipse represents the cross section of the averaged �X-Y � plane.
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Numerical simulations were carried out for a FODO
structure including considerable skew quadrupole compo-
nents. Three particles have been tracked over 1000 turns
for mainly horizontal motion, mainly vertical motion, and
for a JI � JII beam in Figs. 3(a), 3(b), and 3(c), respec-
tively. In the limit of one dominant plane of motion [see
Fig. 3(a) or 3(b)] the calculated coupling angle is the
angle by which the longer side of the parallelogram is
tilted. For the intermediate case the coupling angle goes to
zero when the ellipse approaches the circle; see Fig. 3(c).

Note that a zero coupling angle does not imply that
the motion is decoupled, but, instead, it means that the
eigenplanes are not tilted with respect to the uncoupled
case.

APPENDIX B: SYNCHROBEAM MAPPING
WITHIN SOLENOID FIELDS

The synchrobeam map is described by Eq. (2.51). It
consists of a transformation from the IP to the CP, followed
by the beam-beam kick and the backwards transformation
to the IP. In this Appendix the transformation D�S� from
the IP to the CP is generalized to include solenoid fields.
For a particle within a solenoid field one obtains in linear
approximation in S

x̄� � x� 1 S
≠H

≠p�
x

, p̄�
x � p�

x 2 S
≠H

≠x�
,

ȳ� � y� 1 S
≠H

≠p�
y

, p̄�
y � p�

y 2 S
≠H

≠y�
, (B1)

z̄� � z� 1 S
≠H

≠p�
z

, p̄�
z � p�

z 2 S
≠H

≠z�
,

with S given by Eq. (2.44)

S � S�z�,Zy� �
z� 2 Zy

2
. (B2)

The normal coordinates are taken at the interaction point
while the barred coordinates are taken at the collision
point. In the following we skip the symbol �, which indi-
cates the Lorentz transformation of the coordinates of the
test particle. Note that we temporarily ignore the contri-
bution of the strong beam [see Eq. (2.49)].

It is most convenient to symplectify Eq. (B1) such that
the total SBM transformation is symplectic by definition.
In the following, three methods of symplectification shall
be described and applied by using the Hamiltonian of a
solenoid field. The last method is evaluated for arbitrary
energies.

A. Generating function

We introduce the generating function

F2�x, p̄x; y, p̄y ; z, p̄z� � xp̄x 1 yp̄y 1 zp̄z

1 SH �x, p̄x ; y, p̄y ; z, p̄z�
(B3)
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in analogy to the method applied by Forest and Ohmi for
the symplectic integration of complex wigglers [8,9]. The
transformation equations due to F2 take the form

x̄ �
≠F2

≠p̄x
� x 1 S

≠H

≠p̄x
,

px �
≠F2

≠x
� p̄x 1 S

≠H

≠x
,

ȳ �
≠F2

≠p̄y
� y 1 S

≠H

≠p̄y
,

py �
≠F2

≠y
� p̄y 1 S

≠H

≠y
,

(B4)

z̄ �
≠F2

≠p̄z
� z 1 S

≠H

≠p̄z
,

pz �
≠F2

≠z
� p̄z 1

1
2
H 1 S

≠H

≠z
.

For a solenoid field (with strength H) the Hamiltonian
reads

H �x,px ; y,py; z,pz � �
1
2

	�px 1 yH�2

1 �py 2 xH�2
 . (B5)

The corresponding generating function is

F2�x, p̄x ; y, p̄y; z, p̄z � � xp̄x 1 yp̄y 1 zp̄z

1
S
2

	�p̄x 1 yH�2

1 � p̄y 2 xH�2
 . (B6)

Thus,

x̄ �
≠F2

≠p̄x
� x 1 S�p̄x 1 yH� ,

px �
≠F2

≠x
� p̄x 2 S� p̄y 2 xH�H ,

ȳ �
≠F2

≠p̄y
� y 1 S�p̄y 2 xH� ,

py �
≠F2

≠y
� p̄y 1 S� p̄x 1 yH�H ,

(B7)

z̄ �
≠F2

≠p̄z
� z ,

pz �
≠F2

≠z
� p̄z 1

1
4

	�p̄x 1 yH�2 1 �p̄y 2 xH�2
.

