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Abstract

We study CP violation in chargino production and decay in the Minimal Super-
symmetric Standard Model (MSSM) with complex parameters at an e+e− linear
collider with longitudinally polarized beams. We investigate CP-sensitive asymme-
tries by means of triple product correlations and study their dependence on the
complex parameters M1 and µ. We give numerical predictions for the asymmetries
and their measurability at the future International Linear Collider. Our results
show that the CP asymmetries can be measured in a large region of the MSSM
parameter space.
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1 Introduction

In the Minimal Supersymmetric Standard Model (MSSM) [1] the supersymmetric partners
of the gauge bosons and Higgs bosons with the same electric charge mix and form the
neutralinos χ̃0

i (i = 1, . . . , 4) and the charginos χ̃+

k (k = 1, 2), as the neutral and charged
mass eigenstates, respectively. The charginos and the neutralinos are of particular interest,
as they will presumably be among the lightest supersymmetric (SUSY) particles. One of
the main goals of the International Linear Collider (ILC) [2, 3] will be the determination of
the underlying SUSY parameters. Those parameters that enter the neutralino/chargino
system at tree level are the gaugino mass parameters M1 and M2, the higgsino mass
parameter µ, and the ratio of the vacuum expectation values of the Higgs fields, tanβ.
Among these parameters M1 and µ can be complex, while M2 and tan β can be chosen
real. In [4, 5] methods have been developed to determine the parameters in the neutralino
and chargino system with and without CP violation by measurements of the neutralino
and chargino masses and their production cross sections.

The phases φµ and φM1
of µ and M1 may be constrained or correlated by the ex-

perimental upper bounds on the electric dipole moments (EDMs). These constraints,
however, are rather model-dependent [6]. While the restriction on the phase φµ, due to
the electron EDM, is rather severe in a constrained MSSM with selectron masses of the
order of 100 GeV [7], it may disappear if lepton-flavour-violating terms in the MSSM La-
grangian are included [8]. Recently it has been pointed out that for large trilinear scalar
couplings A we can simultaneously fulfil the EDM constraints of electron, neutron, and of
the atoms 199Hg and 205Tl where, at the same time, φµ ∼ O(1) [9]. The size of the phase
φM1

, on the other hand, is less strongly restricted in the MSSM. Thus, the CP phases
φM1

and φµ can have a big influence on the production and decay of charginos and neu-
tralinos at the ILC. In particular, they give rise to CP-sensitive observables that may be
accessible at future collider experiments. Measurements of CP-sensitive observables are
necessary to prove that CP is violated. Furthermore, only the inclusion of CP-sensitive
observables allows us to deduce the underlying model parameters in an unambiguous
way. In neutralino production with subsequent decay, CP-sensitive observables based on
triple product correlations have been investigated in [10, 11, 12, 13]. Also for the case of
chargino production and decay, various CP-sensitive observables have been studied. De-
cay rate asymmetries in chargino decays have been studied in [14] and CP asymmetries
in decay chains of sneutrinos involving charginos in [15]. CP-sensitive asymmetries based
on triple product correlations have been analysed for the subsequent two-body decays
χ̃−

j → χ̃0
1W

− [16] and χ̃−

j → ν̃ℓℓ
− [17]. For the case of transverse e± beam polariza-

tion azimuthal asymmetries have been studied for the same two-body decays, showing a
pronounced dependence on φM1

and φµ [18]. In the present paper we extend previous
investigations of CP violation in chargino production and decay to the case of chargino
three-body decays.

We study the production processes

e+e− → χ̃+
1 χ̃−

k , k = 1, 2 , (1)

at a linear collider with longitudinal beam polarizations, and subsequent leptonic or
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hadronic three-body decays of the χ̃+
1 ,

χ̃+
1 → χ̃0

1 ν ℓ+ , ℓ = e, µ , (2)

and

χ̃+
1 → χ̃0

1 s̄ c , (3)

where we assume that the momenta ~pχ̃+

1
, ~pℓ, ~pc and ~ps of the associated particles can

be measured or reconstructed. We study two T-odd observables based on triple product
correlations of momentum vectors:

Tℓ = ~pℓ+ · (~pe− × ~pχ̃+

1
) , (4)

Tq = ~ps̄ · (~pc × ~pe−) . (5)

The triple product Tℓ, Eq. (4), relates momenta of initial, intermediate and final particles,
whereas Tq, Eq. (5), uses only momenta from the initial and final states. Therefore, both
triple products depend in a different way on the production and decay processes.

The triple product Tℓ, Eq. (4), involves the momentum of the decay lepton that usually
can be very accurately measured. However, the momentum of the chargino has to be
reconstructed with information from the decay of the second chargino χ̃−

k [13]. For the
triple product Tq, Eq. (5), it is necessary to identify the c-quark, which is expected to
be possible with reasonable efficiency and purity [19, 20, 21]. To derive the CP-violating
asymmetry also the charge of the c-quark has to be detected, which can be done with
specific vertex detectors [19, 22, 23]. The corresponding T-odd asymmetries are defined
by

AT (Tℓ,q) =
N [Tℓ,q > 0] − N [Tℓ,q < 0]

N [Tℓ,q > 0] + N [Tℓ,q < 0]
, (6)

where N [Tℓ,q > (<) 0] is the number of events for which Tℓ,q > (<) 0.
Finally we recall that a non-zero value of the T-odd asymmetries does not immediately

imply that the CP symmetry is violated since final-state interactions give rise (although
only at the one-loop level) to the same asymmetries. However, a genuine signal of CP
violation can be obtained when one combines AT (Tℓ,q) with the corresponding asymmetry
ĀT (Tℓ,q) for the charge-conjugated processes. Then in the CP asymmetries

ACP(Tℓ,q) =
AT (Tℓ,q) − ĀT (Tℓ,q)

2
, (7)

the effect of final-state interactions cancels out.
The paper is organized as follows. In Section 2 we briefly recall the formalism, which

we use to calculate the cross sections and the CP asymmetries. We present our numerical
results in Section 3. Finally, we summarize and conclude in Section 4.
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2 Cross section and CP asymmetries

The chargino production process (1) proceeds via γ and Z0 exchange in the s-channel
and via ν̃e exchange in the t-channel (Fig. 1). The decay processes (2) and (3) contain
contributions from W+, ℓ̃L (ℓ = e, µ) and ν̃ℓ exchange in the leptonic case and from W+,
c̃L and s̃L exchange in the hadronic case (Fig. 2). The interaction Lagrangians for these
processes can be found, for instance, in [24].
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Figure 1: Feynman diagrams of the production process e+e− → χ̃+
i χ̃−

j .
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Figure 2: Feynman diagrams of the three-body decay χ̃+
i → χ̃0

kf̄
dfu, where fd = e, µ, s

and fu = νe, νµ, c.

