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Resonance families and their action on betatron motion
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The present paper takes one step beyond the single-resonance theory for betatron motion by summing
all the members of a given resonance family and expressing the joint influence in a single driving term.
As a demonstration and confirmation of this work, the family driving terms are used to derive the classic
closed-orbit and betatron-modulation equations of Courant and Snyder. A more serious demonstration
is made by applying the family driving terms to the compensation of linear coupling and showing how
numerical matrix-based and resonance compensation schemes are related. In a final phase, the Hénon
map is used to compare the efficiency of different coupling compensation schemes with respect to
dynamic aperture.

PACS numbers: 41.85.–p, 29.27.–a
I. INTRODUCTION

Transverse, single-particle dynamics in synchrotrons has
been widely studied using a Hamiltonian treatment in
which the perturbation terms for single resonances are re-
tained with the basic stable motion. These studies re-
fer back to the classic references [1–4]. The action of
single resonances has been successfully applied to the case
of half and third integer extraction [5] and more general
phenomena such as the beam losses in the CERN Intersect-
ing Storage Rings [6]. The present paper takes one further
step in showing that the influence of all the resonances in a
particular family can be summed and that their combined
driving term can be used to derive well-known equations
such as the closed-orbit distortion equation of Courant and
Snyder [7]. The application of the summed driving terms
is taken further and used to make an analytical bridge be-
tween the coupling compensation schemes that have, in
the past, been based on single coupling resonances and the
numerical approach of arranging the off-axis blocks in the
4 3 4 transfer matrix to be zero.

II. THE SUMMED-RESONANCE DRIVING TERM

The summed-resonance driving term Cn1,n2,` of a given
resonance of order N � n1 1 n2 can be calculated by
summing the single-resonance driving term Cn1,n2,p [8]
over all the p harmonics1:

Cn1,n2,` �
1X̀

p�2`

Cn1,n2,p . (1)

Expressing (1) explicitly one has

1Note that although Eq. (1) is expressed in the resonance
form, it is valid whether the exponent is small or not, which
is why one can meaningfully sum over p.
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Cn1,n2,` �
X̀

p�2`

Z 2p

0
A�u�e2i�n1Qx1n2Qy2p�u du , (2)

where

A�u� �
R2

p�2R�N�2jn1j! jn2j!
bx�u�jn1j�2by�u�jn2j�2

3 ei�n1mx�u�1n2my �u��K̄�u� , (3)

with,2 in the most common case,
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jBrj
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for jn2j even, and
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∂∏
,

for jn2j odd.
The terms containing the axial field Bs in the two

previous formulas have to be considered only if n1 � 1,
n2 � 61 (linear coupling). A more general expression
for K̄ that allows the presence of a varying axial field
to be taken into account (and does not include the linear
case) is given by

2In the following formulas the partial derivatives are evaluated
at x � y � 0.
© 2000 The American Physical Society 054001-1



PRST-AB 3 G. DE NINNO AND D. FANELLI 054001 (2000)
K̄ � �21��jn2j12��2 1
2jBrj

∑
�21��jn2j12��2

µ
≠�N21�By

≠x�N2jn2j22�≠y�jn2j11� 2
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,

for jn2j even, N $ 3 and 1 # jn2j # �N 2 2�;

K̄ � �21��jn2j21��2 1
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2
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by

∂∏
,

for jn2j odd, N $ 3 and 1 # jn2j # �N 2 2�.
The angle u � s�R is the coordinate along the ring, Qx,y

are the horizontal and vertical tunes, mx,y are the horizontal
and vertical phase advances, bx,y are the horizontal and
vertical beta functions, and R is the average radius of the
ring. Suppose K̄�u� is different from zero and constant in
j short intervals (i.e., the regions occupied by the sources
of coupling and by possible correctors) �ui , ui 1 Dui� in
which A�u� can be considered approximately constant (thin
lens approximation)3:

Cn1,n2,` �
jX

i�1

�DCn1,n2,`�i . (4)

Now define D � n1Qx 1 n2Qy and compute �DCn1,n2,`�i ,
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the contribution to Cn1,n2,` from the ith subelement,

�DCn1,n2,`�i �
1X̀

p�2`

Z ui1Dui

ui

A�u�e2i�D2p�u du , (5)

which, when integrated, gives

�DCn1,n2,`�i � A�ui�
1X̀

p�2`

i
D 2 p

�e2i�D2p� �ui1Dui �

2 e2i�D2p�ui � . (6)

The summation can be redefined making use of the shift
�D� (the closest integer to D) so that p � �D� 1 k where
k is an integer. In the limit �D 2 �D��Dui ø 1, the
previous expression becomes4
�DCn1,n2,`�i � A�ui�e2i�D2�D��ui