From Eqs. (B7) we get
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x̄ 2 Sp̄x � x 1 SyH, p̄x 2 Sp̄yH � px 2 SxH2,

ȳ 2 Sp̄y � y 2 SxH, p̄y 1 Sp̄xH � py 2 SyH2,
(B8)

or 0BBB@
1 2S 0 0
0 1 0 2SH
0 0 1 2S
0 SH 0 1

1CCCA
0BBB@
x̄
p̄x
ȳ
p̄y

1CCCA �

0BBB@
1 0 SH 0

2SH2 1 0 0
2SH 0 1 0

0 0 2SH2 1

1CCCA
0BBB@
x
px
y
py

1CCCA . (B9)

Using the relation0BBB@
1 2S 0 0
0 1 0 2SH
0 0 1 2S
0 SH 0 1

1CCCA
21

�
1

1 1 �SH�2

0BBB@
1 1 S2 S 0 S2H

0 1 0 SH
0 2S2H 1 1 �SH�2 S
0 2SH 0 1

1CCCA , (B10)

we obtain from (B9) 0BBB@
x̄
p̄x
ȳ
p̄y

1CCCA �
1

1 1 �SH�2

0BBB@
1 S SH S2H

2SH2 1 2S2H3 SH
2SH 2S2H 1 S
S2H3 2SH 2SH2 1

1CCCA
0BBB@
x
px
y
py

1CCCA . (B11)

In particular, we have

p̄x 1 yH �
SH�py 2 xH� 1 �px 1 yH�

1 1 �SH�2 , p̄y 2 xH �
2SH�px 1 yH� 1 �py 2 xH�

1 1 �SH�2 . (B12)
Inserting Eqs. (B12) into (B7), we finally get

p̄z � pz 2
1
4

�px 1 yH�2 1 �py 2 xH�2

1 1 �SH�2 . (B13)

Note that z remains unchanged [see Eq. (B7)].
Note that, for H � 0 (drift space), we obtain from

Eqs. (B7), (B11), and (B13) the transformation equations

x̄ � x 1 Spx , p̄x � px ,

ȳ � y 1 Spy , p̄y � py , (B14)

z̄ � z, p̄z � pz 2
1
4

�p2
x 1 p2

y � ,

which are the same as Eqs. (2.49) and (2.50) without the
extra terms due to the strong beam.

B. Lie series

In the following we again skip the symbol � which indi-
cates the Lorentz transformation of the coordinates of the
test particle. The canonical equations of motion

dx
ds

�
≠H

≠px
,

dpx
ds

� 2
≠H

≠x
,

dy
ds

�
≠H

≠py
,

dpy
ds

� 2
≠H

≠y
, (B15)

dz
ds

�
≠H

≠pz
,

dpz
ds

� 2
≠H

≠z
,

due to a Hamiltonian
124002-11
H � �x� � H �x,px , y,py , z,pz� (B16)

can be integrated by Lie series [10,11]

�̄x�s� � exp��s 2 s0�D� �x (B17)

with

�x � �x,px, y,py, z,pz �T ,

�̄x � �x̄, p̄x, ȳ, p̄y, z̄, p̄z�T , (B18)

�x � �x�s0� ,

and

D �

∑
≠

≠px
H ��x�

∏
≠

≠x
2

∑
≠

≠x
H � �x�

∏
≠

≠px

1

∑
≠

≠py
H � �x�

∏
≠

≠y
2

∑
≠

≠y
H � �x�

∏
≠

≠py

1

∑
≠

≠pz
H ��x�

∏
≠

≠z
2

∑
≠

≠z
H ��x�

∏
≠

≠pz
. (B19)

In particular, we get for the map from the IP to the CP
sCP � sIP 1 S

�̄x�sCP� � exp�SD� �x, �x � �x�sIP� , (B20)

which is not symplectic in general due to the factor S.
In order to symplectify Eq. (B20), we introduce a new

Hamiltonian

HSBM� �x� � SH � �x� (B21)
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by modifying the longitudinal coordinates of motion, leading to the canonical map

�̄x�sCP� � exp�DSBM��x (B22)

with

DSBM �

∑
≠

≠px
HSBM� �x�

∏
≠

≠x
2

∑
≠

≠x
HSBM��x�

∏
≠

≠px
1

∑
≠

≠py
HSBM��x�

∏
≠

≠y
2

∑
≠

≠y
HSBM��x�

∏
≠

≠py

1

∑
≠

≠pz
HSBM��x�

∏
≠

≠z
2

∑
≠

≠z
HSBM��x�

∏
≠

≠pz

� SD 2
1
2
H � �x�

≠

≠pz
(B23)
and D given by Eq. (B19).
Using the Hamiltonian

H ��x� �
1
2

	�px 1 yH�2 1 �py 2 xH�2
 (B24)

of a solenoid, we obtain

D � �px 1 yH�
≠

≠x
1 �py 2 xH�H

≠

≠px

1 �py 2 xH�
≠

≠y
2 �px 1 yH�H

≠

≠py
,

DSBM � SD 2
1
4

	�px 1 yH�2 1 �py 2 xH�2

≠

≠pz
.

