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Abstract
The starting point of these lectures is an introduction to the weak interactions
of quarks and the Standard-Model description of CP violation, where the cen-
tral role is played by the Cabibbo–Kobayashi–Maskawa matrix and the corre-
sponding unitarity triangles. Since the B-meson system will govern the stage
of (quark) flavour physics and CP violation in this decade, it will be our main
focus. We shall classify B-meson decays, introduce the theoretical tools to
deal with them, investigate the requirements for non-vanishing CP-violating
asymmetries, and discuss the main strategies to explore CP violation and the
preferred avenues to enter for physics beyond the Standard Model. This for-
malism is then applied to discuss the status of important B-factory benchmark
modes, where we focus on puzzling patterns in the data that may indicate new-
physics effects, as well as the prospects for B-decay studies at the LHC.

1 Introduction
The history of CP violation, i.e., the non-invariance of the weak interactions with respect to a combined
charge-conjugation (C) and parity (P) transformation, goes back to 1964 when this phenomenon was
discovered through the observation of KL → π+π− decays [1] which exhibit a branching ratio at the
10−3 level. This surprising effect is a manifestation of indirect CP violation, which arises from the
fact that the mass eigenstates KL,S of the neutral kaon system, which shows K0–K̄0 mixing, are not
eigenstates of the CP operator. In particular, the KL state is governed by the CP-odd eigenstate, but has
also a tiny admixture of the CP-even eigenstate, which may decay through CP-conserving interactions
into the π+π− final state. These CP-violating effects are described by the following observable:

εK = (2.280 ± 0.013) × 10−3 × eiπ/4 . (1)

On the other hand, CP-violating effects may also arise directly at the decay-amplitude level, thereby
yielding direct CP violation. This phenomenon, which leads to a non-vanishing value of a quantity
Re(ε′K/εK), was established in 1999 through the NA48 (CERN) and KTeV (FNAL) Collaborations [2];
the final results of the corresponding measurements are given by

Re(ε′K/εK) =

{
(14.7 ± 2.2)× 10−4 (NA48 [3])
(20.7 ± 2.8)× 10−4 (KTeV [4]) .

(2)

In this decade, there are huge experimental efforts to further explore CP violation and the quark-
flavour sector of the Standard Model (SM). In these studies, the main actor is the B-meson system,
where we distinguish between charged and neutral B mesons, which are characterized by the following
valence-quark contents:

B+ ∼ ub̄, B+
c ∼ cb̄, B0

d ∼ db̄, B0
s ∼ sb̄,

B− ∼ ūb, B−c ∼ c̄b, B̄0
d ∼ d̄b, B̄0

s ∼ s̄b .
(3)

In contrast to the charged B mesons, their neutral counterparts Bq (q ∈ {d, s}) show —in analogy to
K0–K̄0 mixing—the phenomenon of B0

q–B̄0
q mixing. The asymmetric e+e− B factories at SLAC and

KEK with their detectors BaBar and Belle, respectively, can only produce B+ and B0
d mesons (and
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their anti-particles) since they operate at the Υ(4S) resonance, and have already collected O(108) BB̄
pairs of this kind. Moreover, first B-physics results from Run II of the Tevatron were reported from the
CDF and D0 Collaborations, including also B+

c and B0
s studies, and second-generation B-decay studies

will become possible at the Large Hadron Collider (LHC) at CERN, in particular thanks to the LHCb
experiment, starting in the autumn of 2007. For the more distant future, an e+–e− ‘super-B factory’
is under consideration, with an increase of luminosity by up to two orders of magnitude with respect
to the currently operating machines. Moreover, there are plans to measure the very ‘rare’ kaon decays
K+ → π+νν̄ and KL → π0νν̄, which are absent at the tree level in the Standard Model (SM), at CERN
and KEK/J-PARC.

In 2001, CP-violating effects were discovered in B decays with the help of Bd → J/ψKS modes
by the BaBar and Belle Collaborations [5], representing the first observation of CP violation outside the
kaon system. This particular kind of CP violation, which is by now well established, originates from
the interference between B0

d–B̄0
d mixing and B0

d → J/ψKS, B̄0
d → J/ψKS decay processes, and is

referred to as ‘mixing-induced’ CP violation. In the summer of 2004, direct CP violation was detected in
Bd → π∓K± decays [6], thereby complementing the measurement of a non-zero value of Re(ε ′K/εK).

Studies of CP violation and flavour physics are particularly interesting since ‘new physics’ (NP),
i.e., physics lying beyond the SM, typically leads to new sources of flavour and CP violation. Further-
more, the origin of the fermion masses, flavour mixing, CP violation etc. lies completely in the dark and
is expected to involve NP, too. Interestingly, CP violation offers also a link to cosmology. One of the
key features of our Universe is the cosmological baryon asymmetry of O(10−10). As was pointed out
by Sakharov [7], the necessary conditions for the generation of such an asymmetry include also the re-
quirement that elementary interactions violate CP (and C). Model calculations of the baryon asymmetry
indicate, however, that the CP violation present in the SM seems to be too small to generate the observed
asymmetry [8]. On the one hand, the required new sources of CP violation could be associated with
very high energy scales, as in ‘leptogenesis’, where new CP-violating effects appear in decays of heavy
Majorana neutrinos [9]. On the other hand, new sources of CP violation could also be accessible in the
laboratory, as they arise naturally when going beyond the SM.

Before searching for NP, it is essential to understand first the picture of flavour physics and CP
violation arising in the framework of the SM, where the Cabibbo–Kobayashi–Maskawa (CKM) matrix—
the quark-mixing matrix—plays the key role [10, 11]. The corresponding phenomenology is extremely
rich [12]. In general, the key problem for the theoretical interpretation is related to strong interactions,
i.e., to ‘hadronic’ uncertainties. A famous example is Re(ε′K/εK), where we have to deal with a subtle
interplay between different contributions which largely cancel [13]. Although the non-vanishing value
of this quantity has unambiguously ruled out ‘superweak’ models of CP violation [14], it currently does
not allow a stringent test of the SM.

In the B-meson system, there are various strategies to eliminate the hadronic uncertainties in the
exploration of CP violation (simply speaking, there are many B decays). Moreover, we may also search
for relations and/or correlations that hold in the SM but could well be spoiled by NP. These topics will be
the focus of this lecture, which is complemented by the dedicated lectures on the experimental aspects
of K- and B-meson decays in Refs. [15] and [16], respectively. The outline is as follows: in Section 2,
we discuss the quark mixing in the SM by having a closer look at the CKM matrix and the associated
unitarity triangles. The main actors of this lecture—the B mesons and their weak decays—will then be
introduced in Section 3. There we shall also move towards studies of CP violation and shall classify
the main strategies for its exploration, using amplitude relations and the phenomenon of B 0

q–B̄0
q mixing

(q ∈ {d, s}). In Section 4, we illustrate the former kind of methods by having a closer look at clean
amplitude relations between B± → K±D and B±c → D±s D decays, whereas we discuss features of
neutral Bq mesons in Section 5. In Section 6, we address the question of how NP could enter, and then
apply these considerations in Section 7 to the B-factory benchmark modes B 0

d → J/ψKS, B0
d → φKS

and B0
d → π+π−. Since the data for certain B → πK decays have shown a puzzling pattern for several
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Fig. 1: CP-conjugate charged-current quark-level interaction processes in the SM

years, we have devoted Section 8 to a detailed discussion of this ‘B → πK puzzle’ and its interplay
with rare K and B decays. In Section 9, we focus on b → d penguin processes, which are now coming
within experimental reach at the B factories, thereby offering an exciting new playground. Finally, in
Section 10, we discuss B-decay studies at the LHC, where the physics potential of the B 0

s -meson system
can be fully exploited. The conclusions and a brief outlook are given in Section 11.

For detailed discussions and textbooks dealing with flavour physics and CP violation, the reader
is referred to Refs. [17]– [21], alternative lecture notes can be found in Refs. [22, 23], and a selection of
more compact recent reviews is given in Refs. [24]– [26]. The data used in these lectures refer to the
situation in the spring of 2006.

2 CP violation in the Standard Model
2.1 Weak interactions of quarks and the quark-mixing matrix
In the framework of the Standard Model of electroweak interactions [27, 28], which is based on the
spontaneously broken gauge group

SU(2)L × U(1)Y
SSB−→ U(1)em , (4)

CP-violating effects may originate from the charged-current interactions of quarks, having the structure

D → UW− . (5)

Here D ∈ {d, s, b} and U ∈ {u, c, t} denote down- and up-type quark flavours, respectively, whereas
the W− is the usual SU(2)L gauge boson. From a phenomenological point of view, it is convenient to
collect the generic ‘coupling strengths’ VUD of the charged-current processes in (5) in the form of the
following matrix:

V̂CKM =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 , (6)

which is referred to as the Cabibbo–Kobayashi–Maskawa (CKM) matrix [10, 11].

From a theoretical point of view, this matrix connects the electroweak states (d ′, s′, b′) of the
down, strange and bottom quarks with their mass eigenstates (d, s, b) through the following unitary
transformation [27]: 


d′

s′

b′


 =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 ·




d
s
b


 . (7)

Consequently, V̂CKM is actually a unitary matrix. This feature ensures the absence of flavour-changing
neutral-current (FCNC) processes at the tree level in the SM, and is hence at the basis of the famous
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Glashow–Iliopoulos–Maiani (GIM) mechanism [29]. We shall return to the unitarity of the CKM ma-
trix in Section 2.6, discussing the ‘unitarity triangles’. If we express the non-leptonic charged-current
interaction Lagrangian in terms of the mass eigenstates appearing in (7), we arrive at

LCC
int = − g2√

2

(
ūL, c̄L, t̄L

)
γµ V̂CKM




dL
sL
bL


W †µ + h.c., (8)

where the gauge coupling g2 is related to the gauge group SU(2)L, and the W (†)
µ field corresponds to the

charged W bosons. Looking at the interaction vertices following from (8), we observe that the elements
of the CKM matrix describe in fact the generic strengths of the associated charged-current processes, as
we have noted above.

In Fig. 1, we show the D → UW− vertex and its CP conjugate. Since the corresponding CP
transformation involves the replacement

VUD
CP−→ V ∗UD , (9)

CP violation could—in principle—be accommodated in the SM through complex phases in the CKM
matrix. The crucial question in this context is, of course, whether we may actually have physical complex
phases in that matrix.

2.2 Phase structure of the CKM matrix
We have the freedom to redefine the up- and down-type quark fields in the following manner:

U → exp(iξU )U, D → exp(iξD)D . (10)

If we perform such transformations in (8), the invariance of the charged-current interaction Lagrangian
implies the following phase transformations of the CKM matrix elements:

VUD → exp(iξU )VUD exp(−iξD) . (11)

Using these transformations to eliminate unphysical phases, it can be shown that the parametrization of
the general N ×N quark-mixing matrix, where N denotes the number of fermion generations, involves
the following parameters:

1

2
N(N − 1)
︸ ︷︷ ︸
Euler angles

+
1

2
(N − 1)(N − 2)
︸ ︷︷ ︸

complex phases

= (N − 1)2. (12)

If we apply this expression to the case of N = 2 generations, we observe that only one rotation
angle—the Cabibbo angle θC [10]—is required for the parametrization of the 2×2 quark-mixing matrix,
which can be written in the following form:

V̂C =

(
cos θC sin θC

− sin θC cos θC

)
, (13)

where sin θC = 0.22 can be determined from K → π`ν̄ decays. On the other hand, in the case of N = 3
generations, the parametrization of the corresponding 3 × 3 quark-mixing matrix involves three Euler-
type angles and a single complex phase. This complex phase allows us to accommodate CP violation
in the SM, as was pointed out by Kobayashi and Maskawa in 1973 [11]. The corresponding picture is
referred to as the Kobayashi–Maskawa (KM) mechanism of CP violation.
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In the ‘standard parametrization’ advocated by the Particle Data Group (PDG) [30], the three-
generation CKM matrix takes the following form:

V̂CKM =




c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13


 , (14)

where cij ≡ cos θij and sij ≡ sin θij . Performing appropriate redefinitions of the quark-field phases,
the real angles θ12, θ23 and θ13 can all be made to lie in the first quadrant. The advantage of this
parametrization is that the generation labels i, j = 1, 2, 3 are introduced in such a manner that the
mixing between two chosen generations vanishes if the corresponding mixing angle θij is set to zero. In
particular, for θ23 = θ13 = 0, the third generation decouples, and the 2 × 2 submatrix describing the
mixing between the first and second generations takes the same form as (13).

Another interesting parametrization of the CKM matrix was proposed by Fritzsch and Xing [31]:

V̂CKM =




susdc+ cucde
−iϕ sucdc− cusde

−iϕ sus
cusdc− sucde

−iϕ cucdc+ susde
−iϕ cus

−sds −cds c


 . (15)

It is inspired by the hierarchical structure of the quark-mass spectrum and is particularly useful in the
context of models for fermion masses and mixings. The characteristic feature of this parametrization is
that the complex phase arises only in the 2 × 2 submatrix involving the up, down, strange and charm
quarks.

Let us finally note that physical observables, for instance CP-violating asymmetries, cannot de-
pend on the chosen parametrization of the CKM matrix, i.e., have to be invariant under the phase trans-
formations specified in (11).

2.3 Further requirements for CP violation
As we have just seen, in order to be able to accommodate CP violation within the framework of the
SM through a complex phase in the CKM matrix, at least three generations are required. However, this
feature is not sufficient for observable CP-violating effects. To this end, further conditions have to be
satisfied, which can be summarized as follows [32, 33]:

(m2
t −m2

c)(m
2
t −m2

u)(m2
c −m2

u)(m2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d)× JCP 6= 0, (16)

where
JCP = |Im(ViαVjβV

∗
iβV

∗
jα)| (i 6= j, α 6= β) . (17)

The mass factors in (16) are related to the fact that the CP-violating phase of the CKM matrix
could be eliminated through an appropriate unitary transformation of the quark fields if any two quarks
with the same charge had the same mass. Consequently, the origin of CP violation is closely related to
the ‘flavour problem’ in elementary particle physics, and cannot be understood in a deeper way, unless
we have fundamental insights into the hierarchy of quark masses and the number of fermion generations.

The second element of (16), the ‘Jarlskog parameter’ JCP [32], can be interpreted as a measure
of the strength of CP violation in the SM. It does not depend on the chosen quark-field parametriza-
tion, i.e., it is invariant under (11), and the unitarity of the CKM matrix implies that all combinations
|Im(ViαVjβV

∗
iβV

∗
jα)| are equal to one another. Using the standard parametrization of the CKM matrix

introduced in (14), we obtain
JCP = s12s13s23c12c23c

2
13 sin δ13 . (18)

The experimental information on the CKM parameters implies JCP = O(10−5), so that CP-violating
phenomena are hard to observe. However, new complex couplings are typically present in scenarios for
NP [34]. Such additional sources for CP violation could be detected through flavour experiments.
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Fig. 2: Hierarchy of the quark transitions mediated through charged-current processes

2.4 Experimental information on |VCKM|
In order to determine the magnitudes |Vij | of the elements of the CKM matrix, we may use the following
tree-level processes:

– Nuclear beta decays, neutron decays⇒ |Vud|.
– K → π`ν̄ decays⇒ |Vus|.
– ν production of charm off valence d quarks⇒ |Vcd|.
– Charm-tagged W decays (as well as ν production and semileptonic D decays)⇒ |Vcs|.
– Exclusive and inclusive b→ c`ν̄ decays⇒ |Vcb|.
– Exclusive and inclusive b→ u`ν̄ decays⇒ |Vub|.
– t̄→ b̄`ν̄ processes⇒ (crude direct determination of) |Vtb|.

If we use the corresponding experimental information, together with the CKM unitarity condition, and
assume that there are only three generations, we arrive at the following 90% C.L. limits for the |V ij| [30]:

|V̂CKM| =




0.9739–0.9751 0.221–0.227 0.0029–0.0045
0.221–0.227 0.9730–0.9744 0.039–0.044
0.0048–0.014 0.037–0.043 0.9990–0.9992


 . (19)

In Fig. 2, we have illustrated the resulting hierarchy of the strengths of the charged-current quark-level
processes: transitions within the same generation are governed by CKM matrix elements of O(1), those
between the first and the second generation are suppressed by CKM factors of O(10−1), those between
the second and the third generation are suppressed by O(10−2), and the transitions between the first and
the third generation are even suppressed by CKM factors of O(10−3). In the standard parametrization
(14), this hierarchy is reflected by

s12 = 0.22 � s23 = O(10−2) � , s13 = O(10−3) . (20)

2.5 Wolfenstein parametrization of the CKM matrix
For phenomenological applications, it would be useful to have a parametrization of the CKM matrix
available that makes the hierarchy arising in (19)—and illustrated in Fig. 2—explicit [35]. In order to
derive such a parametrization, we introduce a set of new parameters, λ, A, ρ and η, by imposing the
following relations [36]:

s12 ≡ λ = 0.22, s23 ≡ Aλ2, s13e
−iδ13 ≡ Aλ3(ρ− iη) . (21)

If we now go back to the standard parametrization (14), we obtain an exact parametrization of the CKM
matrix as a function of λ (and A, ρ, η), allowing us to expand each CKM element in powers of the small

6

R. FLEISCHER

108



parameter λ. If we neglect terms of O(λ4), we arrive at the famous ‘Wolfenstein parametrization’ [35]:

V̂CKM =




1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4) , (22)

which makes the hierarchical structure of the CKM matrix very transparent and is an important tool for
phenomenological considerations, as we shall see throughout these lectures.