1X̀
k�2`

i
�D 2 �D�� 2 k

�eik�ui1Dui� 2 eikui �

� A�ui�e2i�D2�D��ui

1X̀
k�2`

1
�D 2 �D�� 2 k

��� sin�kui� 2 sin�k�ui 1 Dui��

1 i�cos�k�ui 1 Dui�� 2 cos�kui�	��� . (7)

To sum these series first rewrite them in a more suitable form (x � ui or x � ui 1 Dui) valid when 0 , x , 2p [9]:
1X̀

k�2`

sin�kx�
�D 2 �D�� 2 k

� 2
p sin��D 2 �D�� �p 2 x��

sin��D 2 �D��p�
, (8)

1X̀
k�2`

cos�kx�
�D 2 �D�� 2 k

�
p cos��D 2 �D�� �p 2 x��

sin��D 2 �D��p�
. (9)

The application of (8) and (9) to (7) then gives

�DCn1,n2,`�i � A�ui�e2i�D2�D��ui
p

sin��D 2 �D��p�
��� sin��D 2 �D�� �p 2 ui 2 Dui�� 2 sin��D 2 �D�� �p 2 ui��

1 i�cos��D 2 �D�� �p 2 ui 2 Dui�� 2 cos��D 2 �D�� �p 2 ui��	���

� 2A�ui�e2i�D2�D��ui
2p

sin��D 2 �D��p�
sin

∑
�D 2 �D��

Dui

2

∏
e2i��D2�D�� �p2ui2Dui�2��. (10)

3In a real machine A�u� will vary slowly, or, at least, it will be possible to cut the elements into short enough pieces that A�u� can
be considered as constant over all subelements to any desired degree of accuracy.

4In the expression (7) the term e2i�D2�D��Du is expanded to the zeroth order while the terms eikDu with k � �D 2 �D�� are not
expanded. This assumption is supported a posteriori by the accuracy of the final result.
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After expressing A�ui� explicitly, �DC`�i becomes

�DCn1,n2,`�i � 2
R2K̄i

�2R�N�2jn1j! jn2j!
�D 2 �D��Dui

sin��D 2 �D��p�

3 bx�ui�jn1j�2by�ui�jn2j�2

3 ei�n1mx�ui�1n2my �ui�2�D2�D��p�. (11)

Equation (11) can be summed directly for all the ele-
mentary elements in the ring to give the coupling coef-
ficient Cn1,n2,` for the combined influence of the resonance
family:

Cn1,n2,` � 2
p�D 2 �D��

sin�p�D 2 �D���
R2

p�2R�N�2jn1j! jn2j!

3
Z 2p

0
bjn1j�2

x bjn2j�2
y

3 ei�n1mx1n2my2�D2�D��p�K̄ du . (12)

The basic differences between the summed-resonance
driving term and the standard- (single-) resonance driving
term [8]
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Cn1,n2,p �
R2

p�2R�N�2jn1j! jn2j!

3
Z 2p

0
bjn1j�2

x bjn2j�2
y ei�n1mx1n2my2�D2p�u�K̄ du

are (i) the factor p�D2�D��
sin�p�D2�D��� makes the summed-

resonance driving term “sensitive” to the position of
the working point with respect to the closest resonance,
and (ii) the factor p inside the exponential of the
summed-resonance driving term (replacing the angle u in
the single-resonance driving term) makes the summed-
resonance driving term dependent on the position where
the origin of the coordinate system is established.

Analytic comparison of the influence of single and
summed resonances

It is interesting to compare the contribution to the
coupling excitation from all resonances to that of the
closest single resonance.

Using the thin lens approximation the ith contribution
to Cn1,n2,p can be written
�DCp�i � A�ui�
Z ui1Dui

ui

e2i�D2p�u du

� A�ui�
i

D 2 p
e2i�D2p�ui �cos��D 2 p�Dui� 2 1 2 i sin��D 2 p�Dui�	

�
R2

p�2R�N�2jn1j! jn2j!
KiDui�bx�jn1j�2

i �by�jn2j�2
i ei�n1�mx�i1n2�my�i2�D2p�ui�. (13)
Figure 1 shows the ratio between k�DCn1,n2,`�ik and
k�DCn1,n2,p�ik versus the distance from the resonance
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FIG. 1. Ratio r�D� between kDCn1,n2,`k and kDCn1,n2,1k
versus D.