(B25)

For the longitudinal coordinates we then get

DSBMz � SDz � 0,

�DSBM�nz � 0 for n [ � ,
(B26)
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resulting in

	exp�DSBM�
z � z (B27)

and

DSBMpz � 2
1
2
H � �x�

� 2
1
4

	�px 1 yH�2 1 �py 2 xH�2
 ,

�DSBM�2pz � 2
1
2
SDH ��x� � 0 ,

(B28)

�DSBM�npz � 0 for n . 1 ,

�) 	exp�DSBM�
pz
� pz 2

1
4

	�px 1 yH�2 1 �py 2 xH�2
 . (B29)

For the transverse coordinates we have
DSBM

0BBB@
x
px
y
py

1CCCA � S

0BBB@
px 1 yH
pyH 2 xH2

py 2 xH
2pxH 2 yH2

1CCCA �S

0BBB@
0 1 H 0

2H2 0 0 H
2H 0 0 1

0 2H 2H2 0

1CCCA
| {z }

0BBB@
x
px
y
py

1CCCA , (B30)

C

�DSBM�n

0BBB@
x
px
y
py

1CCCA � SnDn

0BBB@
x
px
y
py

1CCCA � SnCn

0BBB@
x
px
y
py

1CCCA �) 	exp�DSBM�


0BBB@
x
px
y
py

1CCCA � 	exp�SC �


0BBB@
x
px
y
py

1CCCA . (B31)

In order to calculate exp�SC �, we write

C � C1 1 C 2 (B32)

with

C1 �

0BBB@
0 1 0 0

2H2 0 0 0
0 0 0 1
0 0 2H2 0

1CCCA, C 2 � H

0BBB@
0 0 1 0
0 0 0 1

21 0 0 0
0 21 0 0

1CCCA , (B33)
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and

C1 ? C 2 � C 2 ? C1 �) exp�SC � � exp�SC1� exp�SC 2� . (B34)

Furthermore, we obtain

�C1�2n � �21�nH2nI , �C1�2n11 � �21�nH2nC1 � �21�nH2n11

0BBB@
0 1�H 0 0

2H 0 0 0
0 0 0 1�H
0 0 2H 0

1CCCA (B35)

(with I a 4 3 4 unity matrix), and thus

exp�SC1� �
X̀
n�0

1
�2n�!

�21�n�Du�2nI 1
X̀
n�0

1
�2n 1 1�!

�21�n�Du�2n11

0BBB@
0 1�H 0 0

2H 0 0 0
0 0 0 1�H
0 0 2H 0

1CCCA

� I cos Du 1

0BBB@
0 1�H 0 0

2H 0 0 0
0 0 0 1�H
0 0 2H 0

1CCCA sinDu , (B36)

resulting in

exp�SC1� �

0BBB@
cosDu

sinDu

H 0 0
2H sinDu cosDu 0 0

0 0 cosDu
sinDu

H
0 0 2H sinDu cosDu

1CCCA (B37)

with Du � SH.
In a similar way one can derive

�C 2�2n � �21�nH2nI , �C 2�2n11 � �21�nH2n11

∑
1
H
C 2

∏
, (B38)

yielding

exp�SC 2� � I cosDu 1

∑
1
H
C 2

∏
sinDu �

0BBB@
cosDu 0 sinDu 0

0 cosDu 0 sinDu

2 sinDu 0 cosDu 0
0 2 sinDu 0 cosDu

1CCCA . (B39)

Inserting Eqs. (B37) and (B39) into Eq. (B34), we finally obtain [see Eq. (B31)]0BB@
x
px
y
py

1CCA � 	exp�DSBM�


0BB@
x
px
y
py

1CCA

�

0BBB@
cosDu

sinDu

H 0 0
2H sinDu cosDu 0 0

0 0 cosDu
sinDu

H
0 0 2H sinDu cosDu

1CCCA
0BBB@

cosDu 0 sinDu 0
0 cosDu 0 sinDu

2 sinDu 0 cosDu 0
0 2 sinDu 0 cosDu

1CCCA
0BBB@
x
px
y
py

1CCCA . (B40)
Equations (B11) and (B40) are both symplectic approxi-
mations of the solenoid kick. The approximations agree in
first-order with respect to Du � SH. In particular, in the
limit of H � 0, which represents a drift space, they give
the same results [see Eq. (B14)].