2.1 Cross section

For the calculation of the squared amplitude of the whole process e+e− → χ̃+
i χ̃−

j →
χ̃0

1f̄
dfuχ̃−

j , we use the spin-density matrix formalism [24, 25]. The squared amplitude can
then be written as

|T |2 = 2|∆(χ̃+
i )|2

∑

λi,λ
′
i

ρP
λiλ

′
i ρDλ′

iλi
, (8)

with the propagator ∆(χ̃+
i ) = 1/[p2

χ̃+

i

− m2
i + imiΓi]. Here, λi, λ′

i, mi, Γi denote the

helicities, masses and widths of the chargino χ̃+
i . The factor 2 in Eq. (8) is due to the

summation over the helicities of chargino χ̃−

j , whose decay is not considered. The squared
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amplitude is composed of the unnormalized spin-density matrices ρP for the production
and ρD for the decay, which carry the helicity indices λi, λ

′

i of the chargino χ̃+
i . Introducing

a set of polarization basis 4-vectors sa
χi

(a = 1, 2, 3) for the charginos χ̃+
i , where s3

χi

describes the longitudinal polarization and s1
χi

, s2
χi

the transverse polarization in and
perpendicular to the production plane, respectively, and which fulfil the orthonormality
relations sa

χi
· sb

χi
= −δab and sa

χi
· pχi

= 0, the density matrices can be expanded in terms
of the Pauli matrices:

ρP
λiλ

′
i = δλiλ

′
i
P +

3
∑

a=1

σa
λiλ

′
i
Σa

P , (9)

ρDλ′
iλi

= δλ′
iλi

D +
3
∑

a=1

σa
λ′

iλi
Σa

D . (10)

Then the squared amplitude is given by

|T |2 = 4|∆(χ̃+
i )|2

{

P (χ̃+
i χ̃−

j )D(χ̃+
i ) +

3
∑

a=1

Σa
P (χ̃+

i )Σa
D(χ̃+

i )

}

, (11)

where P (χ̃+
i χ̃−

j ) and D(χ̃+
i ) are those parts of the spin density production and decay

matrices, that are independent of the polarization of the charginos. The contributions
Σa

P (χ̃+
i ) and Σa

D(χ̃+
i ) depend on the polarization vector sa of the decaying chargino χ̃+

i .
The full expressions for the quantities P (χ̃+

i χ̃−

j ), D(χ̃+
i ), Σa

P (χ̃+
i ) and Σa

D(χ̃+
i ) can be

found in [24]. Finally, the differential cross section is given by

dσ =
1

8E2
b

|T |2(2π)4δ4

(

p1 + p2 −
7
∑

i=4

pi

)

dlips(p3 · · · p7) , (12)

where Eb is the beam energy and dlips(p3 · · · p7) is the Lorentz-invariant phase-space
element.

2.2 CP asymmetries

The T-odd asymmetries defined in Eq. (6) are calculated as

AT (Tℓ,q) =

∫

sign{Tℓ,q} |T |2 dlips
∫

|T |2 dlips
, (13)

where we weight the sign of the triple product correlations in Eqs. (4) and (5) with the
associated squared amplitude. Since in the numerator

∫

sign{Tℓ,q}P (χ̃+
i χ̃−

j )D(χ̃+
i )dlips =

0 and in the denominator
∫

Σa
P (χ̃+

i )Σa
D(χ̃+

i )dlips = 0, we obtain by inserting the squared
amplitude, Eq. (11), into Eq. (13):

AT (Tℓ,q) =

∫

sign{Tℓ,q}Σa
P (χ̃+

i )Σa
D(χ̃+

i )dlips
∫

P (χ̃+
i χ̃−

j )D(χ̃+
i )dlips

. (14)
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We split Σa
P (χ̃+

i ) and Σa
D(χ̃+

i ) into the T-odd terms Σa,O
P (χ̃+

i ) and Σa,O
D (χ̃+

i ), which contain
the respective triple product, and T-even terms Σa,E

P (χ̃+
i ) and Σa,E

D (χ̃+
i ) without triple

products:

Σa
P (χ̃+

i ) = Σa,O
P (χ̃+

i ) + Σa,E
P (χ̃+

i ) , Σa
D(χ̃+

i ) = Σa,O
D (χ̃+

i ) + Σa,E
D (χ̃+

i ) . (15)

The terms of |T |2, Eq. (11), which contribute to the numerator of AT are

Σa,O
P (χ̃+

i )Σa,E
D (χ̃+

i ) + Σa,E
P (χ̃+

i )Σa,O
D (χ̃+

i ) , (16)

where the first (second) term is sensitive to the CP phases in the production (decay)
process of the chargino χ̃+

i . The explicit expressions for the T-odd and T-even contribu-
tions in Eq. (16) are given in Appendix A. (The analytical expressions of the quantities
P (χ̃+

i χ̃−

j ) and D(χ̃+
i ) can be found in [24].) With AT (Tℓ,q) we calculate the corresponding

CP asymmetries ACP(Tℓ,q) according to Eq. (7).