For several applications, next-to-leading order corrections in λ play an important role. Using
the exact parametrization following from (14) and (21), they can be calculated straightforwardly by
expanding each CKM element to the desired accuracy in λ [36, 37]:

Vud = 1− 1

2
λ2 − 1

8
λ4 +O(λ6) , Vus = λ+O(λ7) , Vub = Aλ3(ρ− i η) ,

Vcd = −λ+
1

2
A2λ5 [1− 2(ρ+ iη)] +O(λ7) ,

Vcs = 1− 1

2
λ2 − 1

8
λ4(1 + 4A2) +O(λ6) , (23)

Vcb = Aλ2 +O(λ8) , Vtd = Aλ3

[
1− (ρ+ iη)

(
1− 1

2
λ2

)]
+O(λ7) ,

Vts = −Aλ2 +
1

2
A(1− 2ρ)λ4 − iηAλ4 +O(λ6) , Vtb = 1− 1

2
A2λ4 +O(λ6) .

It should be noted that
Vub ≡ Aλ3(ρ− iη) (24)

receives by definition no power corrections in λ within this prescription. If we follow Ref. [36] and
introduce the generalized Wolfenstein parameters

ρ̄ ≡ ρ
(

1− 1

2
λ2

)
, η̄ ≡ η

(
1− 1

2
λ2

)
, (25)

we may simply write, up to corrections of O(λ7),

Vtd = Aλ3(1− ρ̄− i η̄) . (26)

Moreover, we have to an excellent accuracy

Vus = λ and Vcb = Aλ2 , (27)

as these quantities receive only corrections at the λ7 and λ8 levels, respectively. In comparison with
other generalizations of the Wolfenstein parametrization found in the literature, the advantage of (23) is
the absence of relevant corrections to Vus and Vcb, and that Vub and Vtd take forms similar to those in
(22). As far as the Jarlskog parameter introduced in (17) is concerned, we obtain the simple expression

JCP = λ6A2η , (28)

which should be compared with (18).
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2.6 Unitarity triangles of the CKM matrix
The unitarity of the CKM matrix, which is described by

V̂ †CKM · V̂CKM = 1̂ = V̂CKM · V̂ †CKM , (29)

leads to a set of 12 equations, consisting of 6 normalization and 6 orthogonality relations. The latter can
be represented as 6 triangles in the complex plane [38], all having the same area, 2A∆ = JCP [39]. Let
us now have a closer look at these relations: those describing the orthogonality of different columns of
the CKM matrix are given by

VudV
∗
us︸ ︷︷ ︸

O(λ)

+VcdV
∗
cs︸ ︷︷ ︸

O(λ)

+VtdV
∗
ts︸ ︷︷ ︸

O(λ5)

= 0 (30)

VusV
∗
ub︸ ︷︷ ︸

O(λ4)

+VcsV
∗
cb︸ ︷︷ ︸

O(λ2)

+VtsV
∗
tb︸ ︷︷ ︸

O(λ2)

= 0 (31)

VudV
∗
ub︸ ︷︷ ︸

(ρ+iη)Aλ3

+VcdV
∗
cb︸ ︷︷ ︸

−Aλ3

+ VtdV
∗
tb︸ ︷︷ ︸

(1−ρ−iη)Aλ3

= 0 , (32)

whereas those associated with the orthogonality of different rows take the following form:

V ∗udVcd︸ ︷︷ ︸
O(λ)

+V ∗usVcs︸ ︷︷ ︸
O(λ)

+V ∗ubVcb︸ ︷︷ ︸
O(λ5)

= 0 (33)

V ∗cdVtd︸ ︷︷ ︸
O(λ4)

+V ∗csVts︸ ︷︷ ︸
O(λ2)

+V ∗cbVtb︸ ︷︷ ︸
O(λ2)

= 0 (34)

V ∗udVtd︸ ︷︷ ︸
(1−ρ−iη)Aλ3

+V ∗usVts︸ ︷︷ ︸
−Aλ3

+ V ∗ubVtb︸ ︷︷ ︸
(ρ+iη)Aλ3

= 0 . (35)

Here we have also indicated the structures that arise if we apply the Wolfenstein parametrization by
keeping just the leading, non-vanishing terms. We observe that only in (32) and (35), which describe the
orthogonality of the first and third columns and of the first and third rows, respectively, are all three sides
of comparable magnitude, O(λ3), while in the remaining relations, one side is suppressed with respect
to the others by factors of O(λ2) or O(λ4). Consequently, we have to deal with only two non-squashed
unitarity triangles in the complex plane. However, as we have already indicated in (32) and (35), the
corresponding orthogonality relations agree with each other at the λ3 level, yielding

[(ρ+ iη) + (−1) + (1− ρ− iη)]Aλ3 = 0 . (36)

Consequently, they describe the same triangle, which is usually referred to as the unitarity triangle of the
CKM matrix [39, 40].

Concerning second-generation B-decay studies in the LHC era, the experimental accuracy will
be so tremendous that we shall also have to take the next-to-leading order terms of the Wolfenstein
expansion into account, and shall have to distinguish between the unitarity triangles following from (32)
and (35). Let us first have a closer look at the former relation. Including terms of O(λ5), we obtain the
following generalization of (36):

[(ρ̄+ iη̄) + (−1) + (1− ρ̄− iη̄)]Aλ3 +O(λ7) = 0 , (37)

where ρ̄ and η̄ are as defined in (25). If we divide this relation by the overall normalization factor Aλ3,
and introduce

Rb ≡
√
ρ2 + η2 =

(
1− λ2

2

)
1

λ

∣∣∣∣
Vub
Vcb

∣∣∣∣ (38)
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(a) (b)

Fig. 3: The two non-squashed unitarity triangles of the CKM matrix, as explained in the text: (a) and (b) correspond
to the orthogonality relations (32) and (35), respectively. In Asia, the notation φ1 ≡ β, φ2 ≡ α, and φ3 ≡ γ is
used for the angles of the triangle shown in (a).

Rt ≡
√

(1− ρ)2 + η2 =
1

λ

∣∣∣∣
Vtd
Vcb

∣∣∣∣ , (39)

we arrive at the unitarity triangle illustrated in Fig. 3 (a). It is a straightforward generalization of the
leading-order case described by (36): instead of (ρ, η), the apex is now simply given by (ρ̄, η̄) [36]. The
two sides Rb and Rt, as well as the three angles α, β and γ, will show up at several places throughout
these lectures. Moreover, the relations

Vub = Aλ3

(
Rb

1− λ2/2

)
e−iγ , Vtd = Aλ3Rte

−iβ (40)

are also useful for phenomenological applications, since they make the dependences of γ and β explicit;
they correspond to the phase convention chosen both in the standard parametrization (14) and in the
generalized Wolfenstein parametrization (23). Finally, if we take also (21) into account, we obtain

δ13 = γ . (41)

Let us now turn to (35). Here we arrive at an expression that is more complicated than (37):
[{

1− λ2

2
− (1− λ2)ρ− i(1− λ2)η

}
+

{
−1 +

(
1

2
− ρ
)
λ2 − iηλ2

}
+{ρ+ iη}

]
Aλ3+O(λ7) = 0.

(42)
If we divide again by Aλ3, we obtain the unitarity triangle sketched in Fig. 3 (b), where the apex is given
by (ρ, η) and not by (ρ̄, η̄). On the other hand, we encounter a tiny angle

δγ ≡ λ2η = O(1◦) (43)

between real axis and basis of the triangle, which satisfies

γ = γ′ + δγ , (44)

where γ coincides with the corresponding angle in Fig. 3 (a).

Whenever we refer to a ‘unitarity triangle’ (UT) in the following discussion, we mean the one
illustrated in Fig. 3 (a), which is the generic generalization of the leading-order case described by (36).
As we shall see below, the UT is the central target of the experimental tests of the SM description of CP
violation. Interestingly, the tiny angle δγ also can be probed directly through certain CP-violating effects
that can be explored at hadron colliders, in particular at the LHC.
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Fig. 4: Analyses of the CKMfitter and UTfit Collaborations [41, 42]

2.7 The determination of the unitarity triangle
The next obvious question is how to determine the UT. There are two conceptually different avenues that
we may follow:

(i) In the ‘CKM fits’, theory is used to convert experimental data into contours in the ρ̄–η̄ plane. In
particular, semi-leptonic b→ u`ν̄`, c`ν̄` decays and B0

q–B̄0
q mixing (q ∈ {d, s}) allow us to deter-

mine the UT sides Rb and Rt, respectively, i.e., to fix two circles in the ρ̄–η̄ plane. Furthermore,
the indirect CP violation in the neutral kaon system described by εK can be transformed into a
hyperbola.

(ii) Theoretical considerations allow us to convert measurements of CP-violating effects in B-meson
decays into direct information on the UT angles. The most prominent example is the determina-
tion of sin 2β through CP violation in B0

d → J/ψKS decays, but several other strategies were
proposed.

The goal is to ‘overconstrain’ the UT as much as possible. In the future, additional contours can be fixed
in the ρ̄–η̄ plane through the measurement of rare decays.

In Fig. 4, we show examples of the comprehensive analyses of the UT that are performed (and
continuously updated) by the ‘CKM Fitter Group’ [41] and the ‘UTfit Collaboration’ [42]. In these
figures, we can nicely see the circles that are determined through the semi-leptonic B decays and the εK
hyperbolas. Moreover, the straight lines following from the direct measurement of sin 2β with the help
of B0

d → J/ψKS modes are also shown. We observe that the global consistency is very good. However,
looking closer, we also see that the most recent average for (sin 2β)ψKS

is now on the lower side, so
that the situation in the ρ̄–η̄ plane is no longer ‘perfect’. As we shall discuss in detail in the course of
these lectures, there are certain puzzles in the B-factory data, and several important aspects have not yet
been addressed experimentally and are hence still essentially unexplored. Consequently, we may hope
that flavour studies will eventually establish deviations from the SM description of CP violation. Since
B mesons play a key role in these explorations, let us next have a closer look at them.

3 Decays ofB mesons
The B-meson system consists of charged and neutral B mesons, which are characterized by the valence
quark contents in (3). The characteristic feature of the neutral Bq (q ∈ {d, s}) mesons is the phenomenon
of B0

q–B̄0
q mixing, which will be discussed in Section 5. As far as the weak decays of B mesons are

concerned, we distinguish between leptonic, semileptonic, and non-leptonic transitions.
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Fig. 5: Feynman diagrams contributing to the leptonic decay B− → `ν̄`

3.1 Leptonic decays
The simplest B-meson decay class is given by leptonic decays of the kind B− → `ν̄`, as illustrated
in Fig. 5. If we evaluate the corresponding Feynman diagram, we arrive at the following transition
amplitude:

Tfi = − g
2
2

8
Vub [ū`γ

α(1− γ5)vν ]︸ ︷︷ ︸
Dirac spinors

[
gαβ

k2 −M2
W

]
〈0|ūγβ(1− γ5)b|B−〉︸ ︷︷ ︸

hadronic ME

, (45)

where g2 is the SU(2)L gauge coupling, Vub the corresponding element of the CKM matrix, α and β are
Lorentz indices, and MW denotes the mass of the W gauge boson. Since the four-momentum k that is
carried by the W satisfies k2 = M2

B �M2
W , we may write

gαβ
k2 −M2

W

−→ − gαβ
M2
W

≡ −
(

8GF√
2g2

2

)
gαβ , (46)

where GF is Fermi’s constant. Consequently, we may ‘integrate out’ the W boson in (45), which yields

Tfi =
GF√

2
Vub [ū`γ

α(1− γ5)vν ] 〈0|ūγα(1− γ5)b|B−〉 . (47)

In this simple expression, all the hadronic physics is encoded in the hadronic matrix element

〈0|ūγα(1− γ5)b|B−〉 ,

i.e., there are no other strong-interaction QCD effects (for a detailed discussion of QCD, see Ref. [43]).
Since the B− meson is a pseudoscalar particle, we have

〈0|uγαb|B−〉 = 0 , (48)

and may write
〈0|ūγαγ5b|B−(q)〉 = ifBqα , (49)

where fB is the B-meson decay constant, which is an important input for phenomenological studies. In
order to determine this quantity, which is a very challenging task, non-perturbative techniques, such as
QCD sum-rule analyses [44] or lattice studies, where a numerical evaluation of the QCD path integral is
performed with the help of a space-time lattice, [45]– [47], are required. If we use (47) with (48) and
(49), and perform the corresponding phase-space integrations, we obtain the following decay rate:

Γ(B− → `ν̄`) =
G2

F

8π
MBm

2
`

(
1− m2

`

M2
B

)2

f2
B|Vub|2 , (50)
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Fig. 6: Feynman diagrams contributing to semileptonic B̄0
d → D+(π+)`ν̄` decays

where MB and m` denote the masses of the B− and `, respectively. Because of the tiny value of
|Vub| ∝ λ3 and a helicity-suppression mechanism, we obtain unfortunately very small branching ratios of
O(10−10) and O(10−7) for ` = e and ` = µ, respectively [48]. The helicity suppression is not effective
for ` = τ , but—because of the required τ reconstruction—these modes are also very challenging from
an experimental point of view. Nevertheless, the Belle experiment has recently reported the first evidence
for the purely leptonic decay B− → τ−ν̄τ , with the following branching ratio [49]:

BR(B− → τ−ν̄τ ) =
[
1.06+0.34

−0.28 , (stat) +0.18
−0.16 (syst)

]
× 10−4 , (51)

which corresponds to a significance of 4.2 standard deviations. Using the SM expression for this branch-
ing ratio and the measured values of GF,MB ,mτ and the B-meson lifetime, the product of theB-meson
decay constant fB and the magnitude of the CKM matrix element |Vub| is obtained as

fB |Vub| =
[
7.73+1.24

−1.02 (stat) +0.66
−0.58 (syst)

]
× 10−4 GeV . (52)

The determination of this quantity is very interesting, as knowledge of |Vub| allows us to extract fB ,
thereby providing tests of non-perturbative calculations of this important parameter.

Before discussing the determination of |Vub| from semileptonic B decays in the next subsection,
let us have a look at the leptonic D-meson decay D+ → µ+ν. It is governed by the CKM factor

|Vcd| = |Vus|+O(λ5) = λ[1 +O(λ4)] , (53)

whereas B− → µ−ν̄ involves |Vub| = λ3Rb. Consequently, we win a factor of O(λ4) in the decay rate,
so that D+ → µ+ν is accessible at the CLEO-c experiment [50]. Since the corresponding CKM factor
is well known, the decay constant fD+ defined in analogy to (49) can be extracted, allowing another
interesting testing ground for lattice calculations. Thanks to recent progress in these techniques [51], the
‘quenched’ approximation, which had to be applied for many many years and ingnores quark loops, is no
longer required for the calculation of fD+ . In the summer of 2005, there was a first showdown between
the corresponding theoretical prediction and experiment: the lattice result of fD+ = (201±3±17)MeV
was reported [52], while CLEO-c announced the measurement of fD+ = (222.6 ± 16.7+2.8

−3.4) MeV [53].
Both numbers agree well within the uncertainties, and it will be interesting to stay tuned for future results.

3.2 Semileptonic decays
3.2.1 General structure
Semileptonic B-meson decays of the kind shown in Fig. 6 have a structure that is more complicated than
the one of the leptonic transitions. If we evaluate the corresponding Feynman diagram for the b → c
case, we obtain

Tfi = − g
2
2

8
Vcb [ū`γ

α(1− γ5)vν ]︸ ︷︷ ︸
Dirac spinors

[
gαβ

k2 −M2
W

]
〈D+|c̄γβ(1− γ5)b|B̄0

d〉︸ ︷︷ ︸
hadronic ME

. (54)
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Because of k2 ∼ M2
B � M2

W , we may again—as in (45)—integrate out the W boson with the help of
(46), which yields

Tfi =
GF√

2
Vcb [ū`γ

α(1− γ5)vν ] 〈D+|c̄γα(1− γ5)b|B̄0
d〉 , (55)

where all the hadronic physics is encoded in the hadronic matrix element

〈D+|c̄γα(1− γ5)b|B̄0
d〉 ,

i.e., there are no other QCD effects. Since the B̄0
d and D+ are pseudoscalar mesons, we have

〈D+|c̄γαγ5b|B̄0
d〉 = 0 , (56)

and may write

〈D+(k)|c̄γαb|B̄0
d(p)〉 = F1(q2)

[
(p+ k)α −

(
M2
B −M2

D

q2

)
qα

]
+ F0(q2)

(
M2
B −M2

D

q2

)
qα , (57)

where q ≡ p − k, and the F1,0(q2) denote the form factors of the B̄ → D transitions. Consequently,
in contrast to the simple case of the leptonic transitions, semileptonic decays involve two hadronic form
factors instead of the decay constant fB . In order to calculate these parameters, which depend on the
momentum transfer q, again non-perturbative techniques (QCD sum rules, lattice, etc.) are required.