C. Integration method

Moreover, we will generalize the function for arbitrary
energy. The map �x�sIP� ! �̄x�sCP� can also be obtained
124002-13
by introducing an artificial parameter t and solving the
canonical equations of motion

�x0 �
d
dt

�x � 2J
≠

≠�x
HSBM (B41)

for Dt � 1 with J given by (A6) [see Eqs. (B17) and
(B22)].

We demonstrate this by using the new Hamiltonian
(again denoted by H )
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H �
H0�x,px, y,py �

�1 1 pz�
, (B42)

with

H0�x,px; y,py � �
1
2

	�px 1 yH�2 1 �py 2 xH�2
 ,

(B43)

thus generalizing the Hamiltonian H in Eqs. (B5) and
(B24) by taking into account an arbitrary energy of the
particles [due to the denominator �1 1 pz� in Eq. (B41)].

Then we have

HSBM � S
H0�x,px , y,py�

�1 1 pz�
(B44)

leading to the equations of motion

x0 �
≠HSBM

≠px
� S

�px 1 yH�
�1 1 pz�

,

p0
x � 2

≠HSBM

≠x
� S

�py 2 xH�H
�1 1 pz�

,

y0 �
≠HSBM

≠py
� S

�py 2 xH�
�1 1 pz�

,

p0
y � 2

≠HSBM

≠y
� 2S

�px 1 yH�H
�1 1 pz�

,

z0 �
≠HSBM

≠pz

(B45)

� 2
S

2

�px 1 yH�2 1 �py 2 xH�2

�1 1 pz�2 ,

p0
z � 2

≠HSBM

≠z

� 2
1
4

�px 1 yH�2 1 �py 2 xH�2

�1 1 pz�
.

From Eqs. (B45) we get

d
dt

H0�x,px, y,py� �
≠H0

≠x
x0 1

≠H0

≠px
p0
x

1
≠H0

≠y
y0 1

≠H0

≠py
p0
y

� 0

�) H0�x,px , y,py�

� const. (B46)
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Thus Eq. (B45) takes the initial value

p0
z � 2

1
2

H0�x,px, y,py�
�1 1 pz�

(B47)

with the solution

p̄z�t� � �1 1 pz�

s
1 2

1
2

H0�x,px , y,py�
�1 1 pz�2 t 2 1

�) p̄z � �1 1 pz�

s
1 2

1
2

H0�x,px , y,py�
�1 1 pz�2 2 1 ,

(B48)

where we have used

pz � pz�0�, p̄z � pz�1� . (B49)

From Eqs. (B45) we obtain

d
dt

z 2 Zy

�1 1 pz�
�
z0�1 1 pz� 2 �z 2 Zy�p0

z

�1 1 pz�2 � 0

�)
z̄ 2 Zy

�1 1 pz�
�

z�0� 2 Zy

�1 1 pz�0��

�
z 2 Zy

�1 1 pz�
, (B50)

and thus after the synchrobeam mapping we get

z̄ 2 Zy � �z 2 Zy�

s
1 2

1
2

H0�x,px, y,py�
�1 1 pz�2

. (B51)

Finally, Eqs. (B45) can be written as

x0 �
1
2
z 2 Zy

�1 1 pz�
�px 1 yH� ,

p0
x �

1
2
z 2 Zy

�1 1 pz�
�py 2 xH�H ,

y0 �
1
2
z 2 Zy

�1 1 pz�
�py 2 xH� ,

(B52)

p0
y � 2

1
2
z 2 Zy

�1 1 pz�
�px 1 yH�H ,

leading again to Eq. (B40) for Dt � 1 and Du �
SH��1 1 pz�.

APPENDIX C: LINEAR BEAM-BEAM MODEL

In this appendix we derive the linear beam-beam model
for a single slice. Using Eq. (1.1) for the whole bunch at
the IP, we can write [using Eq. (2.2)]
124002-14
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124002-1
px � 2N� ≠

≠x
U�x̂, ŷ; Ŝ11, Ŝ33� � 2N�

Ω
cosu

≠

≠x̂
U�x̂, ŷ; Ŝ11, Ŝ33� 2 sinu

≠

≠ŷ
U�x̂, ŷ; Ŝ11, Ŝ33�

æ
,

py � 2N� ≠

≠y
U�x̂, ŷ; Ŝ11, Ŝ33� � 2N�

Ω
sinu

≠

≠x̂
U�x̂, ŷ; Ŝ11, Ŝ33� 1 cosu

≠

≠ŷ
U�x̂, ŷ; Ŝ11, Ŝ33�

æ
.