3 Numerical results

In this section we give numerical results for the CP asymmetries ACP(Tℓ,q), Eq. (7), for the
reactions (1), (2), (3), at an e+e− linear collider with centre-of-mass energy

√
s = 500 GeV

and longitudinally polarized beams. We analyse the hadronic decay χ̃+
1 → χ̃0

1s̄c and the
leptonic decays χ̃+

1 → χ̃0
1ℓ

+ν, ℓ = e, µ. To this end, we consider three scenarios (see
Tables 1, 2 and 3) for which mχ̃+

1
< mW + mχ̃0

1
and mχ̃+

1
< m

f̃
u,d

L

to rule out two-body

decays of χ̃+
1 . The chargino decay widths and branching ratios have been calculated with

the computer program SPheno [26].
The statistical significance to which ACP can be determined to be non-zero can be

estimated in the following way: Assuming that the statistical errors of AT [27] and ĀT

are independent of each other, the errors of AT and ĀT are added in quadrature. The
absolute error of ACP is then given by

∆ACP = Nσ

√

1 − A2
CP√

2σLint

, (17)

where Nσ denotes the respective number of standard deviations, σ = σ(e+e− → χ̃+
1 χ̃−

j ) ·
B(χ̃+

1 → χ̃0
1f

′f̄) being the corresponding cross section of the combined production and
decay processes and Lint is the integrated luminosity, where we assume Lint = 500 fb−1

in the theoretical estimates below. For ACP . 10%, i.e. A2
CP . 0.01, it is ∆ACP =

Nσ/
√

2σLint in good approximation. If we require ACP > ∆ACP for ACP to be measurable
we obtain

Nσ =
√

2A2
CP

σLint . (18)
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scenario A

M2 280
|µ| 200

tan β 5
mν̃ 250
mũL

500

φµ φM1
mχ̃0

1
mχ̃0

2
mχ̃0

3
mχ̃0

4
mχ̃±

1
mχ̃±

2

0 0 119.3 184.3 205.9 322.7 166.2 322.1
0 π

2
126.3 176.0 210.0 323.0 166.2 322.1

0 π 135.3 166.7 213.0 321.3 166.2 322.1
π
2

0 127.6 187.4 208.5 316.0 177.4 316.0
π
2

π
2

134.8 178.3 213.0 315.3 177.4 316.0
π
2

π 129.6 176.7 217.8 315.0 177.4 316.0
π 0 134.6 190.4 212.9 308.2 189.2 309.1
π π

2
130.3 186.0 219.9 307.9 189.2 309.1

π π 126.0 183.3 225.1 307.5 189.2 309.1

Table 1: Input parameters M2, |µ|, tanβ, mν̃ and mũL
= mc̃L

and neutralino and chargino
masses for scenario A for different values of φµ and φM1

. |M1| is fixed by the GUT-inspired
relation |M1| = 5/3 tan2 θW M2 and the masses of the down-type sfermions by the SU(2)
relation. All masses are given in GeV.

3.1 CP asymmetry for χ̃+
1 χ̃−

1 production and χ̃+
1 decay

In the case of pair production, e+e− → χ̃+
1 χ̃−

1 , only CP-violating couplings from the decay
(second term in Eq. (16)) can give rise to a CP-violating effect, because in the production
(first term in Eq. (16)) only the absolute squares of the couplings enter. Thus, the CP
asymmetry ACP(Tq) is sensitive to the CP violation in the decay, due to the phases of µ and
M1. Fig. 3 (a) shows the asymmetry ACP(Tq) as a function of the phase φM1

for scenario
A (see Table 1) for φµ = 0. The masses of the squarks are chosen to be mc̃ = 500 GeV
and ms̃ = 505.9 GeV. The centre-of-mass energy

√
s = 500 GeV and the two sets of

longitudinal e± beam polarizations are fixed in our study at (Pe−, Pe+) = (+0.8,−0.6)
and (Pe−, Pe+) = (−0.8, +0.6). The CP asymmetry reaches its largest value of about
3.7% for (Pe−, Pe+) = (−0.8, +0.6) at φM1

= 1.2π. Note that the asymmetry changes
its sign for the two different sets of beam polarization due to the prefactor (Eq. (25),
Appendix A) which depends on the longitudinal beam polarization. Note further that the
asymmetry does not have its largest absolute value for φM1

= 0.5π, 1.5π. This behaviour
is due to a complex interplay of the φM1

dependence of the numerator and denominator of
the asymmetry in Eq. (14). In Fig. 3 (b) we show the dependence of the CP asymmetry
ACP(Tq) on φµ for the same scenario taking φM1

= π. The maximum value of about 4.6%
of ACP(Tq) is reached at φµ = 0.3π for (Pe−, Pe+) = (−0.8, +0.6).

In Fig. 4 (a) and (b) the contours of the CP asymmetry ACP(Tq), Eq. (7), are shown in
the M2-|µ| plane. The other MSSM parameters are chosen to be tanβ = 5, mν̃ = 250 GeV,
mc̃ = 500 GeV, ms̃ = 505.9 GeV, |M1| = 5/3 tan2 θW M2, φM1

= 0.5π and φµ = 0. For
both polarization configurations, (Pe−, Pe+) = (−0.8, +0.6) and (Pe−, Pe+) = (+0.8,−0.6),
the absolute value of ACP(Tq) is largest in the region |µ| ≈ 260 GeV and M2 ≈ 360 GeV
with asymmetries of about −5% (4%) for (Pe−, Pe+) = (−0.8, +0.6) ((+0.8,−0.6)). The
main contributions to the numerator of the asymmetry are due to the W+-s̃L and W+-c̃L

interference terms.
Figs. 4 (c) and (d) show the contours of the corresponding number of standard de-
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Figure 3: CP asymmetry ACP(Tq), Eq. (7), for e+e− → χ̃+
1 χ̃−

1 with subsequent decay
χ̃+

1 → χ̃0
1s̄c for the parameters defined in Table 1 (a) with φµ = 0 and (b) with φM1

= π,
for

√
s = 500 GeV and for the beam polarizations (Pe−, Pe+) = (−0.8, +0.6) (solid),

(Pe−, Pe+) = (+0.8,−0.6) (dashed).

viations Nσ for an integrated luminosity Lint = 500 fb−1 in the M2-|µ| plane. Quite
generally, the choice (Pe−, Pe+) = (−0.8, +0.6) for longitudinal beam polarizations yields
better results than (Pe−, Pe+) = (+0.8,−0.6), because it enhances the sneutrino-exchange
contribution to the production cross section. It is interesting to note that the asymmetry
ACP(Tq) is measurable with a 5σ significance in a large region of the parameter space.