3.2.2 Aspects of the heavy-quark effective theory
If the mass mQ of a quark Q is much larger than the QCD scale parameter ΛQCD = O(100 MeV) [43],
it is referred to as a ‘heavy’ quark. Since the bottom and charm quarks have masses at the level of 5 GeV
and 1 GeV, respectively, they belong to this important category. As far as the extremely heavy top quark,
with mt ∼ 170 GeV is concerned, it decays unfortunately through weak interactions before a hadron can
be formed. Let us now consider a heavy quark that is bound inside a hadron, i.e., a bottom or a charm
quark. The heavy quark then moves almost with the hadron’s four velocity v and is almost on-shell, so
that

pµQ = mQv
µ + kµ , (58)

where v2 = 1 and k � mQ is the ‘residual’ momentum. Owing to the interactions of the heavy
quark with the light degrees of freedom of the hadron, the residual momentum may only change by
∆k ∼ ΛQCD, and ∆v → 0 for ΛQCD/mQ → 0.

It is now instructive to have a look at the elastic scattering process B̄(v) → B̄(v′) in the limit of
ΛQCD/mb → 0, which is characterized by the following matrix element:

1

MB
〈B̄(v′)|b̄v′γαbv|B̄(v)〉 = ξ(v′ · v)(v + v′)α . (59)

Since the contraction of this matrix element with (v − v ′)α has to vanish because of 6 vbv = bv and
bv′6v′ = bv′ , no (v − v′)α term arises in the parametrization in (59). On the other hand, the 1/MB factor
is related to the normalization of states, i.e., the right-hand side of

(
1√
MB
〈B̄(p′)|

)(
|B̄(p)〉 1√

MB

)
= 2v0(2π)3δ3(~p− ~p′) (60)

does not depend on MB . Finally, current conservation implies the following normalization condition:

ξ(v′ · v = 1) = 1 , (61)
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where the ‘Isgur–Wise’ function ξ(v ′ ·v) does not depend on the flavour of the heavy quark (heavy-quark
symmetry) [54]. Consequently, for ΛQCD/mb,c → 0, we may write

1√
MDMB

〈D(v′)|c̄v′γαbv|B̄(v)〉 = ξ(v′ · v)(v + v′)α , (62)

and observe that this transition amplitude is governed—in the heavy-quark limit—by one hadronic form
factor ξ(v′ · v), which satisfies ξ(1) = 1. If we now compare (62) with (57), we obtain

F1(q2) =
MD +MB

2
√
MDMB

ξ(w) (63)

F0(q2) =
2
√
MDMB

MD +MB

[
1 + w

2

]
ξ(w) , (64)

with

w ≡ vD · vB =
M2
D +M2

B − q2

2MDMB
. (65)

Similar relations hold for the B̄ → D∗ form factors because of the heavy-quark spin symmetry, since the
D∗ is related to the D by a rotation of the heavy-quark spin. A detailed discussion of these interesting
features and the associated ‘heavy-quark effective theory’ (HQET) is beyond the scope of these lectures.
For a detailed overview, we refer the reader to Ref. [55], where also a comprehensive list of original
references can be found. For a more phenomenological discussion, Ref. [56] is very useful.

3.2.3 Applications
An important application of the formalism sketched above is the extraction of the CKM element |Vcb|.
To this end, B̄ → D∗`ν̄ decays are particularly promising. The corresponding rate can be written as

dΓ

dw
= G2

FK(MB ,MD∗ , w)F (w)2 |Vcb|2 , (66)

where K(MB ,MD∗ , w) is a known kinematic function, and F (w) agrees with the Isgur–Wise function,
up to perturbative QCD corrections and ΛQCD/mb,c terms. The form factor F (w) is a non-perturbative
quantity. However, it satisfies the following normalization condition:

F (1) = ηA(αs)

[
1 +

0

mc
+

0

mb
+O(Λ2

QCD/m
2
b,c)

]
, (67)

where ηA(αs) is a perturbatively calculable short-distance QCD factor, and the ΛQCD/mb,c corrections
vanish [55, 57]. The important latter feature is an implication of Luke’s theorem [58]. Consequently,
if we extract F (w)|Vcb| from a measurement of (66) as a function of w and extrapolate to the ‘zero-
recoil point’ w = 1 (where the rate vanishes), we may determine |Vcb|. In the case of B̄ → D`ν̄
decays, we have O(ΛQCD/mb,c) corrections to the corresponding rate dΓ/dw at w = 1. In order to
determine |Vcb|, inclusive B → Xc`ν̄ decays offer also very attractive avenues. As becomes obvious
from (27) and the considerations in Section 2.6, |Vcb| fixes the normalization of the UT. Moreover, this
quantity is an important input parameter for various theoretical calculations. The CKM matrix element
|Vcb| is currently known with 2% precision; performing an analysis of leptonic and hadronic moments in
inclusive b→ c`ν̄ processes [59], the following value was extracted from the B-factory data [60]:

|Vcb| = (42.0 ± 0.7)× 10−3 , (68)

which agrees with that from exclusive decays.

Let us now turn to B̄ → π`ν̄, ρ`ν̄ decays, which originate from b→ u`ν̄ quark-level processes, as
can be seen in Fig. 6, and provide access to |Vub|. If we complement this CKM matrix element with |Vcb|,
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we may determine the side Rb of the UT with the help of (38). The determination of |Vub| is hence a very
important aspect of flavour physics. Since the π and ρ are ‘light’ mesons, the HQET symmetry relations
cannot be applied to the B̄ → π`ν̄, ρ`ν̄ modes. Consequently, in order to determine |Vub| from these
exclusive channels, the corresponding heavy-to-light form factors have to be described by models. An
important alternative is provided by inclusive decays. The corresponding decay rate takes the following
form:

Γ(B̄ → Xu`ν̄) =
G2

F|Vub|2
192π3

m5
b

[
1− 2.41

αs
π

+
λ1 − 9λ2

2m2
b

+ . . .

]
, (69)

where λ1 and λ2 are non-perturbative parameters, which describe the hadronic matrix elements of cer-
tain ‘kinetic’ and ‘chromomagnetic’ operators appearing within the framework of the HQET. Using the
heavy-quark expansions

MB = mb + Λ̄− λ1 + 3λ2

2mb
+ . . . , MB∗ = mb + Λ̄− λ1 − λ2

2mb
+ . . . (70)

for the B(∗)-meson masses, where Λ̄ ∼ ΛQCD is another non-perturbative parameter that is related to the
light degrees of freedom, the parameter λ2 can be determined from the measured values of the MB(∗) .
The strong dependence of (69) on mb is a significant source of uncertainty. On the other hand, the
1/m2

b corrections can be better controlled than in the exclusive case (67), where we have, moreover,
to deal with 1/m2

c corrections. From an experimental point of view, we have to struggle with large
backgrounds, which originate from b → c`ν̄ processes and require also a model-dependent treatment.
The determination of |Vub| from B-meson decays caused by b→ u`ν̄ quark-level processes is therefore
a very challenging issue, and the situation is less favourable than with |Vcb|: there is a 1σ discrepancy
between the values from inclusive and exclusive transitions [61]:

|Vub|incl = (4.4 ± 0.3)× 10−3 , |Vub|excl = (3.8± 0.6) × 10−3 , (71)

which has to be settled in the future. The error on |Vub|excl is dominated by the theoretical uncertainty
of lattice and light-cone sum rule calculations of B → π and B → ρ transition form factors [62, 63],
whereas for |Vub|incl experimental and theoretical errors are at par. Using the values of |Vcb| and |Vub|
given above and λ = 0.225 ± 0.001 [64], we obtain

Rincl
b = 0.45± 0.03 , Rexcl

b = 0.39 ± 0.06 , (72)

where the labels ‘incl’ and ‘excl’ refer to the determinations of |Vub| through inclusive and exclusive
b→ u`ν̄` transitions, respectively.

For a much more detailed discussion of the determinations of |Vcb| and |Vub|, addressing also
various recent developments and the future prospects, we refer the reader to Ref. [12], where also the
references to the vast original literature can be found. Another excellent presentation is given in Ref. [56].

3.3 Non-leptonic decays
3.3.1 Classification
The most complicated B decays are the non-leptonic transitions, which are mediated by b→ q1 q̄2 d (s)
quark-level processes, with q1, q2 ∈ {u, d, c, s}. There are two kinds of topologies contributing to such
decays: tree-diagram-like and ‘penguin’ topologies. The latter consist of gluonic (QCD) and electroweak
(EW) penguins. In Fig. 7, the corresponding leading-order Feynman diagrams are shown. Depending on
the flavour content of their final states, we may classify b→ q1 q̄2 d (s) decays as follows:

– q1 6= q2 ∈ {u, c}: only tree diagrams contribute.
– q1 = q2 ∈ {u, c}: tree and penguin diagrams contribute.
– q1 = q2 ∈ {d, s}: only penguin diagrams contribute.
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(a)

(b)

(c)

Fig. 7: Feynman diagrams of the topologies characterizing non-leptonic B decays: (a) trees, (b) QCD penguins,
and (c) electroweak penguins

Fig. 8: Feynman diagrams contributing to the non-leptonic B̄0
d → D+K− decay

Fig. 9: The description of the b→ dūs process through the four-quark operatorO2 in the effective theory after the
W boson has been integrated out

3.3.2 Low-energy effective Hamiltonians
In order to analyse non-leptonic B decays theoretically, one uses low-energy effective Hamiltonians,
which are calculated by making use of the ‘operator product expansion’, yielding transition matrix ele-
ments of the following structure:

〈f |Heff |i〉 =
GF√

2
λCKM

∑

k

Ck(µ)〈f |Qk(µ)|i〉 . (73)

The technique of the operator product expansion allows us to separate the short-distance contributions
to this transition amplitude from the long-distance ones, which are described by perturbative quantities
Ck(µ) (‘Wilson coefficient functions’) and non-perturbative quantities 〈f |Qk(µ)|i〉 (‘hadronic matrix
elements’), respectively. As before, GF is the Fermi constant, whereas λCKM is a CKM factor and µ
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Fig. 10: Factorizable QCD corrections in the full and effective theories

Fig. 11: Non-factorizable QCD corrections in the full and effective theories

denotes an appropriate renormalization scale. The Qk are local operators, which are generated by elec-
troweak interactions and QCD, and govern ‘effectively’ the decay in question. The Wilson coefficients
Ck(µ) can be considered as scale-dependent couplings related to the vertices described by the Qk.

In order to illustrate this rather abstract formalism, let us consider the decay B̄0
d → D+K−, which

allows a transparent discussion of the evaluation of the corresponding low-energy effective Hamilto-
nian. Since this transition originates from a b → cūs quark-level process, it is—as we have seen in
our classification in Subsection 3.3.1—a pure ‘tree’ decay, i.e., we do not have to deal with penguin
topologies, which simplifies the analysis considerably. The leading-order Feynman diagram contributing
to B̄0

d → D+K− can straightforwardly be obtained from Fig. 6 by substituting ` and ν` by s and u,
respectively, as can be seen in Fig. 8. Consequently, the lepton current is simply replaced by a quark
current, which will have important implications shown below. Evaluating the corresponding Feynman
diagram yields

− g
2
2

8
V ∗usVcb [s̄γν(1− γ5)u]

[
gνµ

k2 −M2
W

]
[c̄γµ(1− γ5)b] . (74)

Because of k2 ∼ m2
b � M2

W , we may—as in (54)—‘integrate out’ the W boson with the help of (46),
and arrive at

Heff =
GF√

2
V ∗usVcb [s̄αγµ(1− γ5)uα] [c̄βγ

µ(1− γ5)bβ]

=
GF√

2
V ∗usVcb(s̄αuα)V–A(c̄βbβ)V–A ≡

GF√
2
V ∗usVcbO2 , (75)

where α and β denote the colour indices of the SU(3)C gauge group of QCD. Effectively, our b→ cūs
decay process is now described by the ‘current–current’ operator O2, as is illustrated in Fig. 9.

So far, we neglected QCD corrections. Their important impact is twofold: thanks to factorizable
QCD corrections as shown in Fig. 10, the Wilson coefficient C2 acquires a renormalization-scale depen-
dence, i.e., C2(µ) 6= 1. On the other hand, non-factorizable QCD corrections as illustrated in Fig. 11
generate a second current–current operator through ‘operator mixing’, which is given by

O1 ≡ [s̄αγµ(1− γ5)uβ] [c̄βγ
µ(1− γ5)bα] . (76)

Consequently, we eventually arrive at a low-energy effective Hamiltonian of the following structure:

Heff =
GF√

2
V ∗usVcb [C1(µ)O1 + C2(µ)O2] . (77)

17

FLAVOUR PHYSICS AND CP VIOLATION

119



In order to evaluate the Wilson coefficients C1(µ) 6= 0 and C2(µ) 6= 1 [65], we must first calculate the
QCD corrections to the decay processes both in the full theory, i.e., withW exchange, and in the effective
theory, where the W is integrated out (see Figs. 10 and 11), and have then to express the QCD-corrected
transition amplitude in terms of QCD-corrected matrix elements and Wilson coefficients as in (73). This
procedure is called ‘matching’ between the full and the effective theory. The results for the Ck(µ) thus
obtained contain terms of log(µ/MW ), which become large for µ = O(mb), the scale governing the
hadronic matrix elements of the Ok. Making use of the renormalization group, which exploits the fact
that the transition amplitude (73) cannot depend on the chosen renormalization scale µ, we may sum up
the following terms of the Wilson coefficients:

αns

[
log

(
µ

MW

)]n
(LO), αns

[
log

(
µ

MW

)]n−1

(NLO), ... ; (78)

detailed discussions of these rather technical aspects can be found in Refs. [66, 67].

For the exploration of CP violation, the class of non-leptonic B decays that receives contributions
both from tree and from penguin topologies plays a key role. In this important case, the operator basis is
much larger than in our example (77), where we considered a pure ‘tree’ decay. If we apply the relation

V ∗urVub + V ∗crVcb + V ∗trVtb = 0 (r ∈ {d, s}), (79)

which follows from the unitarity of the CKM matrix, and ‘integrate out’ the top quark (which enters
through the penguin loop processes) and the W boson, we may write

Heff =
GF√

2


∑

j=u,c

V ∗jrVjb

{
2∑

k=1

Ck(µ)Qjr
k +

10∑

k=3

Ck(µ)Qr
k

}
 . (80)

Here we have introduced another quark-flavour label j ∈ {u, c}, and the Qjr
k can be divided as follows:

– Current–current operators:
Qjr1 = (r̄αjβ)V–A(j̄βbα)V–A

Qjr2 = (r̄αjα)V–A(j̄βbβ)V–A.
(81)

– QCD penguin operators:
Qr3 = (r̄αbα)V–A

∑
q′(q̄
′
βq
′
β)V–A

Qr4 = (r̄αbβ)V–A
∑

q′(q̄
′
βq
′
α)V–A

Qr5 = (r̄αbα)V–A
∑

q′(q̄
′
βq
′
β)V+A

Qr6 = (r̄αbβ)V–A
∑

q′(q̄
′
βq
′
α)V+A.

(82)

– EW penguin operators (the eq′ denote the electrical quark charges):

Qr7 = 3
2(r̄αbα)V–A

∑
q′ eq′(q̄

′
βq
′
β)V+A

Qr8 = 3
2(r̄αbβ)V–A

∑
q′ eq′(q̄

′
βq
′
α)V+A

Qr9 = 3
2(r̄αbα)V–A

∑
q′ eq′(q̄

′
βq
′
β)V–A

Qr10 = 3
2(r̄αbβ)V–A

∑
q′ eq′(q̄

′
βq
′
α)V–A.

(83)

The current–current, QCD and EW penguin operators are related to the tree, QCD and EW penguin
processes shown in Fig. 7. At a renormalization scale µ = O(mb), the Wilson coefficients of the current–
current operators are C1(µ) = O(10−1) and C2(µ) = O(1), whereas those of the penguin operators
are O(10−2) [66, 67]. Note that penguin topologies with internal charm- and up-quark exchanges [68]
are described in this framework by penguin-like matrix elements of the corresponding current–current
operators [69], and may also have important phenomenological consequences [70, 71].
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Since the ratio α/αs = O(10−2) of the QED and QCD couplings is very small, we would expect
naïvely that EW penguins should play a minor role in comparison with QCD penguins. This would
actually be the case if the top quark was not ‘heavy’. However, since the Wilson coefficient C9 increases
strongly with mt, we obtain interesting EW penguin effects in several B decays: B → Kφ modes are
affected significantly by EW penguins, whereas B → πφ and Bs → π0φ transitions are even dominated
by such topologies [72, 73]. EW penguins also have an important impact on the B → πK system [74].