(C1)
For small values

x̂2 ø Ŝ11, ŷ2 ø Ŝ33 , (C2)

the behavior is linear [12],

N� ≠

≠x̂
U�x̂, ŷ; Ŝ11, Ŝ33� �

1
f1
x̂ ,

N� ≠

≠ŷ
U�x̂, ŷ; Ŝ11, Ŝ33� �

1
f2
ŷ ,

(C3)
5

with focal length f1 and f2 defined by

1
f1

�
2N�rp

g0�E1 1 E2�E1
,

1
f2

�
2N�rp

g0�E1 1 E2�E2
,

(C4)

and with E1 and E2 taken from Appendix A [Eq. (A16)].
Thus,
px � 2x̂
1
f1

cosu 1 ŷ
1
f2

sinu � 2
�x cosu 1 y sinu�

f1
cosu 1

�2x sinu 1 y cosu�
f2

sinu

� 2

µ
cos2u

f1
1

sin2u

f2

∂
x 2

1
2

√
1
f1

2
1
f2

!
y sin2u ,

py � 2x̂
1
f1

sinu 2 ŷ
1
f2

cosu � 2
�x cosu 1 y sinu�

f1
sinu 2

�2x sinu 1 y cosu�
f2

cosu

(C5)

� 2
1
2

µ
1
f1

2
1
f2

∂
x sin2u 2

√
sin2u

f1
1

cos2u

f2

!
y .
In matrix form we may write

�x�sIP 1 0� � T bb �x�sIP 2 0� (C6)

with

T bb �

0BBBBBBB@

1 0 0 0 0 0
2F1 1 2F 0 0 0

0 0 1 0 0 0
2F 0 2F2 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1CCCCCCCA (C7)

and

F1 �
1
f1

cos2u 1
1
f2

sin2u ,

F2 �
1
f1

sin2u 1
1
f2

cos2u , (C8)

F �
1
2

√
1
f1

2
1
f2

!
sin2u .
The equations of motion (C6) can be obtained from the
Hamiltonian

Hbb �

Ω
1
2
F1x

2 1
1
2
F2y

2 1 Fxy

æ
d�s 2 sIP� . (C9)

Note that T bb in (C7) contains quadrupole components
(F1 and F2), focusing in both transverse planes. In addition
there appears a skew quadrupole component (F) resulting
from the rotation angle u of the cross section due to the
strong beam (F vanishes for u � 0).

APPENDIX D: DISPERSION FORMALISM
INCLUDING THE BEAM-BEAM KICK

A. Canonical transformation

The Hamiltonian for the whole ring consisting of
bending magnets, quadrupoles, skew quadrupoles, and
solenoids, including the beam-beam kick in linear form,
reads

H � H0 1 Hbb (D1)

with [13,14]
H0�x, y, z;px ,py ,pz ; s� �
1
2

1

g
2
0
p2
z 2 �xKx 1 yKy�pz 1

1
2

	�px 1 yH�2 1 �py 2 xH�2


1
1
2

	�K2
x 1 g�x2 1 �K2

y 2 g�y2 2 2Nxy
 2
1
2
z2 1

b
2
0

eV �s�
E0

h
2p

L
coswrf (D2)
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(h is the harmonic number, V�s� is the rf voltage of the
cavity, and wrf is the rf phase), where the following abbre-
viations have been introduced:

g �
e
p0c

µ
≠By

≠x

∂
x�y�0

,

N �
1
2

e
p0c

µ
≠Bx

≠x
2

≠By

≠y

∂
x�y�0

,

H �
1
2

e
p0c

Bs�0, 0, s� , (D3)

Kx �
e
p0c

By�0, 0, s� ,

Ky � 2
e
p0c

Bx�0, 0, s� .

Note that the second term of the Hamiltonian is due to so-
lenoid fields (H) which have been treated in Appendix B.
Hbb is given by Eq. (C9) in Appendix C. The Hamilto-
nian (D1) then leads to the canonical equations of motion

d

ds
x � px 1 yH ,

d

ds
px � pzKx 2 �K2

x 1 g�x 1 Ny

1 �py 2 xH�H 2 �xF1 1 yF�d�s 2 sIP� ,

d

ds
y � py 2 xH ,

d

ds
py � pzKy 2 �K2

y 2 g�y 1 Nx

(D4)

2 �px 1 yH�H 2 �yF2 1 xF�d�s 2 sIP� ,

d

ds
z � 2�xKx 1 yKy� 1

1

g
2
0
pz ,

d

ds
pz �

1

b
2
0
z
eV �s�
E0

h
2p

L
coswrf .
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Note that the linear transverse betatron oscillations and
the longitudinal motion [Eqs. (D4)] are coupled by the
terms

pzKx , pzKy, and 2 �xKx 1 yKy� , (D5)

respectively, i.e., depending on the curvature of the orbit
in the bending magnets.