Our numerical results for the number of standard deviations Nσ shown in Figs 4 (c), (d)
and Figs. 6 (c), (d) below, do not include the influence of c-tagging, which is necessary
for a measurement of ACP(Tq). Now we want to estimate how the detection rates are
expected to be modified if the effects of c-tagging are also taken into account. Identifying
the c-quark can be accomplished with the help of vertex detectors [19]. It has been shown
in [20] that c-quarks will be identified with an efficiency of about 50% at a purity of
80% in Z0 decays in e+e− → qq̄ at

√
s = 500 GeV. Accordingly, the number of standard

deviations shown in Figs. 4 (c), (d) and Figs. 6 (c), (d) below, for the measurement of the
CP asymmetry ACP(Tq) is expected to be reduced by a factor of about 0.57. We note that
the purity of c-jets in chargino and W decays is presumably larger [27], since in this case
fewer non-charm jets appear (the ratio of true charm to non-charm jets is approximately
1/3 for W decays as compared to approximately 1/5 for Z decays [29]). For measuring
the CP asymmetry ACP(Tq) it is also necessary to distinguish the c-quark in the decay
χ̃+

1 → χ̃0
1cs̄ from its antiquark c̄. This can be achieved with very good precision in the

semi-leptonic decays of the charmed hadrons. For the majority of c-jets it can also be
accomplished by the reconstruction of the vertex charge in the cases where the charmed
hadrons decay non-leptonically [19, 22, 23]. The electric charge of the c-quark can also
be indirectly identified in the cases where the second chargino, χ̃−

1 , decays leptonically or
where the sign of the charge of the c̄-jet in the decay χ̃−

1 → χ̃0
1c̄s is determined.
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Figure 4: (a), (b) Contours of the CP asymmetry ACP(Tq), Eq. (7), in % for e+e− →
χ̃+

1 χ̃−

1 at
√

s = 500 GeV with subsequent decay χ̃+
1 → χ̃0

1s̄c and (c), (d) contours of the
number of standard deviations Nσ, Eq. (18), for an integrated luminosity Lint = 500 fb−1,
respectively. The parameters are tan β = 5, mν̃ = 250 GeV, mc̃ = 500 GeV, ms̃ =
505.9 GeV, |M1|/M2 = 5/3 tan2 θW , φM1

= 0.5π, φµ = 0. The beam polarizations are in
(a), (c), (Pe−, Pe+) = (−0.8, +0.6) and in (b), (d), (Pe−, Pe+) = (+0.8,−0.6). The point
marks the scenario A, defined in Table 1. In the dark-shaded area is mχ̃±

1
< 103.5 GeV,

excluded by LEP [28]. The light-shaded area shows the region that either is kinematically
not accessible or in which the three-body decay is strongly suppressed because mχ̃+

1
>

mW + mχ̃0
1
.
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scenario B

M2 150
|µ| 320

tanβ 5
mν̃ 250
mũL

500

φµ φM1
mχ̃0

1
mχ̃0

2
mχ̃0

3
mχ̃0

4
mχ̃±

1
mχ̃±

2

0 0 70.6 132.5 325.7 347.8 131.0 347.4
0 π

2
73.4 132.0 326.2 347.0 131.0 347.4

0 π 76.1 131.4 326.6 346.2 131.0 347.4
π
2

0 73.7 140.1 327.3 342.7 139.7 344.0
π
2

π
2

76.1 139.8 328.0 341.6 139.7 344.0
π
2

π 73.5 140.0 328.1 341.9 139.7 344.0
π 0 76.1 148.0 332.5 333.6 148.3 340.3
π π

2
73.8 148.0 332.7 334.0 148.3 340.3

π π 71.5 148.0 332.8 334.4 148.3 340.3

Table 2: Input parameters M2, |µ|, tanβ, mν̃ and mũL
= mc̃L

and neutralino and chargino
masses for scenario B for different values of φµ and φM1

. |M1| is fixed by the GUT-inspired
relation |M1| = 5/3 tan2 θW M2 and the masses of the down-type sfermions by the SU(2)
relation. All masses are given in GeV.

3.2 CP-odd asymmetry for χ̃+
1 χ̃−

2 production and χ̃+
1 decay

Now we consider the production process e+e− → χ̃+
1 χ̃−

2 at
√

s = 500 GeV with subsequent
decays of the χ̃+

1 . In this case ACP(Tq) is sensitive to the CP-violating couplings in the
production and decay amplitudes (i.e. it is sensitive to both terms in (16)).

3.2.1 Hadronic decay χ̃
+

1 → χ̃0
1
s̄c

In the case of hadronic decays, χ̃+
1 → χ̃0

1s̄c, c-charge tagging is highly desirable because
of the complicated cascade decays of the heavy chargino.

In Fig. 5 (a) we show the CP asymmetry ACP(Tq), Eq. (7), as a function of φM1

for scenario B given in Table 2, with φµ = 0. The longitudinal beam polarization is
(Pe−, Pe+) = (−0.8, +0.6) ((+0.8,−0.6)). The asymmetry reaches its largest value of
about 9% (7%) for φM1

= 0.7π (1.2π). Fig. 5 (b) shows ACP(Tq) as a function of φµ for
φM1

= 0. The largest value of the CP asymmetry is reached at φµ = 1.4π (0.6π). Note
that the asymmetry can be large (∼ 10%), even for values of φµ close to π. As can be
seen in Figs. 5 (a) and (b), it changes the sign for the two choices of beam polarizations.

In Fig. 6 (a) and (b) the contours of ACP(Tq), Eq. (7), are shown in the M2-|µ| plane
for tan β = 5, mν̃ = 250 GeV, mc̃ = 500 GeV, ms̃ = 505.9 GeV, |M1| = 5/3 tan2 θW M2,
φM1

= 0.5π and φµ = 0. Figs. 6 (c) and (d) show the corresponding contours for Nσ,
Eq. (18), for Lint = 500 fb−1 in the M2-|µ| plane. Also in this case the choice (Pe−, Pe+) =
(−0.8, +0.6) enhances the statistical significance for a measurement of ACP(Tq).