The low-energy effective Hamiltonians discussed above apply to all B decays that are caused by
the same quark-level transition, i.e., they are ‘universal’. Consequently, the differences between the vari-
ous exclusive modes of a given decay class arise within this formalism only through the hadronic matrix
elements of the relevant four-quark operators. Unfortunately, the evaluation of such matrix elements is
associated with large uncertainties and is a very challenging task. In this context, ‘factorization’ is a
widely used concept, which is our next topic.

3.3.3 Factorization of hadronic matrix elements
In order to discuss ‘factorization’, let us consider once more the decay B̄0

d → D+K−. Evaluating the
corresponding transition amplitude, we encounter the hadronic matrix elements of the O1,2 operators
between the 〈K−D+| final and the |B̄0

d〉 initial states. If we use the well-known SU(NC) colour-algebra
relation

T aαβT
a
γδ =

1

2

(
δαδδβγ −

1

NC
δαβδγδ

)
(84)

to rewrite the operator O1, we obtain

〈K−D+|Heff |B̄0
d〉 =

GF√
2
V ∗usVcb

[
a1〈K−D+|(s̄αuα)V–A(c̄βbβ)V–A|B̄0

d〉

+2C1〈K−D+|(s̄α T aαβ uβ)V–A(c̄γ T
a
γδ bδ)V–A|B̄0

d〉
]
,

with
a1 = C1/NC + C2 ∼ 1 . (85)

It is now straightforward to ‘factorize’ the hadronic matrix elements in (85):

〈K−D+|(s̄αuα)V–A(c̄βbβ)V–A|B̄0
d〉
∣∣
fact

= 〈K−| [s̄αγµ(1− γ5)uα] |0〉〈D+| [c̄βγµ(1− γ5)bβ ] |B̄0
d〉

= ifK︸︷︷︸
decay constant

× F
(BD)
0 (M2

K)︸ ︷︷ ︸
B → D form factor

× (M2
B −M2

D) ,︸ ︷︷ ︸
kinematical factor

(86)

〈K−D+|(s̄α T aαβ uβ)V–A(c̄γ T
a
γδ bδ)V–A|B̄0

d〉
∣∣
fact

= 0 . (87)

The quantity a1 is a phenomenological ‘colour factor’, which governs ‘colour-allowed’ decays; the decay
B̄0
d → D+K− belongs to this category, since the colour indices of theK−meson and the B̄0

d–D+ system
run independently from each other in the corresponding leading-order diagram shown in Fig. 8. On the
other hand, in the case of ‘colour-suppressed’ modes, for instance B̄0

d → π0D0, where only one colour
index runs through the whole diagram, we have to deal with the combination

a2 = C1 + C2/NC ∼ 0.25 . (88)

The concept of factorizing the hadronic matrix elements of four-quark operators into the product
of hadronic matrix elements of quark currents has a long history [75], and can be justified, for example,
in the large-NC limit [76]. Interesting recent developments are the following:
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– ‘QCD factorization’ [77], which is in accordance with the old picture that factorization should
hold for certain decays in the limit of mb � ΛQCD [78], provides a formalism to calculate the
relevant amplitudes at the leading order of a ΛQCD/mb expansion. The resulting expression for
the transition amplitudes incorporates elements both of the naïve factorization approach sketched
above and of the hard-scattering picture. Let us consider a decay B̄ → M1M2, where M1 picks
up the spectator quark. If M1 is either a heavy (D) or a light (π, K) meson, and M2 a light (π, K)
meson, QCD factorization gives a transition amplitude of the following structure:

A(B̄ →M1M2) = [‘naïve factorization’]× [1 +O(αs) +O(ΛQCD/mb)] . (89)

While the O(αs) terms, i.e., the radiative non-factorizable corrections, can be calculated system-
atically, the main limitation of the theoretical accuracy originates from the O(ΛQCD/mb) terms.

– Another QCD approach to deal with non-leptonic B-meson decays—the ‘perturbative hard-scattering
approach’ (PQCD)—was developed independently in Ref. [79], and differs from the QCD factor-
ization formalism in some technical aspects.

– An interesting technique for ‘factorization proofs’ is provided by the framework of the ‘soft
collinear effective theory’ (SCET) [80], which has received a lot of attention in the recent liter-
ature and led to various applications.

– Non-leptonic B decays can also be studied within QCD light-cone sum-rule approaches [81].

A detailed presentation of these topics would be very technical and is beyond the scope of these lec-
tures. However, for the discussion of the CP-violating effects in the B-meson system, we must only
be familiar with the general structure of the non-leptonic B decay amplitudes and not enter the details
of the techniques to deal with the corresponding hadronic matrix elements. Let us finally note that the
B-factory data will eventually decide how well factorization and the new concepts sketched above are
actually working. For example, data on the B → ππ system point towards large non-factorizable correc-
tions [82, 83], to which we shall return in Section 8.2.

3.4 Towards studies of CP violation
As we have seen above, leptonic and semileptonic B-meson decays involve only a single weak (CKM)
amplitude. On the other hand, the structure of non-leptonic transitions is considerably more complicated.
Let us consider a non-leptonic decay B̄ → f̄ that is described by the low-energy effective Hamiltonian
in (80). The corresponding decay amplitude is then given as follows:

A(B̄ → f̄) = 〈f̄ |Heff|B̄〉

=
GF√

2


∑

j=u,c

V ∗jrVjb

{
2∑

k=1

Ck(µ)〈f̄ |Qjr
k (µ)|B̄〉+

10∑

k=3

Ck(µ)〈f̄ |Qr
k(µ)|B̄〉

}
 . (90)

Concerning the CP-conjugate process B → f , we have

A(B → f) = 〈f |H†eff|B〉

=
GF√

2


∑

j=u,c

VjrV
∗
jb

{
2∑

k=1

Ck(µ)〈f |Qjr†
k (µ)|B〉+

10∑

k=3

Ck(µ)〈f |Qr†
k (µ)|B〉

}
 . (91)

If we use now that strong interactions are invariant under CP transformations, insert (CP)†(CP) = 1̂
both after the 〈f | and in front of the |B〉, and take the relation

(CP)Qjr†
k (CP)† = Qjrk (92)
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into account, we arrive at

A(B → f) = ei[φCP(B)−φCP(f)]

×GF√
2


∑

j=u,c

VjrV
∗
jb

{
2∑

k=1

Ck(µ)〈f̄ |Qjr
k (µ)|B̄〉+

10∑

k=3

Ck(µ)〈f̄ |Qr
k(µ)|B̄〉

}
 , (93)

where the convention-dependent phases φCP(B) and φCP(f) are defined through

(CP)|B〉 = eiφCP(B)|B̄〉, (CP)|f〉 = eiφCP(f)|f̄〉. (94)

Consequently, we may write

A(B̄ → f̄) = e+iϕ1 |A1|eiδ1 + e+iϕ2 |A2|eiδ2 (95)

A(B → f) = ei[φCP(B)−φCP(f)]
[
e−iϕ1 |A1|eiδ1 + e−iϕ2 |A2|eiδ2

]
. (96)

Here the CP-violating phases ϕ1,2 originate from the CKM factors V ∗jrVjb, and the CP-conserving
‘strong’ amplitudes |A1,2|eiδ1,2 involve the hadronic matrix elements of the four-quark operators. In
fact, these expressions are the most general forms of any non-leptonic B-decay amplitude in the SM,
i.e., they do not only refer to the ∆C = ∆U = 0 case described by (80). Using (95) and (96), we obtain
the following CP asymmetry:

ACP ≡ Γ(B → f)− Γ(B̄ → f̄)

Γ(B → f) + Γ(B̄ → f̄)
=
|A(B → f)|2 − |A(B̄ → f̄)|2
|A(B → f)|2 + |A(B̄ → f̄)|2

=
2|A1||A2| sin(δ1 − δ2) sin(ϕ1 − ϕ2)

|A1|2 + 2|A1||A2| cos(δ1 − δ2) cos(ϕ1 − ϕ2) + |A2|2
. (97)

We observe that a non-vanishing value can be generated through the interference between the two weak
amplitudes, provided both a non-trivial weak phase difference ϕ1 − ϕ2 and a non-trivial strong phase
difference δ1 − δ2 are present. This kind of CP violation is referred to as ‘direct’ CP violation, as it
originates directly at the amplitude level of the considered decay. It is the B-meson counterpart of the
effects that are probed through Re(ε′/ε) in the neutral kaon system1, and could recently be established
with the help of Bd → π∓K± decays [6], as we shall see in Section 7.3.

Since ϕ1 − ϕ2 is in general given by one of the UT angles—usually γ—the goal is to extract this
quantity from the measured value ofACP. Unfortunately, hadronic uncertainties affect this determination
through the poorly known hadronic matrix elements in (90). In order to deal with this problem, we may
proceed along one of the following two avenues:

(i) Amplitude relations can be used to eliminate the hadronic matrix elements. We distinguish be-
tween exact relations, using pure ‘tree’ decays of the kind B± → K±D [84, 85] or B±c → D±s D
[86], and relations which follow from the flavour symmetries of strong interactions, i.e., isospin or
SU(3)F, and involve B(s) → ππ, πK,KK modes [87].

(ii) In decays of neutral Bq mesons, interference effects between B0
q–B̄0

q mixing and decay processes
may induce ‘mixing-induced CP violation’. If a single CKM amplitude governs the decay, the
hadronic matrix elements cancel in the corresponding CP asymmetries; otherwise we again have
to use amplitude relations. The most important example is the decay B0

d → J/ψKS [88].

Before discussing the features of neutral Bq mesons and B0
q–B̄0

q mixing in detail in Section 5, let us
illustrate the use of amplitude relations for clean extractions of the UT angle γ from decays of charged
Bu and Bc mesons.

1In order to calculate this quantity, an approriate low-energy effective Hamiltonian having the same structure as (80) is used.
The large theoretical uncertainties mentioned in Section 1 originate from a strong cancellation between the contributions of the
QCD and EW penguins (caused by the large top-quark mass) and the associated hadronic matrix elements.
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4 Amplitude relations
4.1 B± → K±D

The prototype of the strategies using theoretically clean amplitude relations is provided by B± → K±D
decays [84]. Looking at Fig. 12, we observe that B+ → K+D̄0 and B+ → K+D0 are pure ‘tree’
decays. If we consider, in addition, the transition B+ → D0

+K
+, where D0

+ denotes the CP eigenstate
of the neutral D-meson system with eigenvalue +1,

|D0
+〉 =

1√
2

[
|D0〉+ |D̄0〉

]
, (98)

we obtain interference effects, which are described by
√

2A(B+ → K+D0
+) = A(B+ → K+D0) +A(B+ → K+D̄0) (99)√

2A(B− → K−D0
+) = A(B− → K−D̄0) +A(B− → K−D0) . (100)

These relations can be represented as two triangles in the complex plane. Since we have only to deal
with tree-diagram-like topologies, we have moreover

A(B+ → K+D̄0) = A(B− → K−D0) (101)

A(B+ → K+D0) = A(B− → K−D̄0)× e2iγ , (102)

allowing a theoretically clean extraction of γ, as shown in Fig. 13. Unfortunately, these triangles are
very squashed, since B+ → K+D0 is colour-suppressed with respect to B+ → K+D̄0:

∣∣∣∣
A(B+ → K+D0)

A(B+ → K+D̄0

∣∣∣∣ =

∣∣∣∣
A(B− → K−D̄0)

A(B− → K−D0

∣∣∣∣ ≈
1

λ

|Vub|
|Vcb|

× a2

a1
≈ 0.4 × 0.3 = O(0.1) , (103)

where the phenomenological ‘colour’ factors were introduced in Subsection 3.3.3.

Another—more subtle—problem is related to the measurement of BR(B+ → K+D0). From the
theoretical point of view, D0 → K−`+ν would be ideal to measure this tiny branching ratio. However,
because of the huge background from semileptonic B decays, we must rely on Cabibbo-allowed hadronic
D0 → fNE decays, such as fNE = π+K−, ρ+K−, . . ., i.e., have to measure

B+ → K+D0 [→ fNE] . (104)

Unfortunately, we then encounter another decay path into the same final state K+fNE through

B+ → K+D̄0 [→ fNE] , (105)

where BR(B+ → K+D̄0) is larger than BR(B+ → K+D0) by a factor of O(102), while D̄0 → fNE is
doubly Cabibbo-suppressed, i.e., the corresponding branching ratio is suppressed with respect to the one
of D0 → fNE by a factor of O(10−2). Consequently, we obtain interference effects of O(1) between
the decay chains in (104) and (105). However, if two different final states fNE are considered, γ can
be extracted [85], although this determination is then more involved than the original triangle approach
presented in [84].

The angle γ can be determined in a variety of ways through CP-violating effects in pure tree
decays of type B → D(∗)K(∗) [89]. Using the present B-factory data, the following results were
obtained through a combination of various methods:

γ|D(∗)K(∗) =

{
(62+35
−25)◦ (CKMfitter Collaboration [41]) ,

(65± 20)◦ (UTfit Collaboration [42]) .
(106)

Here we have discarded a second solution given by 180◦ + γ|D(∗)K(∗) in the third quadrant of the ρ̄–η̄
plane, as it is disfavoured by the global fits of the UT, and by the data for mixing-induced CP violation in
pure tree decays of type Bd → D±π∓, D∗±π∓, ... [90]. A similar comment applies to the information
from B → ππ, πK modes [91].
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Fig. 12: Feynman diagrams contributing to B+ → K+D̄0 and B+ → K+D0

Fig. 13: The extraction of γ from B± → K±{D0, D̄0, D0
+} decays

Fig. 14: Feynman diagrams contributing to B+
c → D+

s D̄
0 and B+ → D+

s D
0

4.2 B±c → D±s D

In addition to the ‘conventional’ B±u mesons, there is yet another species of charged B mesons, the Bc-
meson system, which consists of B+

c ∼ cb and B−c ∼ bc. These mesons were observed by the CDF
Collaboration through their decay B+

c → J/ψ`+ν, with the following mass and lifetime [92]:

MBc = (6.40 ± 0.39 ± 0.13) GeV, τBc = (0.46+0.18
−0.16 ± 0.03) ps . (107)

Meanwhile, the D0 Collaboration observed the B+
c → J/ψ µ+X mode [93], which led to the following

Bc mass and lifetime determinations:

MBc = (5.95+0.14
−0.13 ± 0.34) GeV, τBc = (0.448+0.123

−0.096 ± 0.121) ps , (108)

and CDF reported evidence for the B+
c → J/ψπ+ channel [94], implying

MBc = (6.2870 ± 0.0048 ± 0.0011) GeV . (109)

Since Run II of the Tevatron will provide further insights into Bc physics and a huge number of Bc
mesons will be produced at LHCb, the natural question of how to explore CP violation with charged Bc
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Fig. 15: The extraction of γ from B±c → D±s {D0, D̄0, D0
+} decays

decays arises, in particular whether an extraction of γ with the help of the triangle approach is possible.
Such a determination is actually offered by B±c → D±s D decays, which are the Bc counterparts of the
B±u → K±D modes (see Fig. 14), and satisfy the following amplitude relations [95]:

√
2A(B+

c → D+
s D

0
+) = A(B+

c → D+
s D

0) +A(B+
c → D+

s D̄
0) (110)√

2A(B−c → D−s D
0
+) = A(B−c → D−s D̄

0) +A(B−c → D−s D
0) , (111)

with

A(B+
c → D+

s D̄
0) = A(B−c → D−s D

0) (112)

A(B+
c → D+

s D
0) = A(B−c → D−s D̄

0)× e2iγ . (113)

At first sight, everything is completely analogous to the B±u → K±D case. However, there is an im-
portant difference [86], which becomes obvious by comparing the Feynman diagrams shown in Figs. 12
and 14: in the B±c → D±s D system, the amplitude with the rather small CKM matrix element Vub is not
colour-suppressed, while the larger element Vcb comes with a colour-suppression factor. Therefore, we
obtain

∣∣∣∣
A(B+

c → D+
s D

0)

A(B+
c → D+

s D̄0)

∣∣∣∣ =

∣∣∣∣
A(B−c → D−s D̄

0)

A(B−c → D−s D0)

∣∣∣∣ ≈
1

λ

|Vub|
|Vcb|

× a1

a2
≈ 0.4× 3 = O(1) , (114)

and conclude that the two amplitudes are similar in size. In contrast to this favourable situation, in the
decays B±u → K±D, the matrix element Vub comes with the colour-suppression factor, resulting in a
very stretched triangle. The extraction of γ from theB±c → D±s D triangles is illustrated in Fig. 15, which
should be compared with the squashed B±u → K±D triangles shown in Fig. 13. Another important
advantage is that the interference effects arising from D0, D̄0 → π+K− are practically unimportant for
the measurement of BR(B+

c → D+
s D

0) and BR(B+
c → D+

s D̄
0) since the Bc-decay amplitudes are of

the same order of magnitude. Consequently, theB±c → D±s D decays provide—from the theoretical point
of view—the ideal realization of the ‘triangle’ approach to determine γ. On the other hand, the practical
implementation still appears to be challenging, although detailed experimental feasibility studies for
LHCb are strongly encouraged. The corresponding branching ratios were estimated in Ref. [96], with a
pattern in accordance with (114).