In order to simplify these equations we introduce
dispersion

�D�s� �

0BBB@
D1�s�
D2�s�
D3�s�
D4�s�

1CCCA, �D�s� � �D�s 1 L� . (D6)

New variables x̃, p̃x , ỹ, p̃y , z̃, p̃z can be introduced which
satisfy the dispersion relation

x̃ � x 2 pzD1, p̃x � px 2 pzD2 ,

ỹ � y 2 pzD3, p̃y � py 2 pzD4 .
(D7)

This replacement

�x,px , y,py, z,pz� °! �x̃, p̃x, ỹ, p̃y , z̃, p̃z� (D8)

can be achieved using the generating function [14–17]

F2�x, y, z, p̃x , p̃y, p̃z� � p̃x�x 2 p̃zD1� 1 p̃zxD2

1 p̃y�y 2 p̃zD3� 1 p̃zyD4

2
1
2

�D1D2 1 D3D4�p̃2
z

1 p̃zz , (D9)

with the result that
x̃ �
≠F2

≠p̃x
� x 2 p̃zD1, px �

≠F2

≠x
� p̃x 1 p̃zD2 ,

ỹ �
≠F2

≠p̃y
� y 2 p̃zD3, py �

≠F2

≠y
� p̃y 1 p̃zD4 ,

z̃ �
≠F2

≠p̃z
� z 1 �2p̃xD1 1 xD2 2 p̃yD3 1 yD4� 2 �D1D2 1 D3D4�p̃z

� z 1 	2p̃xD1 1 �x 2 D1p̃z�D2 2 p̃yD3 1 �y 2 D3p̃z�D4

(D10)

� z 1 �2p̃xD1 1 x̃D2 2 p̃yD3 1 ỹD4� � z 1 �2pxD1 1 xD2 2 pyD3 1 yD4� ,

pz �
≠F2

≠z
� p̃z ,
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and

H̃ � H 1
≠F2

≠s
. (D11)

In matrix form, Eqs. (D10) read

�̃x � K �x, �x � K21 �̃x , (D12)
124002-17
with

�̃x �

0BBBBBBB@

x̃
p̃x
ỹ
p̃y
z̃
p̃z

1CCCCCCCA (D13)

and
K�s� �

0BBBBBBB@

1 0 0 0 0 2D1
0 1 0 0 0 2D2
0 0 1 0 0 2D3

0 0 0 1 0 2D4

D2 2D1 D4 2D3 1 0
0 0 0 0 0 1

1CCCCCCCA, K21�s� �

0BBBBBBB@

1 0 0 0 0 D1
0 1 0 0 0 D2
0 0 1 0 0 D3

0 0 0 1 0 D4

2D2 D1 2D4 D3 1 0
0 0 0 0 0 1

1CCCCCCCA . (D14)

Note that K�s� is symplectic,

KT �s�JK�s� � J (D15)

[with J given by Eq. (A6)].
Taking into account the defining equations for the dispersion in the general case of arbitrary velocity b0,

d
ds
D1 � D2 1 HD3 ,

d
ds
D2 � �D4 2 HD1�H 2 �K2

x 1 g�D1 1 ND3 2 �F1D1 1 FD3�d�s 2 sIP � 1 Kx ,

d
ds
D3 � D4 2 HD1 ,

(D16)

d
ds
D4 � 2�D2 1 HD3�H 1 ND1 2 �K2

y 2 g�D3 2 �F1D3 1 FD1�d�s 2 sIP� 1 Ky ,

the new Hamiltonian reads

H̃ �
1
2

	�p̃x 1 ỹH�2 1 �p̃y 2 x̃H�2
 1
1
2

	�K2
x 1 g�x̃2 1 �K2

y 2 g�ỹ2
 2 Nx̃ỹ

2
1
2

��KxD1 1 KyD3� 2 1�g2
0 �p̃2

z 2
1

b
2
0
h

2p

L
eV
E0

coswrf
1
2

	z̃ 1 �p̃xD1 2 x̃D2 1 p̃yD3 2 ỹD4�
2

1

∑
1
2
x̃2F1 1

1
2
ỹ2F2 1 Fxy

∏
d�s 2 sIP� . (D17)
Note that the dispersion vector �D is the periodic solu-
tion of the linearized equations of orbital motion when the
cavities are excluded and pz � 1.