3.2.2 Leptonic decay χ̃
+

1 → χ̃0
1
ℓ+ν

In this section we analyse the CP asymmetry ACP(Tℓ), Eq. (7), based on the triple product
correlation Tℓ = ~pℓ+ ·(~pe−×~pχ̃+

1
). For the process e+e− → χ̃+

1 χ̃−

2 the asymmetry ACP(Tℓ) is
only sensitive to CP-violating couplings in the production amplitude, which are involved in
the first term of (16), because the CP sensitive couplings in the decay (c.f. Eqs. (66)–(69))

10
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Figure 5: CP asymmetry ACP(Tq), Eq. (7), for e+e− → χ̃+
1 χ̃−

2 with subsequent decay
χ̃+

1 → χ̃0
1s̄c for the parameters given in Table 2 (a) with φµ = 0 and (b) with φM1

= 0,
for

√
s = 500 GeV and for the beam polarizations (Pe−, Pe+) = (−0.8, +0.6) (solid),

(Pe−, Pe+) = (+0.8,−0.6) (dashed).

do not contain the triple product Tℓ. This means ACP(Tℓ) is proportional to sin(φµ) and
therefore ACP(Tℓ) ≡ 0 for φµ = 0, π, 2π, . . ., independently of φM1

. Hence, by measuring
the CP asymmetries ACP(Tℓ) and ACP(Tq) one can separately study the influence of φµ

and φM1
.

In Fig. 7 we show the contour lines of the CP-odd asymmetry ACP(Tℓ), Eq. (7), for
scenario C of Table 3 in the φM1

-φµ plane. Fig. 7 illustrates that the asymmetry ACP(Tℓ)
can be large for values of φµ close to π. For instance, for φM1

= 1.5π and φµ = 0.9π one
obtains an asymmetry of about 23%. However, the corresponding cross section is only
about 0.16 fb.

In Fig. 8 (a) and (b), the CP asymmetry ACP(Tℓ), Eq. (7), and the number of
standard deviations Nσ, Eq. (18), are shown for Lint = 500 fb−1, respectively, in the
M2-|µ| plane. The MSSM parameters are tan β = 5, mν̃ = 250 GeV, mℓ̃ = 261.7 GeV,
|M1| = 5/3 tan2 θW M2, φM1

= 0 and φµ = 0.5π. The asymmetry reaches its largest values
of about 15% in gaugino-like scenarios. For example, for scenario C, ACP(Tℓ) can be
measured with a 5σ significance.

In order to be able to measure ACP (Tℓ), the production plane has to be reconstucted.
Provided the masses of the particles are known, this could be accomplished depending on
the decay pattern of χ̃−

2 [13]. For example, in the case of scenario C (fixing φµ = π and
φM1

= 0) the decays of χ̃−

2 which can be used for the reconstruction of the production
plane are (i) χ̃−

2 → χ̃0
2W

−, χ̃0
2 → χ̃0

1qq̄(χ̃
0
1ℓℓ̄), W− → qq̄′, (ii) χ̃−

2 → χ̃−

1 Z0, χ̃−

1 → χ̃0
1qq̄

′,
Z0 → qq̄(ℓℓ̄) and (iii) χ̃−

2 → χ̃−

1 h0, χ̃−

1 → χ̃0
1qq̄

′, h0 → qq̄(ℓℓ̄). The masses of the particles
involved are given in Table 3, and we take mh0 = 115 GeV. In the decay chains (i) ((ii),
(iii)) we obtain two invariant mass constraints from the on-shell χ̃0

2 (χ̃−

1 ) and the only
invisible particle in the final states of the decay chains (i)-(iii) is χ̃0

1. In these cases the
production plane can be reconstructed up to a twofold ambiguity. The branching ratios
of the decay chains (i), (ii) and (iii) are 20%, 25% and 17%, respectively. This means
that in this case about 62% of the decays of χ̃−

2 can be used for the reconstruction of

11
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Figure 6: (a), (b) Contours of the CP asymmetry ACP(Tq), Eq. (7), in % for e+e− →
χ̃+

1 χ̃−

2 at
√

s = 500 GeV with subsequent decay χ̃+
1 → χ̃0

1s̄c and (c), (d) contours of the
number of standard deviations Nσ, Eq. (18), for an integrated luminosity Lint = 500 fb−1,
respectively. The parameters are tan β = 5, mν̃ = 250 GeV, mc̃ = 500 GeV, ms̃ =
505.9 GeV, |M1|/M2 = 5/3 tan2 θW , φM1

= 0.5π and φµ = 0. The beam polarizations are
in (a), (c) (Pe−, Pe+) = (−0.8, +0.6) and in (b), (d) (Pe−, Pe+) = (+0.8,−0.6). The point
marks the scenario B, defined in Table 2. In the dark-shaded area is mχ̃±

1
< 103.5 GeV,

excluded by LEP [28]. The light-shaded area is kinematically not accessible.
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scenario C

M2 120
|µ| 320

tanβ 5
mν̃ 250
mũL

500

φµ φM1
mχ̃0

1
mχ̃0

2
mχ̃0

3
mχ̃0

4
mχ̃±

1
mχ̃±

2

0 0 55.9 105.5 326.1 344.8 104.2 344.8
0 π

2
58.6 105.1 326.4 344.1 104.2 344.8

0 π 61.4 104.5 326.8 343.5 104.2 344.8
π
2

0 59.1 112.7 327.5 340.6 112.5 342.2
π
2

π
2

61.3 112.5 328.0 339.7 112.5 342.2
π
2

π 58.7 112.8 328.1 340.1 112.5 342.2
π 0 61.2 120.2 331.9 333.3 120.5 339.4
π π

2
59.1 120.2 331.5 334.1 120.5 339.4

π π 56.8 120.2 331.2 334.7 120.5 339.4

Table 3: Input parameters M2, |µ|, tanβ, mν̃ and mũL
= mc̃L

and neutralino and chargino
masses for scenario C for different values of φµ and φM1

. |M1| is fixed by the GUT-inspired
relation |M1| = 5/3 tan2 θW M2 and the masses of the down-type sfermions by the SU(2)
relation. All masses are given in GeV.

the production plane, which implies that the number of standard deviations Nσ shown in
Fig. 8 (b) would have to be reduced accordingly. We note that in scenario C the decays
χ̃−

2 → ¯̃νℓ− and χ̃−

2 → ℓ̃−L ν̄ are suppressed and the decay χ̃−

2 → s̃c̄ is kinematically not
accessible. In the case that these decays contribute significantly, then it is again possible
to reconstruct the production plane in the decays χ̃−

2 → ¯̃νℓ− and χ̃−

2 → s̃c̄.
In order to predict the significance more accurately, detailed Monte Carlo analysis

including detector simulations and particle identification and reconstruction efficiencies
would be required, which is, however, beyond the scope of the present work. For instance,
a Monte Carlo analysis for a CP asymmetry in the production and decay of neutralinos
with longitudinal beam polarization has been carried out in [11].