5 Features of neutralB mesons
5.1 Schrödinger equation for B0

q–B̄0
q mixing

Within the SM, B0
q–B̄0

q mixing (q ∈ {d, s}) arises from the box diagrams shown in Fig. 16. Because of
this phenomenon, an initially, i.e., at time t = 0, present B0

q -meson state evolves into a time-dependent
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Fig. 16: Box diagrams contributing to B0
q–B̄0

q mixing in the SM (q ∈ {d, s})

linear combination of B0
q and B̄0

q states:

|Bq(t)〉 = a(t)|B0
q 〉+ b(t)|B̄0

q 〉, (115)

where a(t) and b(t) are governed by a Schrödinger equation of the following form:

i
d

dt

(
a(t)
b(t)

)
= H ·

(
a(t)
b(t)

)
≡
[(

M
(q)
0 M

(q)
12

M
(q)∗
12 M

(q)
0

)

︸ ︷︷ ︸
mass matrix

− i
2

(
Γ

(q)
0 Γ

(q)
12

Γ
(q)∗
12 Γ

(q)
0

)

︸ ︷︷ ︸
decay matrix

]
·
(
a(t)
b(t)

)
.

The special form H11 = H22 of the Hamiltonian H is an implication of the CPT theorem, i.e., of the
invariance under combined CP and time-reversal (T) transformations.

It is straightforward to calculate the eigenstates |B (q)
± 〉 and eigenvalues λ(q)

± of (116):

|B(q)
± 〉 =

1√
1 + |αq|2

(
|B0

q 〉 ± αq|B̄0
q 〉
)

(116)

λ
(q)
± =

(
M

(q)
0 − i

2
Γ

(q)
0

)
±
(
M

(q)
12 −

i

2
Γ

(q)
12

)
αq , (117)

where

αqe
+i
“

Θ
(q)
Γ12

+n′π
”

=

√√√√√ 4|M (q)
12 |2e

−i2δΘ(q)
M/Γ + |Γ(q)

12 |2
4|M (q)

12 |2 + |Γ(q)
12 |2 − 4|M (q)

12 ||Γ
(q)
12 | sin δΘ

(q)
M/Γ

. (118)

Here we have written

M
(q)
12 ≡ e

iΘ
(q)
M12 |M (q)

12 |, Γ
(q)
12 ≡ e

iΘ
(q)
Γ12 |Γ(q)

12 |, δΘ
(q)
M/Γ ≡ Θ

(q)
M12
−Θ

(q)
Γ12

, (119)

and have introduced the quantity n′ ∈ {0, 1} to parametrize the sign of the square root in (118).

Evaluating the dispersive parts of the box diagrams shown in Fig. 16, which are dominated by
internal top-quark exchanges, yields (for a more detailed discussion, see Ref. [17]):

M
(q)
12 =

G2
FM

2
W

12π2
ηBMBqf

2
BqB̂Bq

(
V ∗tqVtb

)2
S0(xt)e

i(π−φCP(Bq)) , (120)

where φCP(Bq) is a convention-dependent phase, which is defined in analogy to (94). The short-distance
physics is encoded in the ‘Inami–Lim’ function S0(xt ≡ m2

t /M
2
W ) [97], which can be written—to a

good approximation—in the SM as [98]

S0(xt) = 2.40 ×
[ mt

167 GeV

]1.52
, (121)

and in the perturbative QCD correction factor ηB = 0.55 ± 0.01 [99], which does not depend on q ∈
{d, s}, i.e., is the same for Bd and Bs mesons. On the other hand, the non-perturbative physics is
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described by the quantities fBq B̂
1/2
Bq

, involving—in addition to the Bq decay constant fBq—the ‘bag’

parameter B̂Bq , which is related to the hadronic matrix element 〈B̄0
q |(b̄q)V−A(b̄q)V−A|B0

q 〉. These non-
perturbative parameters can be determined through QCD sum-rule calculations [100] or lattice studies.
Concerning the latter analyses, the front runners are now unquenched calculations with 2 or 3 dynamical
quarks. Despite tremendous progress, the results still suffer from several uncertainties. For the analysis
of the mixing parameters discussed below [101], we use two sets of parameters from the JLQCD [102]
and HPQCD [103] lattice collaborations:

fBdB̂
1/2
Bd

∣∣∣
JLQCD

= (0.215 ± 0.019+0
−0.023) GeV

fBsB̂
1/2
Bs

∣∣∣
JLQCD

= (0.245 ± 0.021+0.003
−0.002) GeV ,

(122)

which were obtained for two flavours of dynamical light (‘Wilson’) quarks, and

fBdB̂
1/2
Bd

∣∣∣
(HP+JL)QCD

= (0.244 ± 0.026) GeV

fBsB̂
1/2
Bs

∣∣∣
(HP+JL)QCD

= (0.295 ± 0.036) GeV ,
(123)

where fBq comes from HPQCD (3 dynamical flavours) and B̂Bq from JLQCD as no value for this
parameter is available from the former collaboration [104].

If we calculate also the absorptive parts of the box diagrams in Fig 16, we obtain

Γ
(q)
12

M
(q)
12

≈ − 3π

2S0(xt)

(
m2
b

M2
W

)
= O(m2

b/m
2
t )� 1 . (124)

Consequently, we may expand (118) in Γ
(q)
12 /M

(q)
12 . Neglecting second-order terms, we arrive at

αq =

[
1 +

1

2

∣∣∣∣∣
Γ

(q)
12

M
(q)
12

∣∣∣∣∣ sin δΘ
(q)
M/Γ

]
e
−i
“

Θ
(q)
M12

+n′π
”
. (125)

The deviation of |αq| from 1 measures CP violation in B0
q–B̄0

q oscillations, and can be probed
through the following ‘wrong-charge’ lepton asymmetries:

A(q)
SL ≡

Γ(B0
q (t)→ `−ν̄X)− Γ(B̄0

q (t)→ `+νX)

Γ(B0
q (t)→ `−ν̄X) + Γ(B̄0

q (t)→ `+νX)
=
|αq|4 − 1

|αq|4 + 1
≈
∣∣∣∣∣

Γ
(q)
12

M
(q)
12

∣∣∣∣∣ sin δΘ
(q)
M/Γ . (126)

Because of |Γ(q)
12 |/|M

(q)
12 | ∝ m2

b/m
2
t and sin δΘ

(q)
M/Γ

∝ m2
c/m

2
b , the asymmetry A(q)

SL is suppressed by a
factor of m2

c/m
2
t = O(10−4) and is hence tiny in the SM. However, this observable may be enhanced

through NP effects, thereby representing an interesing probe for physics beyond the SM [105, 106].
The current experimental average for the Bd-meson system compiled by the ‘Heavy Flavour Averaging
Group’ [61] reads as follows:

A(d)
SL = 0.0030 ± 0.0078 , (127)

and does not indicate any non-vanishing effect.

5.2 Mixing parameters

Let us denote the masses of the eigenstates of (116) by M (q)
H (‘heavy’) and M (q)

L (‘light’). It is then
useful to introduce

Mq ≡
M

(q)
H +M

(q)
L

2
= M

(q)
0 , (128)
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as well as the mass difference

∆Mq ≡M (q)
H −M (q)

L = 2|M (q)
12 | > 0 , (129)

which is by definition positive. While B0
d–B̄0

d mixing is well established and

∆Md = (0.507 ± 0.004) ps−1 (130)

known with impressive experimental accuracy [61], only lower bounds on ∆Ms were available, for many
years, from the LEP (CERN) experiments and SLD (SLAC) [107]. In the spring of 2006, ∆Ms could
eventually be pinned down at the Tevatron: the D0 Collaboration reported a two-sided bound

17 ps−1 < ∆Ms < 21 ps−1 (90% C.L.) , (131)

corresponding to a 2.5 σ signal at ∆Ms = 19 ps−1 [108], and CDF announced the following result [109]:

∆Ms =
[
17.31+0.33

−0.18(stat)± 0.07(syst)
]

ps−1 . (132)

The decay widths Γ
(q)
H and Γ

(q)
L of the mass eigenstates, which correspond to M (q)

H and M (q)
L ,

respectively, satisfy

∆Γq ≡ Γ
(q)
H − Γ

(q)
L =

4 Re
[
M

(q)
12 Γ

(q)∗
12

]

∆Mq
, (133)

whereas

Γq ≡
Γ

(q)
H + Γ

(q)
L

2
= Γ

(q)
0 . (134)

There is the following interesting relation:

∆Γq
Γq
≈ − 3π

2S0(xt)

(
m2
b

M2
W

)
xq = −O(10−2)× xq , (135)

where

xq ≡
∆Mq

Γq
=

{
0.771 ± 0.012 (q = d)
O(20) (q = s)

(136)

is often referred to as the B0
q–B̄0

q ‘mixing parameter’2 . Consequently, we observe that ∆Γd/Γd ∼ 10−2

is negligibly small, while ∆Γs/Γs ∼ 10−1 may be sizeable. In fact, as was reviewed in Ref. [110], the
state of the art of calculations of these quantities is given as follows:

|∆Γd|
Γd

= (3± 1.2) × 10−3,
|∆Γs|

Γs
= 0.12 ± 0.05 . (137)

Recently, the first results for ∆Γs were reported from the Tevatron, using theB0
s → J/ψφ channel [111]:

|∆Γs|
Γs

=

{
0.65+0.25

−0.33 ± 0.01 (CDF [112])
0.24+0.28+0.03

−0.38−0.04 (D0 [113]) .
(138)

It will be interesting to follow the evolution of the data for this quantity.

In Sections 7.1 and 10.1, we give detailed discussions of the theoretical interpretation of the data
for the B0

q–B̄0
q mixing parameters.

2Note that ∆Γq/Γq is negative in the SM because of the minus sign in (135).
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5.3 Time-dependent decay rates
The time evolution of initially, i.e., at t = 0, pure B0

q - and B̄0
q -meson states is given by

|B0
q (t)〉 = f

(q)
+ (t)|B0

q 〉+ αqf
(q)
− (t)|B̄0

q 〉 (139)

and
|B̄0

q (t)〉 =
1

αq
f

(q)
− (t)|B0

q 〉+ f
(q)
+ (t)|B̄0

q 〉 , (140)

respectively, with

f
(q)
± (t) =

1

2

[
e−iλ

(q)
+ t ± e−iλ

(q)
− t
]
. (141)

These time-dependent state vectors allow the calculation of the corresponding transition rates. To this
end, it is useful to introduce

|g(q)
± (t)|2 =

1

4

[
e−Γ

(q)
L t + e−Γ

(q)
H t ± 2 e−Γq t cos(∆Mqt)

]
(142)

g
(q)
− (t) g

(q)
+ (t)∗ =

1

4

[
e−Γ

(q)
L t − e−Γ

(q)
H t + 2 i e−Γq t sin(∆Mqt)

]
, (143)

as well as

ξ
(q)
f = e

−iΘ(q)
M12

A(B̄0
q → f)

A(B0
q → f)

, ξ
(q)

f̄
= e
−iΘ(q)

M12
A(B̄0

q → f̄)

A(B0
q → f̄)

. (144)

Looking at (120), we find
Θ

(q)
M12

= π + 2arg(V ∗tqVtb)− φCP(Bq) , (145)

and observe that this phase depends on the chosen CKM and CP phase conventions specified in (11)
and (94), respectively. However, these dependences are cancelled through the amplitude ratios in (144),
so that ξ(q)

f and ξ(q)

f̄
are convention-independent observables. Whereas n′ enters the functions in (141)

through (117), the dependence on this parameter is cancelled in (142) and (143) through the introduction
of the positive mass difference ∆Mq [see (129)]. Combining the formulae listed above, we eventually
arrive at the following transition rates for decays of initially, i.e., at t = 0, present B 0

q or B̄0
q mesons:

Γ(
(–)

B0
q (t)→ f) =

[
|g(q)
∓ (t)|2 + |ξ(q)

f |2|g
(q)
± (t)|2 − 2 Re

{
ξ

(q)
f g

(q)
± (t)g

(q)
∓ (t)∗

}]
Γ̃f , (146)

where the time-independent rate Γ̃f corresponds to the ‘unevolved’ decay amplitude A(B0
q → f), and

can be calculated by performing the usual phase-space integrations. The rates into the CP-conjugate final
state f̄ can straightforwardly be obtained from (146) by making the substitutions

Γ̃f → Γ̃f̄ , ξ
(q)
f → ξ

(q)

f̄
. (147)

5.4 ‘Untagged’ rates
The expected sizeable width difference ∆Γs may provide interesting studies of CP violation through
‘untagged’ Bs rates (see Ref. [111] and [114]– [117]), which are defined as

〈Γ(Bs(t)→ f)〉 ≡ Γ(B0
s (t)→ f) + Γ(B̄0

s (t)→ f) , (148)

and are characterized by the feature that we do not distinguish between initially, i.e., at time t = 0,
present B0

s or B̄0
s mesons. If we consider a final state f to which both a B0

s and a B̄0
s may decay, and use

the expressions in (146), we find

〈Γ(Bs(t)→ f)〉 ∝ [cosh(∆Γst/2)−A∆Γ(Bs → f) sinh(∆Γst/2)] e−Γst , (149)
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with

A∆Γ(Bs → f) ≡
2 Re ξ(s)

f

1 +
∣∣ξ(s)
f

∣∣2 . (150)

We observe that the rapidly oscillating ∆Mst terms cancel, and that we may obtain information about
the phase structure of the observable ξ(s)

f , thereby providing valuable insights into CP violation.

Following these lines, for instance, the untagged observables offered by the angular distribution of
the Bs → K∗+K∗−,K∗0K̄∗0 decay products allow a determination of the UT angle γ, provided ∆Γs is
actually sizeable [115]. Untagged Bs-decay rates are interesting in terms of efficiency, acceptance and
purity, and are already applied for the physics analyses at the Tevatron. Later on, they will help to fully
exploit the physics potential of the Bs-meson system at the LHC.

5.5 CP asymmetries
A particularly simple—but also very interesting—situation arises if we restrict ourselves to decays of
neutral Bq mesons into final states f that are eigenstates of the CP operator, i.e., satisfy the relation

(CP)|f〉 = ±|f〉 . (151)

Consequently, we have ξ(q)
f = ξ

(q)

f̄
in this case, as can be seen in (144). Using the decay rates in (146),

we find that the corresponding time-dependent CP asymmetry is given by

ACP(t) ≡
Γ(B0

q (t)→ f)− Γ(B̄0
q (t)→ f)

Γ(B0
q (t)→ f) + Γ(B̄0

q (t)→ f)

=

[Adir
CP(Bq → f) cos(∆Mqt) +Amix

CP (Bq → f) sin(∆Mqt)

cosh(∆Γqt/2) −A∆Γ(Bq → f) sinh(∆Γqt/2)

]
, (152)

with

Adir
CP(Bq → f) ≡

1−
∣∣ξ(q)
f

∣∣2

1 +
∣∣ξ(q)
f

∣∣2 , Amix
CP (Bq → f) ≡

2 Im ξ
(q)
f

1 +
∣∣ξ(q)
f

∣∣2 . (153)

Because of the relation

Adir
CP(Bq → f) =

|A(B0
q → f)|2 − |A(B̄0

q → f̄)|2
|A(B0

q → f)|2 + |A(B̄0
q → f̄)|2 , (154)

this observable measures the direct CP violation in the decay Bq → f , which originates from the inter-
ference between different weak amplitudes, as we have seen in (97). On the other hand, the interesting
new aspect of (152) is due toAmix

CP (Bq → f), which originates from interference effects between B0
q–B̄0

q

mixing and decay processes, and describes ‘mixing-induced’ CP violation. Finally, the width difference
∆Γq, which may be sizeable in the Bs-meson system, provides access to A∆Γ(Bq → f) introduced in
(150). However, this observable is not independent from Adir

CP(Bq → f) and Amix
CP (Bq → f), satisfying

[
Adir

CP(Bq → f)
]2

+
[
Amix

CP (Bq → f)
]2

+
[
A∆Γ(Bq → f)

]2
= 1 . (155)

In order to calculate ξ(q)
f , we use the general expressions (95) and (96), where e−iφCP(f) = ±1

because of (151), and φCP(B) = φCP(Bq). If we insert these amplitude parametrizations into (144) and
take (145) into account, we observe that the phase-convention-dependent quantity φCP(Bq) cancels, and
finally arrive at

ξ
(q)
f = ∓ e−iφq

[
e+iϕ1 |A1|eiδ1 + e+iϕ2 |A2|eiδ2
e−iϕ1 |A1|eiδ1 + e−iϕ2 |A2|eiδ2

]
, (156)
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where

φq ≡ 2 arg(V ∗tqVtb) =

{
+2β (q = d)
−2δγ (q = s)

(157)

is associated with the CP-violating weak B0
q–B̄0

q mixing phase arising in the SM; β and δγ refer to the
corresponding angles in the unitarity triangles shown in Fig. 3.