The coupling terms [see (D17)] arising from the orbit
curvature disappear. Instead, there is a term

2
1
2

	z̃ 1 �p̃xD1 2 x̃D2 1 p̃yD3 2 ỹD4�
2

3
1

b
2
0
h

2p

L

eV

E0
coswrf
which disappears when all four dispersion terms
(D1,D2,D3,D4) are equal to zero at the location of
the cavities.

For further analysis we split the Hamiltonian (D17) into
three parts,

H̃ � H̃ 0 1 H̃ 1 1 H̃ 2, (D18)

with
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1240
H̃ 0 �
1
2

	�p̃x 1 ỹH�2 1 �p̃y 2 x̃H�2
 1
1
2

	�K2
x 1 g�x̃2 1 �K2

y 2 g�ỹ2 2 Nx̃ỹ


2
1
2

��KxD1 1 KyD3� 2 1�g2
0 �p̃2

z 2
1

b
2
0
h

2p

L

eV

E0
coswrf

1
2
z̃2 ,

H̃ 1 � 2
1

b
2
0
h

2p

L

eV

E0
coswrf

1
2

�p̃xD1 2 x̃D2 1 p̃yD3 2 ỹD4� 	2z̃ 1 � p̃xD1 2 x̃D2 1 p̃yD3 2 ỹD4�
 ,

(D19)

H̃ 2 �

∑
1
2
x̃2F1 1

1
2
ỹ2F2 1 Fxy

∏
d�s 2 sIP�,
where we have gathered in H̃ 1 all terms of the cavities
producing synchrobetatron coupling and in H̃ 2 the terms
resulting from the beam-beam interaction.

In terms of the variables x̃, p̃x , ỹ, p̃y, z̃, p̃z, Eq. (D4)
then takes the form

d
ds

�̃x � A�0� �̃x 1 A�1� �̃x 1 A�2� �̃x (D20)

with
02-18
A�0� �̃x � 2J
≠H̃ 0

≠ �̃x
�) A�0�

mn � 2Sml
≠2H̃ 0

≠yl≠yn
,

A�1� �̃x � 2J
≠H̃ 1

≠ �̃x
�) A�1�

mn � 2Sml
≠2H̃ 1

≠yl≠yn
, (D21)

A�2� �̃x � 2J
≠H̃ 2

≠ �̃x
�) A�2�

mn � 2Sml
≠2H̃ 2

≠yl≠yn
.

In detail, one obtains from Eqs. (D19)

A�0��s� �

√
A

�b�
434�s� 0232

0 234 A
�z�
232�s�

!
, (D22)
A�1��s� �
1

b
2
0

eV �s�
E0

h
2p

L
coswrf

0B@ D2
�D 2D1

�D D4
�D 2D3

�D 2 �D �04
0 0 0 0 0 0

2D2 D1 2D4 D3 0 0

1CA ,

A�2��s� �

0BBBBBBB@

0 0 0 0 0 0
2F1 0 2F 0 0 0

0 0 0 0 0 0
2F 0 2F2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCCCCAd�s 2 sIP� ,

(D23)
with A
�b�
434�s� and A

�z�
232�s�0BBB@

0 1 H 0
2�K2

x 1 g 1 H2� 0 N H
2H 0 0 1
N 2H 2�K2

y 2 g 1 H2� 0

1CCCA ,

(D24)0@ 0 2��KxD1 1 KyD3� 2 1�g
2
0 �

1
b

2
0

eV �s�
E0

h
2p

L cosw 0

1A ,

(D25)

respectively, and �D defined by Eq. (D6).4

Here the matrix A�1� results from the synchrobetatron
coupling induced by the cavities and A�2� results from the
beam-beam kick.

The tune shifts induced by A�1� and A�2� can be obtained
by determining the tunes with and without H̃ 1 and H̃ 2

or by perturbative methods as described in Refs. [18,19].
In a similar way one can calculate the distortion of the
dispersion induced by the beam-beam kick.
B. The eigenvalue spectrum of the orbital revolution
matrix

The solution of the original Hamiltonian (D1) can be
written as

�x �s� � M�s, s0� �x �s0� , (D26)

which defines the linear transfer matrix M�s, s0� corre-
sponding to the variables �x, y, z;px ,py ,pz�.

Note that M�s, s0� is symplectic [18]

MT �s, s0�JM�s, s0� � J . (D27)

Thus the (normalized) eigenvectors of the revolution
matrix

M�s0 1 L, s0� �yk�s0� � e2i2pQk �yk�s0� ,

Q2k � 2Qk, �k � I, II, III�
(D28)

4Neglecting all kinds of coupling, such as synchrobetatron
coupling [A1�s� � 0] and coupling of betatron motion (N �
H � 0, no skew quadrupoles and no solenoids), we obtain the
dispersion formalism used in Ref. [1].
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obey the orthogonality relations [see Eq. (A4)], where we
have assumed that the stability condition

Qk real number (D29)

is satisfied.
Putting

�yk�s� � �̂yk�s�e2i2pQk�s�L�, (D30)

we obtain from (D28)

�̂yk�s 1 L� � �̂yk�s� (D31)

(Floquet theorem). Using this result, action-angle vari-
ables for coupled motion can be introduced as described
in Ref. [18].