4 Summary and conclusions

We have analysed CP-sensitive observables in chargino production e+e− → χ̃+
1 χ̃−

1,2 with
subsequent hadronic and leptonic three-body decays χ̃+

1 → χ̃0
1f̄

dfu (fd = e, µ, s and
fu = νe, νµ, c) at an e+e− linear collider with centre-of-mass energy

√
s = 500 GeV,

integrated luminosity Lint = 500 fb−1 and longitudinally polarized beams. Our framework
has been the MSSM with complex parameters. We have constructed CP-odd asymmetries
with the help of triple product correlations between the momenta of the incoming and
outgoing particles.

Considering the production process e+e− → χ̃+
1 χ̃−

1 followed by the hadronic three-body
decay χ̃+

1 → χ̃0
1s̄c, we have defined the CP asymmetry ACP(Tq) that is based on the triple

product Tq = ~ps̄ · (~pc × ~pe−). The asymmetry ACP(Tq) is sensitive to CP violation in the
decay and depends on the phases φµ and φM1

appearing in the chargino/neutralino system.
We have shown that the measurability of the asymmetry ACP(Tq) can be significantly
increased by a suitable choice of beam polarizations. Choosing (Pe−, Pe+) = (−0.8, +0.6),
ACP(Tq) can be probed at the 5σ level in a large region of the MSSM parameter space.
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Figure 7: Contours of the CP asymmetry ACP(Tℓ), Eq. (7), in % for e+e− → χ̃+
1 χ̃−

2 at√
s = 500 GeV with subsequent decay χ̃+

1 → χ̃0
1ℓ

+ν for the parameters defined in Table 3
and (Pe−, Pe+) = (−0.8, +0.6).

For the production process e+e− → χ̃+
1 χ̃−

2 we have separately considered the hadronic
three-body decay χ̃+

1 → χ̃0
1s̄c and the leptonic three-body decays χ̃+

1 → χ̃0
1ℓ

+ν, ℓ = e, µ.
For the hadronic three-body decay we have studied again the CP asymmetry that is based
on the triple product Tq. In this case, the resulting CP asymmetry is sensitive to CP
violation in production and decay. Also this asymmetry can be probed at the 5σ level for
MSSM parameters with appreciable gaugino-higgsino mixing. For the leptonic three-body
decays, we have studied the asymmetry ACP(Tℓ) that is based on the triple product Tℓ =
~pℓ+ · (~pe− ×~pχ̃+

i
),which is sensitive to CP violation in the production only and hence to the

phase φµ. We have found that the measurability of ACP(Tℓ) is somewhat decreased with
respect to the previously considered asymmetries; however, in some regions of the MSSM
parameter space it is accessible at the 3σ level. As the two types of CP-odd asymmetries
are sensitive to various combinations of the phases φµ and φM1

, their measurement will
allow CP violation to be tested in the chargino/neutralino sector. Moreover, we have
demonstrated that the CP-odd asymmetries studied in this paper can be large even for
small CP-violating phases φµ and φM1

, which are favoured by the EDM constraints.

Acknowledgements

We thank O. Kittel, W. Majerotto and H.-U. Martyn for valuable discussions. This work
is supported by the ‘Fonds zur Förderung der wissenschaftlichen Forschung’ (FWF) of
Austria, project No. P18959-N16, and by the German Federal Ministry of Education
and Research (BMBF) under contract number 05HT4WWA/2. The authors acknowledge

14



(a) (b)

M2/GeV M2/GeV

|µ|/GeV |µ|/GeV

ACP(Tℓ) in %

15

10

5

2

1

C

100 200 300 400

100

200

300

400

Nσ

1

3

5
C

100 200 300 400

100

200

300

400

mχ̃+
1

+ mχ̃−

2
>

√
s mχ̃+

1
+ mχ̃−

2
>

√
s

or 2-body decays or 2-body decays

Figure 8: (a) Contours of the CP asymmetry ACP(Tℓ), Eq. (7), in % for e+e− → χ̃+
1 χ̃−

2

at
√

s = 500 GeV with subsequent decay χ̃+
1 → χ̃0

1ℓ
+ν and (b) contours of the num-

ber of standard deviations Nσ, Eq. (18), for an integrated luminosity Lint = 500 fb−1,
respectively. The parameters are tan β = 5, mν̃ = 250 GeV, mℓ̃ = 261.7 GeV,
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A Formalism

The full expressions for the terms Σa
P (χ̃+

i ) and Σa
D(χ̃+

i ) are given in [24]. In the following
we decompose Σa

P (χ̃+
i ) and Σa

D(χ̃+
i ) into T-odd and the T-even terms, which are needed

in subsection 2.2.

A.1 T-odd terms of production and T-even terms of decay

In the definition of the momenta and polarization 4-vectors we follow [12, 24]. pi, i =
1, . . . , 7, are the 4-momenta of the particles e−, e+, χ̃+

i , χ̃−

j , χ̃0
k, fd and fu, respectively,

see Figs. 1 and 2. It can be shown that all contributions to the T-odd terms Σa,O
P (χ̃+

i ) in
Eq. (16) contain a factor

fa
5 = i · mjǫµνρσpµ

2p
ν
1s

a,ρpσ
3 (19)
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which vanishes for longitudinal polarization (a = 3) and transverse polarization in the
production plane (a = 1) so that we have only to include the spin terms for transverse
polarization of the chargino χ̃+

i perpendicular to the production plane (a = 2):

Σ2,O
P (χ̃+

i ) = Σ2,O
P (γZ) + Σ2,O

P (γν̃) + Σ2,O
P (ZZ) + Σ2,O

P (Zν̃) (20)

with

Σ2,O
P (γZ) = g4 tan2 θW Re

{

∆(γ)∆∗(Z)δijc
P
−
(γZ)(O

′L∗

ij − O
′R∗

ij )fa=2
5

}

, (21)