In analogy to (97), the caclulation of ξ(q)
f is—in general—also affected by large hadronic uncer-

tainties. However, if one CKM amplitude plays the dominant role in the Bq → f transition, we obtain

ξ
(q)
f = ∓ e−iφq

[
e+iφf/2|Mf |eiδf
e−iφf/2|Mf |eiδf

]
= ∓ e−i(φq−φf ) , (158)

and observe that the hadronic matrix element |Mf |eiδf cancels in this expression. Since the requirements
for direct CP violation discussed above are no longer satisfied, direct CP violation vanishes in this impor-
tant special case, i.e., Adir

CP(Bq → f) = 0. On the other hand, this is not the case for the mixing-induced
CP asymmetry. In particular,

Amix
CP (Bq → f) = ± sinφ (159)

is now governed by the CP-violating weak phase difference φ ≡ φq −φf and is not affected by hadronic
uncertainties. The corresponding time-dependent CP asymmetry takes then the simple form

Γ(B0
q (t)→ f)− Γ(B̄0

q (t)→ f̄)

Γ(B0
q (t)→ f) + Γ(B̄0

q (t)→ f̄)

∣∣∣∣∣
∆Γq=0

= ± sinφ sin(∆Mqt) , (160)

and allows an elegant determination of sinφ.

6 How could new physics enter?
Using the concept of the low-energy effective Hamiltonians introduced in Section 3.3.2, we may address
this important question in a systematic manner [118]:

– NP may modify the ‘strength’ of the SM operators through new short-distance functions which
depend on the NP parameters, such as the masses of charginos, squarks, charged Higgs particles
and tan β̄ ≡ v2/v1 in the ‘minimal supersymmetric SM’ (MSSM). The NP particles may enter
in box and penguin topologies, and are ‘integrated out’ as the W boson and top quark in the SM.
Consequently, the initial conditions for the renormalization-group evolution take the following
form:

Ck → CSM
k + CNP

k . (161)

It should be emphasized that the NP pieces CNP
k may also involve new CP-violating phases which

are not related to the CKM matrix.
– NP may enhance the operator basis:

{Qk} → {QSM
k , QNP

l } , (162)

so that operators which are not present (or strongly suppressed) in the SM may actually play
an important role. In this case, we encounter, in general, also new sources for flavour and CP
violation.

The B-meson system offers a variety of processes and strategies for the exploration of CP violation
[12, 119], as we have illustrated in Fig. 17 through a collection of prominent examples. We see that
there are processes with a very different dynamics that are—in the SM—sensitive to the same angles
of the UT. Moreover, rare B- and K-meson decays [120], which originate from loop effects in the SM,
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Fig. 17: A brief roadmap of B-decay strategies for the exploration of CP violation

provide complementary insights into flavour physics and interesting correlations with the CP-B sector;
key examples are B → Xsγ and the exclusive modes B → K∗γ, B → ργ, as well as Bs,d → µ+µ−

and K+ → π+νν̄, KL → π0νν̄.

In the presence of NP contributions, the subtle interplay between the different processes could
well be disturbed. There are two popular avenues for NP to enter the roadmap of quark-flavour physics:

– B0
q–B̄0

q mixing: NP could enter through the exchange of new particles in the box diagrams, or
through new contributions at the tree level. In general, we may write

M
(q)
12 = M q,SM

12

(
1 + κqe

iσq
)
, (163)

where the expression for M q,SM
12 can be found in (120). Consequently, we obtain

∆Mq = ∆MSM
q + ∆MNP

q = ∆MSM
q

∣∣1 + κqe
iσq
∣∣ , (164)

φq = φSM
q + φNP

q = φSM
q + arg(1 + κqe

iσq ), (165)

with ∆MSM
q and φSM

q given in (129) and (157), respectively. Using dimensional arguments bor-
rowed from effective field theory [121, 122], it can be shown that ∆MNP

q /∆MSM
q ∼ 1 and

φNP
q /φSM

q ∼ 1 could—in principle—be possible for a NP scale ΛNP in the TeV regime; such
a pattern may also arise in specific NP scenarios. Introducing

ρq ≡
∣∣∣∣

∆Mq

∆MSM
q

∣∣∣∣ =
√

1 + 2κq cos σq + κ2
q , (166)

the measured values of the mass differences ∆Mq can be converted into constraints in NP parame-
ter space through the contours shown in Fig. 18. Further constraints are implied by the NP phases
φNP
q , which can be probed through mixing-induced CP asymmetries, through the curves in the
σq–κq plane shown in Fig. 19. Interestingly, κq is bounded from below for any value of φNP

q 6= 0.
For example, even a small phase |φNP

q | = 10◦ implies a clean lower bound of κq ≥ 0.17, i.e., NP
contributions of at most 17% [101].

– Decay amplitudes: NP has typically a small effect if SM tree processes play the dominant role.
However, NP could well have a significant impact on the FCNC sector: new particles may enter in
penguin or box diagrams, or new FCNC contributions may even be generated at the tree level. In
fact, sizeable contributions arise generically in field-theoretical estimates with ΛNP ∼ TeV [123],
as well as in specific NP models.
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Fig. 18: The dependence of κq on σq for values of ρq varied between 1.4 (most upper curve) and 0.6 (most inner
curve), in steps of 0.1
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Fig. 19: The dependence of κq on σq for values of φNP
q varied between ±10◦ (lower curves) and ±170◦ in steps

of 10◦: the curves for 0◦ < σq < 180◦ and 180◦ < σq < 360◦ correspond to positive and negative values of φNP
q ,

respectively.

Concerning model-dependent NP analyses, SUSY scenarios in particular have received a lot of attention;
for a selection of recent studies, see Refs. [124]– [129]. Examples of other fashionable NP scenarios are
left–right-symmetric models [130], scenarios with extra dimensions [131], models with an extra Z ′ [132],
‘little Higgs’ scenarios [133], and models with a fourth generation [134].

The simplest extension of the SM is given by models with ‘minimal flavour violation’ (MFV).
Following the characterization given in Ref. [135], the flavour-changing processes are here still governed
by the CKM matrix—in particular there are no new sources for CP violation—and the only relevant
operators are those present in the SM (for an alternative definition, see Ref. [136]). Specific examples are
the Two-Higgs Doublet Model II, the MSSM without new sources of flavour violation and tan β̄ not too
large, models with one extra universal dimension and the simplest little Higgs models. Because of their
simplicity, the extensions of the SM with MFV show several correlations between various observables,
thereby allowing for powerful tests of this scenario [137]. A systematic discussion of models with ‘next-
to-minimal flavour violation’ was recently given in Ref. [138].

There are other fascinating probes for the search of NP. Important examples are the D-meson
system [139], electric dipole moments [140], or flavour-violating charged lepton decays [141]. Since
a discussion of these topics is beyond the scope of these lectures, the interested reader should consult
the corresponding references. Let us next have a closer look at prominent B decays, with a particular
emphasis of the impact of NP.

7 Status of importantB-factory benchmark modes
7.1 B0

d → J/ψKS

7.1.1 Basic formulae
This decay has a CP-odd final state, and originates from b̄→ c̄cs̄ quark-level transitions. Consequently,
as we discussed in Section 3.3.1, it receives contributions both from tree and from penguin topologies,
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Fig. 20: Feynman diagrams contributing to B0
d → J/ψK0 decays

as can be seen in Fig. 20. In the SM, the decay amplitude can hence be written as follows [142]:

A(B0
d → J/ψKS) = λ(s)

c

(
Ac
′

T +Ac
′

P

)
+ λ(s)

u Au
′

P + λ
(s)
t At

′
P . (167)

Here the
λ(s)
q ≡ VqsV ∗qb (168)

are CKM factors, Ac
′

T is the CP-conserving strong tree amplitude, while the Aq′
P describe the penguin

topologies with internal q quarks (q ∈ {u, c, t}), including QCD and EW penguins; the primes remind
us that we are dealing with a b̄ → s̄ transition. If we eliminate now λ

(s)
t through (79) and apply the

Wolfenstein parametrization, we obtain

A(B0
d → J/ψKS) ∝

[
1 + λ2aeiθeiγ

]
, (169)

where

aeiϑ ≡
(

Rb
1− λ2

)[
Au
′

P −At
′

P

Ac
′

T +Ac
′

P −At
′

P

]
(170)

is a hadronic parameter. Using now the formalism of Section 5.5 yields

ξ
(d)
ψKS

= +e−iφd
[

1 + λ2aeiϑe−iγ

1 + λ2aeiϑe+iγ

]
. (171)

Unfortunately, aeiϑ, which is a measure for the ratio of the B0
d → J/ψKS penguin to tree contributions,

can only be estimated with large hadronic uncertainties. However, since this parameter enters (171) in
a doubly Cabibbo-suppressed way, its impact on the CP-violating observables is practically negligible.
We can put this important statement on a more quantitative basis by making the plausible assumption
that a = O(λ̄) = O(0.2) = O(λ), where λ̄ is a ‘generic’ expansion parameter:

Adir
CP(Bd → J/ψKS) = 0 +O(λ

3
) (172)

Amix
CP (Bd → J/ψKS) = − sinφd +O(λ

3
)

SM
= − sin 2β +O(λ

3
) . (173)

Consequently, (173) allows an essentially clean determination of sin 2β [88].

7.1.2 Experimental status
Since the CKM fits performed within the SM pointed to a large value of sin 2β, B 0

d → J/ψKS offered
the exciting perspective of exhibiting large mixing-induced CP violation. In 2001, the measurement
of Amix

CP (Bd → J/ψKS) allowed indeed the first observation of CP violation outside the K-meson
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system [5]. The most recent data are still not showing any signal for direct CP violation inB 0
d → J/ψKS

within the current uncertainties, as is expected from (172). The current world average reads [61]

Adir
CP(Bd → J/ψKS) = 0.026 ± 0.041. (174)

As far as (173) is concerned, we have

(sin 2β)ψKS
≡ −Amix

CP (Bd → J/ψKS) =

{
0.722 ± 0.040 ± 0.023 (BaBar [143])
0.652 ± 0.039 ± 0.020 (Belle [144]) ,

(175)

which gives the following world average [61]:

(sin 2β)ψKS
= 0.687 ± 0.032 . (176)

In the SM, the theoretical uncertainties are generically expected to be below the 0.01 level; significantly
smaller effects are found in Ref. [145], whereas a fit performed in Ref. [146] yields a theoretical pen-
guin uncertainty comparable to the present experimental systematic error. A possibility to control these
uncertainties is provided by the B0

s → J/ψKS channel [142], which can be explored at the LHC [147].

In Ref. [121], a set of observables to search for NP contributions to the B → J/ψK decay
amplitudes was introduced. It uses also the charged B± → J/ψK± decay, and is given by

BψK ≡
1−AψK
1 +AψK

, (177)

with

AψK ≡
[

BR(B+ → J/ψK+) + BR(B− → J/ψK−)

BR(B0
d → J/ψK0) + BR(B̄0

d → J/ψK̄0)

] [
τB0

d

τB+

]
, (178)

and
D±ψK ≡

1

2

[
Adir

CP(Bd → J/ψKS)±Adir
CP(B± → J/ψK±)

]
. (179)

As discussed in detail in Refs. [119,121], the observables BψK and D−ψK are sensitive to NP in the I = 1

isospin sector, whereas a non-vanishing value of D+
ψK would signal NP in the I = 0 isospin sector.

Moreover, the NP contributions with I = 1 are expected to be dynamically suppressed with respect to
the I = 0 case because of their flavour structure. The most recent B-factory results yield

BψK = −0.035 ± 0.037, D−ψK = 0.010 ± 0.023, D+
ψK = 0.017 ± 0.023 . (180)

Consequently, NP effects ofO(10%) in the I = 1 sector of theB → J/ψK decay amplitudes are already
disfavoured by the data for BψK and D−ψK . However, since a non-vanishing value of D+

ψK requires also a
large CP-conserving strong phase, this observable still leaves room for sizeable I = 0 NP contributions.

7.1.3 A closer look at new-physics effects
Thanks to the new Belle result listed in (175), the average for (sin 2β)ψKS

went down by about 1σ, which
was a somewhat surprising development of the summer of 2005. Consequently, the comparison of (176)
with the CKM fits in the ρ̄–η̄ plane no longer looks ‘perfect’, as we saw in Fig. 4. Let us have a closer
look at this feature. If we use γ determined from non-leptonic B → D(∗)K(∗) tree modes and Rb from
semileptonic decays, we may calculate the ‘true’ value of β with the help of the relations

sinβ =
Rb sin γ√

1− 2Rb cos γ +R2
b

, cos β =
1−Rb cos γ√

1− 2Rb cos γ +R2
b

, (181)

which follow from the unitarity of the CKM matrix; the UTfit value

γ = (65± 20)◦ (182)
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in (106) and the inclusive and exclusive values of Rb in (72) yield

βincl = (26.7 ± 1.9)◦ , βexcl = (22.9 ± 3.8)◦ , (183)

which can be converted into

sin 2β|incl = 0.80 ± 0.04, sin 2β|excl = 0.71 ± 0.09 . (184)

Consequently, we find

SψK ≡ (sin 2β)ψKS
− sin 2β =

{
−0.11 ± 0.05 (incl)
−0.02 ± 0.10 (excl) ,

(185)

and see nicely the discrepancy arising for the inclusive determination of |Vub|. As discussed in detail
in Ref. [101], Rb is actually the key parameter for this possible discrepancy with the SM, whereas the
situation is remarkably stable with respect to γ. There are two limiting cases of this possible discrepancy
with the KM mechanism of CP violation:

– NP contributions to the B → J/ψK decay amplitudes;
– NP effects entering through B0

d–B̄0
d mixing.

Let us first illustrate the former case. As the NP effects in the I = 1 sector are expected to be
dynamically suppressed, we consider only NP in the I = 0 isospin sector, which implies BψK = D−ψK =
0, in accordance with (180). To simplify the discussion, we assume that there is effectively only a single
NP contribution of this kind, so that we may write

A(B0
d → J/ψK0) = A0

[
1 + v0e

i(∆0+φ0)
]

= A(B+ → J/ψK+) . (186)

Here v0 and the CP-conserving strong phase ∆0 are hadronic parameters, whereas φ0 denotes a CP-
violating phase originating beyond the SM. An interesting specific scenario falling into this category
arises if the NP effects enter through EW penguins. This kind of NP has recently received a lot of
attention in the context of the B → πK puzzle, which we shall discuss in Section 8. Also within the
SM, where φ0 vanishes, EW penguins have a sizeable impact on the B → J/ψK system [148]. Using
factorization, the following estimate can be obtained [83]:

v0e
i∆0
∣∣SM

fact
≈ −0.03 . (187)

In Figs. 21 (a) and (b), we consider the inclusive value of (185), and show the situation in the SψK–D+
ψK

plane for φ0 = −90◦ and φ0 = +90◦, respectively. The contours correspond to different values of
v0, and are obtained by varying ∆0 between 0◦ and 360◦; the experimental data are represented by the
diamonds with the error bars. Since factorization gives ∆0 = 180◦, as can be seen in (187), the case
of φ0 = −90◦ is disfavoured. On the other hand, in the case of φ0 = +90◦, the experimental region
can straightforwardly be reached for ∆0 not differing too much from the factorization result, although
an enhancement of v0 by a factor of O(3) with respect to the SM estimate in (187), which suffers
from large uncertainties, would simultaneously be required in order to reach the central experimental
value. Consequently, NP contributions to the EW penguin sector could, in principle, be at the origin
of the possible discrepancy indicated by the inclusive value of (185). This scenario should be carefully
monitored in the future.

Another explanation of (185) is provided by CP-violating NP contributions to B 0
d–B̄0

d mixing,
which affect the corresponding mixing phase as in (165), so that

φd = 2β + φNP
d . (188)
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(a) (b)

Fig. 21: The situation in the SψK–D+
ψK plane for NP contributions to the B → J/ψK decay amplitudes in the

I = 0 isospin sector for NP phases φ0 = −90◦ (a) and φ0 = +90◦ (b). The diamonds with the error bars represent
the averages of the current data [for the inclusive value of (185)], whereas the numbers correspond to the values of
∆0 and v0.
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Assuming that the NP contributions to the B → J/ψK amplitudes are negligible, (176) implies

φd = (43.4 ± 2.5)◦ ∨ (136.6 ± 2.5)◦ . (189)

Here the latter solution would be in dramatic conflict with the CKM fits, and would require a large NP
contribution to B0

d–B̄0
d mixing [122,149]. Both solutions can be distinguished through the measurement

of the sign of cosφd, where a positive value would select the SM-like branch. Using an angular analysis
of the Bd → J/ψ[→ `+`−]K∗[→ π0KS] decay products, the BaBar Collaboration finds [150]

cosφd = 2.72+0.50
−0.79 ± 0.27 , (190)

thereby favouring the solution around φd = 43◦. Interestingly, this picture emerges also from the first
data for CP-violating effects in Bd → D(∗)±π∓ modes [90], and an analysis of the B → ππ, πK system
[83], although in an indirect manner. Recently, a new method has been proposed, which makes use of
the interference pattern in D → KSπ

+π− decays emerging from Bd → Dπ0 and similar decays [151].
The results of this method are also consistent with the SM, so that a negative value of cosφd is now ruled
out with greater than 95% confidence [89].