5Note that the phase terms are different even when exactly on
resonance.
(�D� � 1). The formulas (11) and (13) give the same re-
sult for the modulus of the driving terms when exactly on
resonance. A difference between (11) and (13) increases
(circa) quadratically as one moves away from D integer.
Agreement between the two formalisms can therefore be
expected only if the working point is close enough to the
resonance to be compensated.5 However, this is not usu-
ally the case if the aim is the full compensation of the
linear coupling, that is, both the sum and difference reso-
nances. In most practical cases, the working point is cho-
sen close to the difference resonance and relatively distant
from the sum resonance. The following sections are dedi-
cated to pointing out some of the general consequences of
the summed-resonance theory.

III. UNCOUPLED LINEAR CASE

A. Closed-orbit distortion from a dipole kick

Equation (11) can be applied to the resonance family

Qz � p , (14)

where z � x, y. This leads to the expressions for the
closed-orbit distortion due to a dipole kick and links the
054001-3
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single-resonance theory [3,8] to the integrated theory of
Courant and Snyder [7]. In this case

C` �
1X̀

p�2`

Z 2p

0
A�u�e2i�Qz2p�u du , (15)
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where now [3]

A�u� �
1

23�2pR1�2

q
bz�u� eimz �u� DB

Br
, (16)

DB�Br is the dipole error. For a localized error of length
Dl (thin lens approximation),
�DC`�i � 2
1

23�2R1�2

Qz 2 �Qz�
sin�p�Qz 2 �Qz���

p
bz

DlDB
Br

ei�mz �u�2�Qz2�Qz��p�

� 2
1

23�2R1�2

Qz 2 �Qz�
sin�pQz�

DlDB
Br

p
bz ei�mz�u�2Qzp�. (17)
Comparing Eq. (17) to the closed-orbit distortion (at the
origin) due to a kick occurring at a given position u

�z�u�0 �

p
bz�0�

2 sin�pQz�

q
bz�u�

DBDl
Br

cos�mz�u� 2 pQz�

(18)

shows that the normalized orbit distortion differs from
Re�DC`�i by only a constant,µ

z
p

bz

∂
u�0

� 2
1

�2R�21�2�Qz 2 �Qz��
Re�DC`�i . (19)

B. Betatron amplitude modulation

Applying the same procedure to the resonance family

Qz � 2p , (20)

one gets the modulation of the betatron function due to a
small gradient error occurring at a given position u. In
this case

C` �
1X̀

p�2`

Z 2p

0
A�u�ei�2Qz2p�u du , (21)

with

A�u� �
1

4pR
bz�u�e2imz�u� R2

Br

≠By

≠x
. (22)

This gives

�DC`�i � 2
1
2

Qz 2 �Qz�
sin�2p�Qz 2 �Qz���

bz�u�
Dl
Br

≠By

≠x

3 ei�2mz�u�22�Qz2�Qz��p�

� 2
1
2

Qz 2 �Qz�
sin�2pQz�

bz�u�
Dl
Br

≠By

≠x
ei�2mz�u�22Qzp�.

(23)

The last expression coincides with the modulation of the
beta function (at the origin)

�Dbz�u�0 �
bz�0�

sin�2pQz�
bz�u�

Dl
Br

≠By

≠x

3 cos�2�mz�u� 2 Qzp�	 (24)

and shows that the normalized modulation differs from
Re�DC`�i by only a constant,
µ
Dbz

bz

∂
u�0

� 2
1

221�Qz 2 �Qz��
Re�DC`�i . (25)

IV. LINEAR BETATRON COUPLING

Analyses of betatron coupling can be broadly divided
into two categories: the matrix approach [10–12] that
decouples the single-turn matrix to reveal the normal
modes and the Hamiltonian approach [8,13] that evaluates
the coupling in terms of the action of resonances using a
perturbation method. The latter is often regarded as being
less exact but good for physical insight. The general
belief is that the correction of the two closest sum and
difference resonances to the working point should be
sufficient to reduce the off-axis terms in the 4 3 4 single-
turn matrix, but in most cases this is not successful.

A. Matrix method for coupling compensation

The 4 3 4 single-turn matrix in the presence of skew
quadrupoles and/or solenoids is of the form

T �

µ
M n
m N

∂
, (26)

where M, n, m, N [ �232. Coupling compensation is
achieved by setting the two 2 3 2 matrices n and m
to zero. Because of symplecticity and periodicity of
T only four free parameters (that is the strengths of
four compensator units) are required. However, this
compensation is valid only at the origin of T. A
transformation can also be applied to the matrix T that
decouples the linear motion, thus making it possible
to describe the beam in the whole machine with the
well-known Courant and Snyder parametrization in the
transformed coordinates [10].

