Comment on "Double and Single Ionization of Helium by High-Velocity N⁷⁺ Ions"

In a recent Letter, ¹ Heber *et al.* have reported on measurements of the ratio R of the double-ionization to single-ionization cross sections for a helium target. The velocity dependence of R was investigated over the range 10-30 MeV/amu using N^{7+} projectiles. From a comparison between their experimental results and a semi-empirical analysis from Knudsen *et al.* ² and theoretical estimates by Ford and Reading, ³ it was concluded that an unknown effect caused the experimental results for N^{7+} ions to be a factor of ~ 2 larger than expected.

Based on our earlier measurements 4,5 of R for antiprotons, protons, and He⁺⁺ ions, we found that R can be given in the form

$$R = R_{\rm I} + q^2 R_{\rm II} - 2q R_{\rm int}$$
.

 $R_{\rm I}$ represents the fraction of the double-ionization cross section which stems from only one projectile-electron interaction TS-1. $R_{\rm II}$ represents the fraction which stems from two projectile interactions TS-2, and $R_{\rm int}$ represents the interference term between these two mechanisms; q is the projectile charge state. $R_{\rm I}$, $R_{\rm II}$, and $R_{\rm int}$ were determined in the velocity range from 1 to 10 MeV/amu, and theoretical estimates of $R_{\rm I}$, $R_{\rm II}$, and $R_{\rm int}$

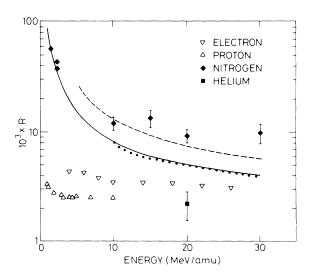


FIG. 1. This figure is identical to Fig. 2 of Ref. 1 except for the dashed line which represents the R ratio estimated from an analysis of antiproton, proton, and He^{++} data (for details, see text).

were derived.

Since the velocity dependence of $R_{\rm I}$, $R_{\rm II}$, and $R_{\rm int}$ is well understood from the theoretical estimates, we have extrapolated the experimental values up to 30 MeV/amu in order to compare with the measurements of Heber *et al.*¹ On this basis, we have constructed the curve shown in Fig. 1, and, except for the point at 30 MeV/amu, good agreement with the new experimental results is obtained.

The calculated ratio R in Fig. 1 is plotted only to a lowest energy of about 5 MeV/amu since this energy corresponds to a value $\kappa = 1$ for N^{7+} projectiles ($\kappa = 2qv_0/v$, where v_0 is the Bohr velocity and v is the projectile velocity). In Ref. 2, it was noted that a perturbative treatment of collision processes is valid in the regime where $\kappa < 1$.

It is interesting to note that simple q scaling rules for the three contributions to double ionization of He apply for high-velocity atoms. This observation may serve as a guide for future theoretical work in the field of two-electron processes.

L. H. Andersen, P. Hvelplund, H. Knudsen, S. P. Møller, J. O. P. Pedersen, A. H. Sørensen, and E. Uggerhøj

Institute of Physics University of Aarhus DK-8000 Aarhus C, Denmark

K. Elsener CERN CH-1211 Geneva, Switzerland

E. MorenzoniPaul Scherrer InstituteCH-5334 Villigen, Switzerland

Received 24 May 1990 PACS numbers: 34.50.Fa

¹O. Heber, B. B. Bandong, G. Sampoll, and R. L. Watson, Phys. Rev. Lett. **64**, 851 (1990).

²H. Knudsen, L. H. Andersen, P. Hvelplund, G. Astner, H. Cederquist, H. Danared, L. Liljeby, and K.-G. Rensfelt, J. Phys. B 17, 3545 (1984).

³A. L. Ford and J. F. Reading (Ref. 12 of Ref. 1).

⁴L. H. Andersen, P. Hvelplund, H. Knudsen, S. P. Møller, A. H. Sørensen, K. Elsener, K.-G. Rensfelt, and E. Uggerhøj, Phys. Rev. A **36**, 3612 (1987).

⁵L. H. Andersen, P. Hvelplund, H. Knudsen, S. P. Møller, J. O. P. Pedersen, S. Tang Petersen, E. Uggerhøj, K. Elsener, and E. Morenzoni, Phys. Rev. A **40**, 7366 (1989).