Using the ‘true’ values of β in (183), the value of φd = (43.4 ± 2.5)◦ implies

φNP
d

∣∣
incl

= −(10.1 ± 4.6)◦ , φNP
d

∣∣
excl

= −(2.5 ± 8.0)◦ ; (191)
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Fig. 23: Feynman diagrams contributing to B0
d → φK0 decays

results of φNP
d ≈ −10◦ were also recently obtained in Refs. [91, 152]. The contours in Fig. 19 allow us

now to convert these numbers into constraints in the σd–κd plane. Further constraints can be obtained
through the experimental value of ∆Md in (130) with the help of the contours in Fig. 18, where ρd is
introduced in (166). In addition to hadronic parameters, the SM prediction of ∆Md involves also the
CKM factor |V ∗tdVtb|, which can—if we use the unitarity of the CKM matrix—be expressed as

|V ∗tdVtb| = |Vcb|λ
√

1− 2Rb cos γ +R2
b . (192)

The values in (72) and (182), as well as the relevant lattice parameters in (122) and (123) yield then

ρd|JLQCD = 0.97 ± 0.33−0.17
+0.26 (193)

ρd|(HP+JL)QCD = 0.75 ± 0.25 ± 0.16 , (194)

where the first and second errors are due to γ (and a small extent to Rb) and fBdB̂
1/2
Bd

, respectively [101].
These results are compatible with the SM value ρd = 1, but suffer from considerable uncertainties.
In Fig. 22, we finally show the situation in the σd–κd plane. We see that the information about the
CP-violating phase φd has a dramatic impact, reducing the allowed NP parameter space significantly.

The possibility of having a non-zero value of (185) could of course just be due to a statistical
fluctuation. However, should it be confirmed, it could be due to CP-violating NP contributions to the
B0
d → J/ψKS decay amplitude or to B0

d–B̄0
d mixing, as we just saw. A tool to distinguish between these

avenues is provided by decays of the kind Bd → Dπ0, Dρ0, ..., which are pure ‘tree’ decays, i.e., they do
not receive any penguin contributions. If the neutral D mesons are observed through their decays into CP
eigenstates D±, these decays allow extremely clean determinations of the ‘true’ value of sinφd [153], as
we shall discuss in more detail in Section 10.3. In view of (185), this would be very interesting, so that
detailed feasibility studies for the exploration of the Bd → Dπ0, Dρ0, ... modes at a super-B factory are
strongly encouraged.

7.2 B0
d → φKS

Another important probe for the testing of the KM mechanism is offered by B 0
d → φKS, which is a

decay into a CP-odd final state. As can be seen in Fig. 23, it originates from b̄→ s̄ss̄ transitions and is,
therefore, a pure penguin mode. This decay is described by the low-energy effective Hamiltonian in (80)
with r = s, where the current–current operators may only contribute through penguin-like contractions,
which describe the penguin topologies with internal up- and charm-quark exchanges. The dominant
role is played by the QCD penguin operators [154]. However, thanks to the large top-quark mass, EW
penguins have a sizeable impact as well [72, 155]. In the SM, we may write

A(B0
d → φKS) = λ(s)

u Ãu
′

P + λ(s)
c Ãc

′
P + λ

(s)
t Ãt

′
P , (195)
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(a) (b)

Fig. 24: The time evolution of the BaBar (a) and Belle (b) data for the CP violation in Bd → φKS. The diamonds
represent the SM relations (199)–(201) with (176).

where we have applied the same notation as in Section 7.1. Eliminating the CKM factor λ(s)
t with the

help of (79) yields
A(B0

d → φKS) ∝
[
1 + λ2beiΘeiγ

]
, (196)

where

beiΘ ≡
(

Rb
1− λ2

)[
Ãu
′

P − Ãt
′

P

Ãc
′

P − Ãt
′

P

]
. (197)

Consequently, we obtain

ξ
(d)
φKS

= +e−iφd
[

1 + λ2beiΘe−iγ

1 + λ2beiΘe+iγ

]
. (198)

The theoretical estimates of beiΘ suffer from large hadronic uncertainties. However, since this parameter
enters (198) in a doubly Cabibbo-suppressed way, we obtain the following expressions [148]:

Adir
CP(Bd → φKS) = 0 +O(λ2) (199)

Amix
CP (Bd → φKS) = − sinφd +O(λ2) , (200)

where we made the plausible assumption that b = O(1). On the other hand, the mixing-induced CP
asymmetry of Bd → J/ψKS measures also − sinφd, as we saw in (173). We arrive therefore at the
following relation [148, 156]:

−(sin 2β)φKS
≡ Amix

CP (Bd → φKS) = Amix
CP (Bd → J/ψKS) +O(λ2) , (201)

which offers an interesting test of the SM. SinceBd → φKS is governed by penguin processes in the SM,
this decay may well be affected by NP. In fact, if we assume that NP arises generically in the TeV regime,
it can be shown through field-theoretical estimates that the NP contributions to b→ ss̄s transitions may
well lead to sizeable violations of (199) and (201) [119, 123]. Moreover, this is also the case for several
specific NP scenarios; for examples, see Refs. [126, 128, 129, 157].

In Fig. 24, we show the time evolution of the B-factory data for the measurements of CP violation
in Bd → φKS, using the results reported at the LP ’03 [158], ICHEP ’04 [159] and LP ’05 [160]
conferences. Because of (155), the corresponding observables have to lie inside a circle with radius
one around the origin, which is represented by the dashed lines. The result announced by the Belle
Collaboration in 2003 led to quite some excitement in the community. Meanwhile, the Babar [161] and
Belle [162] results are in good agreement with each other, yielding the following averages [61]:

Adir
CP(Bd → φKS) = −0.09 ± 0.14, (sin 2β)φKS

= 0.47 ± 0.19 . (202)
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(a) (b)

Fig. 25: The situation in the SφK–D+
φK plane for NP contributions to the B → φK decay amplitudes in the I = 0

isospin sector for NP phases φ0 = −90◦ (a) and φ0 = +90◦ (b). The diamonds with the error bars represent the
averages of the current data, whereas the numbers correspond to the values of ∆̃0 and ṽ0.

If we take (176) into account, we obtain the following result for the counterpart of (185):

SφK ≡ (sin 2β)φKS
− (sin 2β)ψKS

= −0.22± 0.19 . (203)

This number still appears to be somewhat on the lower side, thereby indicating potential NP contributions
to b→ ss̄s processes.

Further insights into the origin and the isospin structure of NP contributions can be obtained
through a combined analysis of the neutral and charged B → φK modes with the help of observ-
ables BφK and D±φK [123], which are defined in analogy to (177) and (179), respectively. The current
experimental results read as follows:

BφK = 0.00 ± 0.08 , D−φK = −0.03± 0.07 , D+
φK = −0.06± 0.07 . (204)

As in the B → J/ψK case, BφK and D−φK probe NP effects in the I = 1 sector, which are expected to
be dynamically suppressed, whereas D+

φK is sensitive to NP in the I = 0 sector. The latter kind of NP
could also manifest itself as a non-vanishing value of (203).

In order to illustrate these effects, let us consider again the case where NP enters only in the I = 0
isospin sector. An important example is given by EW penguins, which have a significant impact on
B → φK decays [72]. In analogy to the discussion in Section 7.1, we may then write

A(B0
d → φK0) = Ã0

[
1 + ṽ0e

i(∆̃0+φ0)
]

= A(B+ → φK+) , (205)

which implies BφK = D−φK = 0, in accordance with (204). The notation corresponds to that of (186).
Using the factorization approach to deal with the QCD and EW penguin contributions, we obtain the
following estimate in the SM, where the CP-violating NP phase φ0 vanishes [83]:

ṽ0e
i∆̃0

∣∣∣
SM

fact
≈ −0.2 . (206)

In Figs. 25 (a) and (b), we show the situation in the SφK–D+
φK plane for NP phases φ0 = −90◦ and

φ0 = +90◦, respectively, and various values of ṽ0; each point of the contours is parametrized by ∆̃0 ∈
[0◦, 360◦]. We observe that the central values of the current experimental data, which are represented by
the diamonds with the error bars, can straightforwardly be accommodated in this scenario in the case of
φ0 = +90◦ for strong phases satisfying cos ∆̃0 < 0, as in factorization. Moreover, as can also be seen
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in Fig. 25 (b), the EW penguin contributions would then have to be suppressed with respect to the SM
estimate, which would be an interesting feature in view of the discussion of the B → πK puzzle and the
rare decay constraints in Section 8.

It will be interesting to follow the evolution of the B-factory data, and to monitor also similar
modes, such as B0

d → π0KS [163] and B0
d → η′KS [164]. For a compilation of the corresponding

experimental results, see Ref. [61]; recent theoretical papers dealing with these channels can be found
in Refs. [82, 83, 91, 165, 166]. We shall return to the CP asymmetries of the B 0

d → π0KS channel in
Section 8.

7.3 B0
d → π+π−

This decay is a transition into a CP eigenstate with eigenvalue +1, and originates from b̄ → ūud̄ pro-
cesses, as can be seen in Fig. 26. In analogy to (167) and (195), its decay amplitude can be written as
follows [167]:

A(B0
d → π+π−) = λ(d)

u (AuT +AuP) + λ(d)
c AcP + λ

(d)
t AtP . (207)

Using again (79) to eliminate the CKM factor λ(d)
t = VtdV

∗
tb and applying once more the Wolfenstein

parametrization yields
A(B0

d → π+π−) = C
[
eiγ − deiθ

]
, (208)

where the overall normalization C and

deiθ ≡ 1

Rb

[
AcP −AtP

AuT +AuP −AtP

]
(209)

are hadronic parameters. The formalism discussed in Section 5.5 then implies

ξ
(d)
π+π− = −e−iφd

[
e−iγ − deiθ
e+iγ − deiθ

]
. (210)

In contrast to the expressions (171) and (198) for the B0
d → J/ψKS and B0

d → φKS counterparts,
respectively, the hadronic parameter deiθ , which suffers from large theoretical uncertainties, does not
enter (210) in a doubly Cabibbo-suppressed way. This feature is at the basis of the famous ‘penguin
problem’ in B0

d → π+π−, which was addressed in many papers (see, for instance, [168]– [173]). If the
penguin contributions to this channel were negligible, i.e., d = 0, its CP asymmetries were simply given
by

Adir
CP(Bd → π+π−) = 0 (211)

Amix
CP (Bd → π+π−) = sin(φd + 2γ)

SM
= sin(2β + 2γ︸ ︷︷ ︸

2π−2α

) = − sin 2α . (212)

Consequently, Amix
CP (Bd → π+π−) would then allow us to determine α. However, in the general case,

we obtain expressions with the help of (153) and (210) of the form

Adir
CP(Bd → π+π−) = G1(d, θ; γ) (213)

Amix
CP (Bd → π+π−) = G2(d, θ; γ, φd) ; (214)

for explicit formulae, see Ref. [167]. We observe that actually the phases φd and γ enter directly in the
Bd → π+π− observables, and not α. Consequently, since φd can be fixed through the mixing-induced
CP violation in the ‘golden’ mode Bd → J/ψKS, as we have seen in Subsection 7.1, we may use
Bd → π+π− to probe γ.
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Fig. 26: Feynman diagrams contributing to B0
d → π+π− decays

The current measurements of the Bd → π+π− CP asymmetries are given as follows:

Adir
CP(Bd → π+π−) =

{
−0.09 ± 0.15± 0.04 (BaBar [174])
−0.56 ± 0.12± 0.06 (Belle [175])

(215)

Amix
CP (Bd → π+π−) =

{
+0.30 ± 0.17± 0.03 (BaBar [174])
+0.67 ± 0.16± 0.06 (Belle [175]) .

(216)

The BaBar and Belle results are still not fully consistent with each other, although the experiments are
now in better agreement. In Ref. [61], the following averages were obtained:

Adir
CP(Bd → π+π−) = −0.37± 0.10 (217)

Amix
CP (Bd → π+π−) = +0.50± 0.12 . (218)

The central values of these averages are remarkably stable in time. Direct CP violation at this level
would require large penguin contributions with large CP-conserving strong phases, thereby indicating
large non-factorizable effects.

This picture is in fact supported by the direct CP violation in B0
d → π−K+ modes that could be

established by the B factories in the summer of 2004 [6]. Here the BaBar and Belle results agree nicely
with each other, yielding the following average [61]:

Adir
CP(Bd → π∓K±) = 0.115 ± 0.018 . (219)

The diagrams contributing to B0
d → π−K+ can straightforwardly be obtained from those in Fig. 26 by

just replacing the anti-down quark emerging from the W boson through an anti-strange quark. Conse-
quently, the hadronic matrix elements entering B0

d → π+π− and B0
d → π−K+ can be related to one

another through the SU(3) flavour symmetry of strong interactions and the additional assumption that
the penguin annihilation and exchange topologies contributing to B0

d → π+π−, which have no coun-
terpart in B0

d → π−K+ and involve the ‘spectator" down quark in Fig. 26, play actually a negligible
role [176]. Following these lines, we obtain the following relation in the SM:

HBR ≡
1

ε

(
fK
fπ

)2 [ BR(Bd → π+π−)

BR(Bd → π∓K±)

]

︸ ︷︷ ︸
7.5± 0.7

= −1

ε

[Adir
CP(Bd → π∓K±)

Adir
CP(Bd → π+π−)

]

︸ ︷︷ ︸
6.7± 2.0

≡ HAdir
CP
, (220)

where

ε ≡ λ2

1− λ2
= 0.053 , (221)

and the ratio fK/fπ = 160/131 of the kaon and pion decay constants defined through

〈0|s̄γαγ5u|K+(k)〉 = ifKkα , 〈0|d̄γαγ5u|π+(k)〉 = ifπkα (222)
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describes factorizable SU(3)-breaking corrections. As usual, the CP-averaged branching ratios are de-
fined as

BR ≡ 1

2

[
BR(B → f) + BR(B̄ → f̄)

]
. (223)

In (220), we have also given the numerical values following from the data. Consequently, this relation
is well satisfied within the experimental uncertainties, and does not show any anomalous behaviour. It
supports therefore the SM description of the B0

d → π−K+, B0
d → π+π− decay amplitudes, and our

working assumptions listed before (220).

The quantities HBR and HAdir
CP

introduced in this relation can be written as follows:

HBR = G3(d, θ; γ) = HAdir
CP
. (224)

If we complement this expression with (213) and (214), and use [see (189)]

φd = (43.4 ± 2.5)◦ , (225)

we have sufficient information to determine γ, as well as (d, θ) [167,176,177]. In using (225), we assume
that the possible discrepancy with the SM described by (185) is only due to NP inB 0

d–B̄0
d mixing and not

to effects entering through the B0
d → J/ψKS decay amplitude. As was recently shown in Ref. [91], the

results following from HBR and HAdir
CP

give results that are in good agreement with one another. Since
the avenue offered by HAdir

CP
is cleaner than the one provided by HBR, it is preferable to use the former

quantity to determine γ, yielding the following result [91]:

γ = (73.9+5.8
−6.5)◦ . (226)

Here a second solution around 42◦ was discarded, which can be excluded through an analysis of the
whole B → ππ, πK system [83]. As was recently discussed [91] (see also Refs. [176, 177]), even large
non-factorizable SU(3)-breaking corrections have a remarkably small impact on the numerical result in
(226). The value of γ in (226) is somewhat higher than the central values in (106), but fully consistent
within the large errors. An even larger value in the ballpark of 80◦ was recently extracted from the
B → ππ data with the help of SCET [178, 179].

8 The B → πK puzzle and its relation to rare B andK decays
8.1 Preliminaries
We already made first contact with a B → πK decay in Section 7.3, the B0

d → π−K+ channel. It
receives contributions both from tree and from penguin topologies. Since this decay originates from a
b̄ → s̄ transition, the tree amplitude is suppressed by a CKM factor λ2Rb ∼ 0.02 with respect to the
penguin amplitude. Consequently, B0

d → π−K+ is governed by QCD penguins; the tree topologies
contribute only at the 20% level to the decay amplitude. The feature of the dominance of QCD penguins
applies to all B → πK modes, which can be classified with respect to their EW penguin contributions
as follows (see Fig. 27):

(a) In the B0
d → π−K+ and B+ → π+K0 decays, EW penguins contribute in colour-suppressed

form and are hence expected to play a minor role.
(b) In the B0

d → π0K0 and B+ → π0K+ decays, EW penguins contribute in colour-allowed form
and have therefore a significant impact on the decay amplitude, entering at the same order of
magnitude as the tree contributions.