Σ2,O
P (γν̃) = −g4

2
sin2 θW Re

{

∆(γ)∆∗(ν̃)δijc
P
+(γν̃) V ∗

i1 Vj1f
a=2
5

}

, (22)

Σ2,O
P (ZZ) =

g4

2 cos4 θW

|∆(Z)|2
[

cP
−
(ZZ)(O

′R
ij O

′L∗

ij − O
′L
ij O

′R∗

ij )fa=2
5

]

, (23)

Σ2,O
P (Zν̃) = − g4

2 cos2 θW

Re
{

∆(Z)∆∗(ν̃)cP
+(Zν̃) V ∗

i1 Vj1O
′R
ij fa=2

5

}

. (24)

Here

cP
±
(αβ) = ±cL(α)cL(β)(1 − Pe−)(1 + Pe+) + cR(α)cR(β)(1 + Pe−)(1 − Pe+) (25)

with

cL(γ) = 1, cL(Z) = Le, cL(ν̃) = 1, (26)

cR(γ) = 1, cR(Z) = Re, cR(ν̃) = 0, (27)

and Pe− and Pe+ is the degree of longitudinal polarization of the electron beam and
positron beam, respectively. The propagators are ∆(γ) = i/(p1 + p2)

2, ∆(Z) = i/((p1 +
p2)

2 − m2
Z) and ∆(ν̃) = i/((p1 − p4)

2 − m2
ν̃) and the couplings are given by

Lf = T3f − ef sin2 θW , Rf = −ef sin2 θW , (28)

O
′L
ij = −Vi1V

∗

j1 −
1

2
Vi2V

∗

j2 + δij sin2 θW , (29)

O
′R
ij = −U∗

i1Uj1 −
1

2
U∗

i2Uj2 + δij sin2 θW , (30)

where g is the weak coupling constant, ef and T3f are the charge (in units of e) and the
third component of the weak isospin of the fermion f , θW is the weak mixing angle. The
unitary (2 × 2)-matrices U and V diagonalize the complex chargino mass matrix, see for
instance [4].

Note that fa
5 is purely imaginary, so that, for example, Σ2,O

P (γZ), Eq. (21), is non-

vanishing only if the couplings O
′L,R
ij are complex and gives a CP-sensitive contribution

to the asymmetry ACP(Tq,ℓ). Analogous contributions come from the other terms in Σ2,O
P ,

Eqs. (22)–(24). We have to multiply Σ2,O
P in Eq. (16) by

Σ2,E
D (χ̃+

i ) = Σ2,E
D (W+W+) + Σ2,E

D (W+f̃d
L) + Σ2,E

D (W+f̃u
L)

+ Σ2,E
D (f̃d

Lf̃d
L) + Σ2,E

D (f̃d
Lf̃u

L) + Σ2,E
D (f̃u

L f̃u
L), (31)
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with

Σ2,E
D (W+W+) = 2g4 |∆(W )|2

[

2(|OR
ki|2 ga=2

2 − |OL
ki|2 ga=2

1 )

− (OL∗

ki OR
ki + OL

kiO
R∗

ki )(ga=2
4 − ga=2

3 )
]

, (32)

Σ2,E
D (W+f̃d

L) = g4
√

2 Re
{

∆(W )∆∗(f̃d
L) 2 U∗

i1f
L
fdk

[

2OR
kig

a=2
2

− OL
ki(g

a=2
4 − ga=2

3 )
]}

, (33)

Σ2,E
D (W+f̃u

L) = g4
√

2 Re
{

∆(W )∆∗(f̃u
L) 2 Vi1f

L∗

fuk

[

2OL
kig

a=2
1

+ OR
ki(g

a=2
4 − ga=2

3 )
]}

, (34)

Σ2,E
D (f̃d

Lf̃d
L) = 2g4|Ui1|2|fL

fdk|2 |∆(f̃d
L)|2ga=2

2 , (35)

Σ2,E
D (f̃d

Lf̃u
L) = 2g4Re{∆(f̃d

L)∆∗(f̃u
L)Ui1f

L∗

fdkVi1f
L∗

fuk(g
a=2
4 − ga=2

3 )}, (36)

Σ2,E
D (f̃u

Lf̃u
L) = −2g4|Vi1|2|fL

fuk|2 |∆(f̃u
L)|2ga=2

1 , (37)

where

ga=2
1 = mi(p5p7)(p6s

a=2), (38)

ga=2
2 = mi(p5p6)(p7s

a=2), (39)

ga=2
3 = mk(p3p7)(p6s

a=2), (40)

ga=2
4 = mk(p3p6)(p7s

a=2). (41)

The propagators are ∆(W ) = i/((p3 − p5)
2 − m2

W ), ∆(f̃u
L) = i/((p3 − p6)

2 − m2

f̃u
L

) and

∆(f̃d
L) = i/((p3 − p7)

2 − m2

f̃d
L

) and the couplings are given by

fL
fk = −

√
2
[ 1

cos θW

(T3f − ef sin2 θW )Nk2 + ef sin θW Nk1

]

, (42)

OL
ki = −1/

√
2
(

cos βNk4 − sin βNk3

)

V ∗

i2 +
(

sin θW Nk1 + cos θW Nk2

)

V ∗

i1, (43)

OR
ki = +1/

√
2
(

sin βN∗

k4 + cos βN∗

k3

)

Ui2 +
(

sin θW N∗

k1 + cos θW N∗

k2

)

Ui1, (44)

where tan β = v2/v1 is the ratio of the vacuum expectation values of the Higgs fields and
the unitary (4×4)-matrix N diagonalizes the complex symmetric neutralino mass matrix
which is given in the basis (γ̃, Z̃, H̃0

a , H̃0
b ) [30].