The introduction of the dispersion has been accom-
plished by the matrix K [see Eq. (D12)]

�̃x � K �x, �x � K21 �̃x . (D32)

Using the transfer matrix M�s, s0� we can write

�̃x�s� � K�s�M�s, s0�K21�s0� �̃x�s0� , (D33)

showing that the transfer matrix M̃�s, s0� can be repre-
sented as [20]

M̃�s, s0� � K�s�M�s, s0�K21�s0� . (D34)
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In particular, one has

M̃�s0 1 L, s0� � K�s0�M�s0 1 L, s0�K21�s0� .
(D35)

For the eigenvectors one gets

�̃yk�s0� � K�s0� �yk �s0� (D36)

since

M̃�s0 1 L, s0�K�s0� �yk�s0� � K�s0�M�s0 1 L, s0�
3 K21�s0�K�s0� �yk�s0�

� K�s0�M�s0 1 L, s0� �yk�s0�

� e2i2pQkK�s0� �yk�s0� .
(D37)

Note that the eigenvalues and thus the Q values remain
unchanged;

Q̃k � Qk . (D38)

The orthogonality relations for the new eigenvectors �̃yk
are still valid. Furthermore, M̃�s, s0� is symplectic as it is
obtained by a similarity transformation of M with K.

C. Decoupled motion; Twiss parameters

In the case of vanishing dispersion within the cavities,
the revolution matrix M̃�s0 1 L, s0� has the simple block-
diagonal form
M̃�s0 1 L, s0� �

√
M

�b�
�434��s0 1 L, s0� 0�432�

0�234� M
�z�
�232��s0 1 L, s0�

!
, (D39)
where M
�b�
�434��s0 1 L, s0� corresponds to the (transverse)

betatron motion and M
�z�
�232��s0 1 L, s0� to the (longitudi-

nal) synchrotron oscillations.
Furthermore, the two-dimensional revolution matrix

M
�z�
�232��s0 1 L, s0�, which is defined by the equations of

synchrotron motion
d
ds
z̃ � 2��KxDx 1 KyDy� 2 1�g2

0 �p̃z ,

d
ds
p̃z �

1

b
2
0
h

2p

L
eV �s0�
E0

coswrfz̃

(D40)

[see Eq. (D25)], can be represented in the form
M
�z�
�232��s0 1 L, s0� �

√
cos2pQz 1 az sin2pQz bz sin2pQz

2gz sin2pQz cos2pQz 1 az sin2pQz

!
(D41)
with

bzgz � a2
z 1 1 (D42)

and

az � az�s0�, bz � bz�s0�, gz � gz�s0� .
(D43)

From these equations one sees that the eigenvectors �̃yk�s0�
can be written as
�̃yk �

√
�y

�b�
k
�02

!
, �k � I, II� ,

�̃yIII �

√
�04
�tz

!
, (D44)

�tz �

√
tz1
tz2

!
�

1p
2bz�s0�

√
bz�s0�

2�az�s0� 1 i�

!
e2icz�s0�.

In the absence of skew quadrupoles (N � 0) and
solenoids (H � 0) [the coupling term Fxy vanishes in
(D19)], the betatron oscillations are decoupled, leading to
124002-19
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M
�b�
�434��s0 1 L, s0� �

√
M

�x�
�232��s0 1 L, s0� 0�232�

0�232� M
�w�
�232��s0 1 L, s0�

!
,

M
�y�
�232��s0 1 L, s0� �

√
cos2pQw 1 aw sin2pQw bw sin2pQw

2gw sin2pQw cos2pQw 1 aw sin2pQw

!
, (D45)

bwgw � a2
w 1 1, �w � x, y� .

As a result, the vectors �̃yI and �̃yII then take a form similar to �̃yIII ,

�y
�b�
I �

√
�tx
�02

!
, �y

�b�
II �

√
�02
�ty

!
, �tw �

√
tw1
tw2

!
�

1p
2bw�s0�

√
bw�s0�

2�aw�s0� 1 i�

!
e2icw�s0�, �w � x, y� . (D46)
It is easy to generalize this treatment to the coupled case;
see Ref. [18].
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