B. Classical Hamiltonian method for coupling
compensation

This method is based on the expansion in a Fourier
series of the coupling perturbation term in the Hamilton-
ian. The standard assumption that only the low-frequency
054001-4
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components significantly influence the motion means, in
practice, that only the nearest sum and difference reso-
nances require compensation (single-resonance compen-
sation). The essential differences between this and the
matrix approach are (i) the matrix method is exact while
the Hamiltonian method is approximate; (ii) a coupling
compensation made by the matrix method is valid only
at one point in the ring whereas the Hamiltonian method
gives a global correction; and (iii) the matrix method
leaves finite excitations in all resonances, including those
closest to the working point, whereas the Hamiltonian
method leaves finite excitations only in the far resonances.
The reason for the two last points is that the matrix
method includes all resonances automatically and com-
bines them in such a way that the matrix is uncoupled
at one point while the Hamiltonian method sets only the
closest sum and difference resonances to zero. If the far
resonances have little effect, then the two methods are vir-
tually equivalent. This is, however, an uncommon situ-
ation. The method outlined in Section II to sum the
effect of all the resonances belonging to the same family
leads to a correspondence between the standard Hamilton-
ian method and the matrix method. Once this is done, the
natural question is which of the two methods is the better
for machine-operation.

V. THE COUPLED HÉNON MAP

In this section, the summed-resonance approach is
shown to be equivalent to the matrix approach and both
are compared to the single-resonance compensation by
performing a numerical analysis on the so-called Hénon
map [14]: a hyper-simplified lattice model6 whose phase-
space trajectories show all the fundamental characteristics
of a generic (more complicated) map. In this application
the linear coupling is generated and corrected by 1 1 4
thin skew quadrupoles.7 The global compensation of the
coupling resonances (at u � 0) is achieved if

5P
j�1

�Re�DC2
` � 1 i Im�DC2`�� � 0

5P
j�1

�Re�DC1
` � 1 i Im�DC1`�� � 0 .

(27)

The compensation for both the sum and the difference
resonance is obtained solving the four-equations system
(for the four unknown ki) given by (27).

Table I shows a comparison between the strengths of
the four correctors (k225) when compensating the single-
turn matrix, the two infinite families of sum and difference

6A linear lattice model containing only one sextupolar kick.
7Lattices with only solenoids or with both types of coupling

elements give the same kinds of results.
054001-5
TABLE I. Compensator strengths (k225) in the presence of
the coupling source k1 using the single-turn matrix compensa-
tion and the summed- and single-resonance compensations.

k �m22� Matrix Summed Single

k1 (source) 0.5 0.5 0.5
k2 20.051 20.050 0.559
k3 0.034 0.033 0.554
k4 20.319 20.313 0.476
k5 20.275 20.275 0.117

resonances (for the same u � 0), and the closest sum and
difference resonances to the working point. The single-
turn matrix compensation has been performed by means
of the MAD program [15] while the (single- and multiple-)
resonance compensation has been obtained making use
of the AGILE program [16] in which the formula (11)
has been implemented. The single-turn matrix (at u �
0) in presence of the coupling source k1 � 0.5 m22 (no
compensation) has nonzero off-axis 2 3 2 submatrices
given by

T �

µ
M n
m N

∂
�

0BBB@
0.49 0.49
0.02 0.02

20.23 20.24
20.01 20.01

1CCCA ,

(28)

while the residual values of n and m after the single-
resonance compensation (C1 � C2 � 0) are given by

T �

0BBB@
20.11 24.67
0.02 0.15

0.03 24.57
0.03 20.09

1CCCA . (29)

The off-axis terms are in fact larger after the compensation
then before. This is explained by the influence of the far
resonances that cannot be neglected in this case. The same
thing can be concluded by looking at the driving terms
of the closest sum and difference resonances before the
correction

jC1j � 0.0628, jC2j � 0.0628 , (30)

and after correction by the matrix method

jC1j � 0.0207, jC2j � 0.1018 . (31)

The last two equations show that the far sum and difference
resonances have a “weight” comparable (bigger in the case
of the difference resonance) with the nearly resonances.
The virtually perfect agreement for the correction strengths
for the matrix and summed-resonance approaches im-
plies a complete equivalence of the methods and confirms
the importance of the far resonances. The quantitative
054001-5
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difference between the two approaches can be better inves-
tigated by means of a tracking analysis. In the following,
the results from stability and frequency diagrams as well
as the calculation of the dynamic aperture for the compen-
sated Hénon map are shown.