The kinematic functions ga
1 , ga

2 , ga
3 , ga

4 , a = 2 are real. When multiplied by the purely
imaginary fa=2

5 , Eq. (19), this leads to triple products sensitive to the CP phases of the

couplings O
′L,R
ij in the production process, which in the laboratory system read:

ga=2
1 · fa=2

5 = i2Ebmimj(p5p7)~p6(~p1 × ~p3), (45)

ga=2
2 · fa=2

5 = i2Ebmimj(p5p6)~p7(~p1 × ~p3), (46)

ga=2
3 · fa=2

5 = i2Ebmjmk(p3p7)~p6(~p1 × ~p3), (47)

ga=2
4 · fa=2

5 = i2Ebmjmk(p3p6)~p7(~p1 × ~p3). (48)

As outlined above, these expressions will be multiplied in Eqs. (21)–(24) by the factors
i · Im{(O′L∗

ij − O
′R∗

ij )} etc., and contribute to the first term of Eq. (16) and, hence, to the
numerator of the asymmetry AT , Eq. (13).
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A.2 T-odd terms of decay and T-even terms of production

The factor

Σa,O
D (χ̃+

i ) = Σa,O
D (W+W+) + Σa,O

D (W+f̃d
L) + Σa,O

D (W+f̃u
L) + Σa,O

D (f̃d
Lf̃u

L) (49)

in the second term in Eq. (16) with

Σa,O
D (W+W+) = 2g4|∆(W )|2Re{(OL∗

ki OR
ki − OL

kiO
R∗

ki )ga
5}, (50)

Σa,O
D (W+f̃d

L) = −
√

2g4Re{∆(W )∆∗(f̃d
L)2U∗

i1f
L
fdkO

L
kig

a
5}, (51)

Σa,O
D (W+f̃u

L) = −
√

2g4Re{∆(W )∆∗(f̃u
L)2Vi1f

L∗

fukO
R
kig

a
5}, (52)

Σa,O
D (f̃d

Lf̃u
L) = −2Re{∆(f̃d

L)∆∗(f̃u
L)Ui1f

L∗

fdkVi1f
L∗

fukg
a
5} (53)

is sensitive to CP violation in the decay of the chargino χ̃+
i [12, 24] due to the purely

imaginary kinematic factor

ga
5 = i · mkǫµνρσsaµpν

3p
ρ
7p

σ
6 . (54)

For example in Eq. (50) it is multiplied by the factor i · Im{(OL∗

ki OR
ki − OL

kiO
R∗

ki )}, which
depends on the phases φµ and φM1

and contributes to the CP asymmetry ACP, Eq. (7).
Analogous contributions follow from Eqs. (51)–(53).

The T-even contributions from the production process in Eq. (16) are

Σa,E
P (χ̃+

i ) = Σa,E
P (γγ) + Σa,E

P (γZ) + Σa,E
P (γν̃)

+ Σa,E
P (ZZ) + Σa,E

P (Zν̃) + Σa,E
P (ν̃ν̃), (55)

with

Σa,E
P (γγ) = g4 sin2 θW |∆(γ)|2cP

−
(γγ)δij(−fa

1 + fa
2 + fa

4 − fa
3 ), (56)

Σa,E
P (γZ) = g4 tan2 θW Re

{

∆(γ)∆∗(Z)δij

[

cP
+(γZ)(O

′R∗

ij − O
′L∗

ij )(fa
1 + fa

2 )

+ cP
−
(γZ)(O

′R∗

ij + O
′L∗

ij )(−fa
1 + fa

2 + fa
4 − fa

3 )
]}

, (57)

Σa,E
P (γν̃) = −g4

2
sin2 θW Re{∆(γ)∆∗(ν̃)δijc

P
+(γν̃)V ∗

i1Vj1(2f
a
2 + fa

4 − fa
3 )}, (58)

Σa,E
P (ZZ) =

g4

2 cos4 θW

|∆(Z)|2
[

cP
+(ZZ)(|O′R

ij |2 − |O′L
ij |2)(fa

1 + fa
2 )

+cP
−
(ZZ)

(

(O
′L
ij O

′R∗

ij + O
′R
ij O

′L∗

ij )(fa
4 − fa

3 )

+(|O′R
ij |2 + |O′L

ij |2)(−fa
1 + fa

2 )
)]

, (59)

Σa,E
P (Zν̃) = − g4

2 cos2 θW

Re{∆(Z)∆∗(ν̃)cP
+(Zν̃)V ∗

i1Vj1(2O
′L
ij fa

2 + O
′R
ij (fa

4 − fa
3 ))},

(60)

Σa,E
P (ν̃ν̃) = −g4

4
|Vi1|2|Vj1|2|∆(ν̃)|2cP

+(ν̃ν̃)fa
2 , (61)
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where

fa
1 = mi(p2p4)(p1s

a), (62)

fa
2 = mi(p1p4)(p2s

a), (63)

fa
3 = mj(p2p3)(p1s

a), (64)

fa
4 = mj(p1p3)(p2s

a). (65)

Since sa(χ̃+
i ) for a = 2 is perpendicular to the production plane, Σ2,E

P (χ̃+
i ) vanishes, so

that in ACP only the contributions of the longitudinal polarization (a = 3) and of the
transverse polarization in the production plane (a = 1) have to be taken into account.

Finally, the triple products sensitive to the CP phases in the chargino decay in the
laboratory system read

∑

a=1,3

fa
1 · ga

5 = imimk(p2p4)
{

− Eb~p5(~p7 × ~p6) − E7~p5(~p6 × ~p1)

+ E6~p5(~p7 × ~p1) + E5~p1(~p7 × ~p6)
}

, (66)

∑

a=1,3

fa
2 · ga

5 = imimk(p1p4)
{

− Eb~p5(~p7 × ~p6) + E7~p5(~p6 × ~p1)

− E6~p5(~p7 × ~p1) − E5~p1(~p7 × ~p6)
}

, (67)

∑

a=1,3

fa
3 · ga

5 = imjmk(p2p3)
{

− Eb~p5(~p7 × ~p6) − E7~p5(~p6 × ~p1)

+ E6~p5(~p7 × ~p1) + E5~p1(~p7 × ~p6)
}

, (68)

∑

a=1,3

fa
4 · ga

5 = imjmk(p1p3)
{

− Eb~p5(~p7 × ~p6) + E7~p5(~p6 × ~p1)

− E6~p5(~p7 × ~p1) − E5~p1(~p7 × ~p6)
}

. (69)
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