A. Stability analysis through tracking

A stability diagram can be obtained by the following
procedure: for each initial condition inside a given grid in
the physical plane �x, y� (px � py � 0), the symplectic
map representing the lattice is iterated over a certain
number of turns. If the orbit is still stable after the last
turn, the nonlinear tunes can be calculated using one of
the methods described in [17,18]. In the stability diagram
the stable initial conditions are plotted.

Figures 2–4 show the stability diagrams, first for the
uncoupled Hénon map and then for the coupled Hénon
map after the single-resonance compensation and after the
summed-resonance compensation. The comparison points
out that the summed-resonance compensation allows a
more efficient restoration of the uncoupled optics. It is
significant that the analysis of the degree of excitation is
relative to the resonances �3, 26�, �1, 24�, and �2, 25� for
the two different compensation approaches.

Using the perturbative tools of normal forms [19] one
can calculate the value of the first resonant coefficient
(leading term) in the interpolating Hamiltonian for the con-
sidered resonances. The leading term can be considered
as a “measure” of the resonance excitation. It can be
shown [20] that in absence of coupling the leading term

0

0.10.10.1
0.02

0.04

0.06

0.08

0 0.02 0.04 0.080.06

FIG. 2. Stability domain of the uncoupled Hénon map.
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FIG. 3. Stability domain after the summed-resonance
compensation.

of the resonances �3, 26� and �1, 24� is different from
zero (first order excitation) whereas the leading term of the
resonance �2, 25� is zero (second order excitation). The
strength of the coupling (that is, in the considered case,
the strength of the residual coupling after the compensa-
tions) is proportional to the growth of the leading term
of the first order nonexcited resonances and to the de-
crease of the leading term of the other ones. The resonance

0
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0.04

0.06

0.08

0 0.02 0.04 0.080.06

FIG. 4. Stability domain after the single-resonance
compensation.
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FIG. 5. Network of resonances of the uncoupled Hénon map.

degree of the excitation varying the compensation ap-
proach can be better visualized plotting the network of
the resonances and their widths inside the stability do-
main. The analysis of Figs. 5–7 confirms that the single-
resonance method is characterized by a residual coupling
considerably stronger than the one left by the summed-
resonance compensation.

FIG. 6. Network of resonances after the summed-resonance
compensation.
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FIG. 7. Network of resonances after the single-resonance
compensation.

B. Dynamic aperture calculations

The dynamic aperture as a function of the number
of turns N can be defined [21] as the first amplitude
where particle loss occurs, averaged over the phase space.
Particles are started along a grid in the physical plane
�x, y�:

x � r cos u, y � r sin u , (32)

and initial momenta px and py are set to zero. Let r�u, N�
be the last stable initial condition along u before the
first loss (at a turn number lower than N). The dynamic
aperture is defined as

D �

ΩZ p

2

0
�r�u, N��4 sin�2u� du

æ1�4

. (33)

An approximated formula for the error associated to
the discretization over both the radial and the angular
coordinate can be obtained by replacing the dynamic
aperture definition with a simple average over u. Using a
Gaussian sum in quadrature the associated error reads

DD �

s
�Dr�2

4
1

øÇ
≠r
≠u

Ç¿2 �Du�2

4
, (34)

where Dr and Du are the step sizes in r and u, respec-
tively. In Table II the values (with the associated errors)
of the dynamic aperture are quoted for the three studied
optics for short (N � 5000) and medium (N � 20 000)
term tracking.

The difference between the summed- and the single-
resonance compensations is noticeable: the compensation
of the all families relative to the coupling resonances
allows an improvement close to 10% with respect to the
054001-7
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TABLE II. Dynamic aperture values relative to the uncoupled
Hénon map and after the summed- and single-resonance
compensations. The associated error [according to the formula
(34)] is about 2% for N � 5000 and about 4% for N � 20 000.

D (m) Uncoupled Summed Single

N � 5000 0.041 0.041 0.037
N � 20 000 0.041 0.041 0.037

case in which the high frequency part of the perturbative
Hamiltonian is neglected.

VI. CONCLUSIONS

A general method has been derived for the summation of
all the resonances within a given family both for the linear
and for the nonlinear cases. The fact that this summation
is valid and gives a meaningful result is confirmed by its
application to the known closed-orbit distortion equation,
the betatron-modulation equation, and the decoupling of
the linear transfer matrix for a ring. The application of
the summed-resonance driving term to the coupling raises
the question of the relative merits of the different types
of coupling compensation that are now possible. This
problem has been investigated with the help of the Hénon
map. The results indicate that the summed-resonance
compensation (equivalent to the matrix approach) is the
more beneficial for the dynamic aperture.
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