As we noted above, EW penguins offer an attractive avenue for NP to enter non-leptonic B decays, which
is also the case for the B → πK system [180, 181]. Indeed, the decays of class (b) show a puzzling
pattern, which may point towards such a NP scenario. This feature emerged already in 2000 [182],
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(a)

(b)

Fig. 27: Examples of the colour-suppressed (a) and colour-allowed (b) EW penguin contributions to the B → πK

system

when the CLEO Collaboration reported the observation of the B0
d → π0K0 channel with a surprisingly

prominent rate [183], and is still present in the most recent BaBar and Belle data, thereby receiving a lot
of attention in the literature (see, for instance, Refs. [157] and [184]– [188]).

In the following discussion, we focus on the systematic strategy to explore the ‘B → πK puzzle’
developed in Refs. [82, 83]; all numerical results refer to the most recent analysis presented in Ref. [91].
The logical structure is very simple: the starting point is given by the values of φd and γ in (225) and
(226), respectively, and by the B → ππ system, which allows us to extract a set of hadronic parameters
from the data with the help of the isospin symmetry of strong interactions. Then we make, in analogy to
the determination of γ in Section 7.3, the following working hypotheses:

(i) SU(3) flavour symmetry of strong interactions (but taking factorizable SU(3)-breaking correc-
tions into account),

(ii) neglect of penguin annihilation and exchange topologies,

which allow us to fix the hadronic B → πK parameters through their B → ππ counterparts. Interest-
ingly, we may gain confidence in these assumptions through internal consistency checks [an example is
relation (220)], which work nicely within the experimental uncertainties. Having the hadronic B → πK
parameters at hand, we can predict the B → πK observables in the SM. The comparison of the corre-
sponding picture with the B-factory data will then guide us to NP in the EW penguin sector, involving in
particular a large CP-violating NP phase. In the final step, we explore the interplay of this NP scenario
with rare K and B decays.

8.2 Extracting hadronic parameters from the B → ππ system
In order to fully exploit the information that is provided by the whole B → ππ system, we use—
in addition to the two CP-violating B0

d → π+π− observables—the following ratios of CP-averaged
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branching ratios:

Rππ+− ≡ 2

[
BR(B+ → π+π0) + BR(B− → π−π0)

BR(B0
d → π+π−) + BR(B̄0

d → π+π−)

]
= 2.04 ± 0.28 (227)

Rππ00 ≡ 2

[
BR(B0

d → π0π0) + BR(B̄0
d → π0π0)

BR(B0
d → π+π−) + BR(B̄0

d → π+π−)

]
= 0.58 ± 0.13 . (228)

The pattern of the experimental numbers in these expressions came as quite a surprise, as the central
values calculated in QCDF gave Rππ

+− = 1.24 and Rππ00 = 0.07 [184]. As discussed in detail in Ref. [83],
this ‘B → ππ puzzle’ can straightforwardly be accommodated in the SM through large non-factorizable
hadronic interference effects, i.e., does not point towards NP. For recent SCET analyses, see Refs. [179,
189, 190].

Using the isospin symmetry of strong interactions, we can write

Rππ+− = F1(d, θ, x,∆; γ) , Rππ00 = F2(d, θ, x,∆; γ) , (229)

where xei∆ is another hadronic parameter, which was introduced in Refs. [82, 83]. Using now, in addi-
tion, the CP-violating observables in (213) and (214), we arrive at the following set of haronic parame-
ters:

d = 0.52+0.09
−0.09, θ = (146+7.0

−7.2)◦, x = 0.96+0.13
−0.14, ∆ = −(53+18

−26)◦ . (230)

In the extraction of these quantities, also the EW penguin effects in the B → ππ system are included
[191, 192], although these topologies have a tiny impact [163]. Let us emphasize that the results for
the hadronic parameters listed above, which are consistent with the picture emerging in the analyses of
other authors (see, for example, Refs. [193, 194]), are essentially clean and serve as a testing ground
for calculations within QCD-related approaches. For instance, in recent QCDF [195] and PQCD [196]
analyses, the following numbers were obtained:

d|QCDF = 0.29 ± 0.09 , θ|QCDF = − (171.4 ± 14.3)◦ , (231)

d|PQCD = 0.23+0.07
−0.05 , +139◦ < θ|PQCD < +148◦ , (232)

which depart significantly from the pattern in (230) that is implied by the data.

Finally, we can predict the CP asymmetries of the decay Bd → π0π0:

Adir
CP(Bd → π0π0) = −0.30+0.48

−0.26 , Amix
CP (Bd → π0π0) = −0.87+0.29

−0.19 . (233)

The current experimental value for the direct CP asymmetry is given as follows [61]:

Adir
CP(Bd → π0π0) = −0.28+0.40

−0.39 . (234)

Consequently, no stringent test of the corresponding prediction in (233) is provided at this stage, although
the indicated agreement is encouraging.

8.3 Analysis of the B → πK system
Let us begin the analysis of the B → πK system by having a closer look at the modes of class (a)
introduced above, Bd → π∓K± and B± → π±K , which are only marginally affected by EW penguin
contributions. We already used the branching ratio and direct CP asymmetry of the former channel in
the SU(3) relation (220), which is nicely satisfied by the current data, and in the extraction of γ with
the help of the CP-violating Bd → π+π− observables, yielding the value in (226). The Bd → π∓K±

modes provide the CP-violating asymmetry

Adir
CP(B± → π±K) ≡ BR(B+ → π+K0)− BR(B− → π−K̄0)

BR(B+ → π+K0) + BR(B− → π−K̄0)
= 0.02 ± 0.04 , (235)
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and enter in the following ratio [197]:

R ≡
[

BR(B0
d → π−K+) + BR(B̄0

d → π+K−)

BR(B+ → π+K0) + BR(B− → π−K̄0)

]
τB+

τB0
d

= 0.86 ± 0.06 ; (236)

the numerical values refer again to the most recent compilation in [61]. The B+ → π+K0 channel
involves another hadronic parameter ρce

iθc which cannot be determined through the B → ππ data
[191, 198, 199]:

A(B+ → π+K0) = −P ′
[
1 + ρce

iθceiγ
]

; (237)

the overall normalization P ′ cancels in (235) and (236). Usually, it is assumed that the parameter ρce
iθc

can be neglected. In this case, the direct CP asymmetry in (235) vanishes, and R can be calculated
through the B → ππ data with the help of the assumptions specified in Section 8.1:

R|SM = 0.963+0.019
−0.022 . (238)

This numerical result is 1.6σ larger than the experimental value in (236). As was discussed in
detail in Ref. [200], the experimental range for the direct CP asymmetry in (235) and the first direct
signals for the B± → K±K decays favour a value of θc around 0◦. This feature allows us to essentially
resolve the small discrepancy concerning R for values of ρc around 0.05. The remaining small numerical
difference between the calculated value of R and the experimental result, if confirmed by future data,
could be due to (small) colour-suppressed EW penguins, which enter R as well [83]. As was recently
discussed in Ref. [91], even large non-factorizable SU(3)-breaking effects would have a small impact
on the predicted value of R. In view of these results, it would not be a surprise to see an increase of the
experimental value of R in the future.

Let us now turn to the B+ → π0K+ and B0
d → π0K0 channels, which are the B → πK modes

with significant contributions from EW penguin topologies. The key observables for the exploration of
these modes are the following ratios of their CP-averaged branching ratios [182, 191]:

Rc ≡ 2

[
BR(B+ → π0K+) + BR(B− → π0K−)

BR(B+ → π+K0) + BR(B− → π−K̄0)

]
= 1.01 ± 0.09 (239)
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Rn ≡
1

2

[
BR(B0

d → π−K+) + BR(B̄0
d → π+K−)

BR(B0
d → π0K0) + BR(B̄0

d → π0K̄0)

]
= 0.83 ± 0.08 , (240)

where the overall normalization factors of the decay amplitudes cancel, as in (236). In order to de-
scribe the EW penguin effects, both a parameter q, which measures the strength of the EW penguins
with respect to tree-like topologies, and a CP-violating phase φ are introduced. In the SM, this phase
vanishes, and q can be calculated with the help of the SU(3) flavour symmetry, yielding a value of
0.69 × 0.086/|Vub/Vcb| = 0.58 [201]. Following the strategy described above yields the following SM
predictions:

Rc|SM = 1.15 ± 0.05 , Rn|SM = 1.12 ± 0.05 , (241)

where in particular the value ofRn does not agree with the experimental number, which is a manifestation
of the B → πK puzzle. As was recently discussed in Ref. [91], the internal consistency checks of the
working assumptions listed in Subsection 8.1 are currently satisfied at the level of 25%, and can be
systematically improved through better data. A detailed study of the numerical predictions in (241) (and
those given below) shows that their sensitivity on non-factorizable SU(3)-breaking effects of this order
of magnitude is surprisingly small. Consequently, it is very exciting to speculate that NP effects in the
EW penguin sector, which are described effectively through (q, φ), are at the origin of the B → πK
puzzle. Following Refs. [82, 83], we show the situation in the Rn–Rc plane in Fig. 28, where—for
the convenience of the reader—also the experimental range and the SM predictions at the time of the
original analysis of Refs. [82, 83] are indicated through the dashed rectangles. We observe that although
the central values of Rn and Rc have slightly moved towards each other, the puzzle is as prominent as
ever. The experimental region can now be reached without an enhancement of q, but a large CP-violating
phase φ of the order of −90◦ is still required:

q = 0.99 +0.66
−0.70 , φ = −(94 +16

−17)◦ . (242)

Interestingly, φ of the order of +90◦ can now also bring us rather close to the experimental range of Rn

and Rc.

An interesting probe of the NP phase φ is also provided by the CP violation in B 0
d → π0KS.

Within the SM, the corresponding observables are expected to satisfy the following relations [163]:

Adir
CP(Bd→π0KS) ≈ 0 , Amix

CP (Bd→π0KS) ≈ Amix
CP (Bd→ψKS) . (243)

The most recent Belle [162] and BaBar [202] measurements of these quantities are in agreement with
each other, and lead to the following averages [61]:

Adir
CP(Bd→π0KS) = −0.02± 0.13 (244)

Amix
CP (Bd→π0KS) = −0.31± 0.26 ≡ −(sin 2β)π0KS

. (245)

Taking (176) into account yields

∆S ≡ (sin 2β)π0KS
− (sin 2β)ψKS

= −0.38 ± 0.26 , (246)

which may indicate a sizeable deviation of the experimentally measured value of (sin 2β)π0KS
from

(sin 2β)ψKS
, and is therefore one of the recent hot topics. Since the strategy developed in Refs. [82, 83]

allows us also to predict the CP-violating observables of the B0
d → π0KS channel both within the SM

and within our scenario of NP, it allows us to address this issue, yielding

Adir
CP(Bd→π0KS)|SM = 0.06+0.09

−0.10 , ∆S|SM = 0.13 ± 0.05 , (247)

Adir
CP(Bd→π0KS)|NP = 0.01 +0.14

−0.18 , ∆S|NP = 0.27 +0.05
−0.09 , (248)
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where the NP results refer to the EW penguin parameters in (242). Consequently, ∆S is found to be
positive in the SM. In the literature, values of ∆S|SM ∼ 0.04–0.08 can be found, which were obtained—
in contrast to (247)—with the help of dynamical approaches such as QCDF [166] and SCET [179].
Moreover, bounds were derived with the help of the SU(3) flavour symmetry [203]. Looking at (248),
we see that the modified parameters (q, φ) in (242) imply an enhancement of ∆S with respect to the SM
case. Consequently, the best values of (q, φ) that are favoured by the measurements of Rn,c make the
potential Amix

CP (Bd→π0KS) discrepancy even larger than in the SM.

There is one CP asymmetry of the B → πK system left, which is measured as

Adir
CP(B± → π0K±) = −0.04± 0.04 . (249)

In the limit of vanishing colour-suppressed tree and EW penguin topologies, it is expected to be equal
to the direct CP asymmetry of the Bd → π∓K± modes. Since the experimental value of the latter
asymmetry in (219) does not agree with (249), the direct CP violation in B± → π0K± has also received
a lot of attention. The lifted colour suppression described by the large value of x in (230) could, in
principle, be responsible for a non-vanishing difference between (219) and (249),

∆A ≡ Adir
CP(B± → π0K±)−Adir

CP(Bd → π∓K±)
exp
= −0.16 ± 0.04 . (250)

However, applying once again the strategy described above yields

Adir
CP(B± → π0K±)|SM = 0.04 +0.09

−0.07 , (251)

so that the SM still prefers a positive value of this CP asymmetry; the NP scenario characterized by (242)
corresponds to

Adir
CP(B± → π0K±)|NP = 0.09 +0.20

−0.16 . (252)

In view of the large uncertainties, no stringent test is provided at this point. Nevertheless, it is
tempting to play a bit with the CP asymmetries of the B± → π0K± and Bd → π0KS decays. In Fig. 29,
we show the situation in the Amix

CP (Bd → π0KS)–Adir
CP(B± → π0K±) plane for various values of q with

φ ∈ [0◦, 360◦]. We see that these observables seem to show a preference for positive values of φ around
+90◦. As we noted above, in this case, we can also get rather close to the experimental region in the Rn–
Rc plane. It is now interesting to return to the discussion of the NP effects in the B → φK system given

47

FLAVOUR PHYSICS AND CP VIOLATION

149



in Section 7.2. In our scenario of NP in the EW penguin sector, we have just to identify the CP-violating
phase φ0 in (205) with the NP phase φ [83]. Unfortunately, we cannot determine the hadronic B → φK
parameters ṽ0 and ∆̃0 through the B → ππ data as in the case of the B → πK system. However, if
we take into account that ∆̃0 = 180◦ in factorization and look at Fig. 25, we see again that the case of
φ ∼ +90◦ would be favoured by the data for SφK . Alternatively, in the case of φ ∼ −90◦, ∆̃0 ∼ 0◦

would be required to accommodate a negative value of SφK , which appears unlikely. Interestingly, a
similar comment applies to the B → J/ψK observables shown in Fig. 21, although here a dramatic
enhancement of the EW penguin parameter v0 relative to the SM estimate would be simultaneously
needed to reach the central experimental values, in contract to the reduction of ṽ0 in the B → φK case.
In view of rare decay constraints, the behaviour of the B → φK parameter ṽ0 appears much more likely,
thereby supporting the assumption after (225).

8.4 The interplay with rare K andB decays and future scenarios
In order to explore the implications of the B → πK puzzle for rare K and B decays, we assume that
the NP enters the EW penguin sector through Z0 penguins with a new CP-violating phase. This scenario
was already considered in the literature, where model-independent analyses and studies within SUSY
can be found [204, 205]. In the strategy discussed here, the short-distance function C characterizing
the Z0 penguins is determined through the B → πK data [206]. Performing a renormalization-group
analysis yields

C(q̄) = 2.35 q̄eiφ − 0.82 with q̄ = q

[ |Vub/Vcb|
0.086

]
. (253)

Evaluating then the relevant box-diagram contributions in the SM and using (253), the short-distance
functions

X = 2.35 q̄eiφ − 0.09 and Y = 2.35 q̄eiφ − 0.64 (254)

can also be calculated, which govern the rare K , B decays with νν̄ and `+`− in the final states, respec-
tively. In the SM, we have C = 0.79, X = 1.53 and Y = 0.98, with vanishing CP-violating phases.
An analysis along these lines shows that the value of (q, φ) in (242), which is preferred by the B → πK
observables Rn,c, requires the following lower bounds for X and Y [91]:

|X|min ≈ |Y |min ≈ 2.2 , (255)

which appear to violate the 95% probability upper bounds

X ≤ 1.95, Y ≤ 1.43 (256)

that were recently obtained within the context of MFV [207]. Although we have to deal with CP-violating
NP phases in our scenario, which goes therefore beyond the MFV framework, a closer look at B →
Xs`

+`− shows that the upper bound on |Y | in (256) is difficult to avoid if NP enters only through EW
penguins and the operator basis is the same as in the SM. A possible solution to the clash between (255)
and (256) would be given by more complicated NP scenarios [91]. However, unless a specific model is
chosen, the predictive power is then significantly reduced. For the exploration of the NP effects in rare
decays, we shall therefore not follow this avenue.

Using an only slightly more generous bound on |Y | by imposing |Y | ≤ 1.5 and taking only those
values of (242) that satisfy the constraint |Y | = 1.5 yields

q = 0.48± 0.07 , φ = −(93± 17)◦ , (257)

corresponding to a modest suppression of q relative to its updated SM value of 0.58. It is interesting to
investigate the impact of various modifications of (q, φ), which allow us to satisfy the bounds in (256), for
the B → πK observables and rare decays. To this end, three scenarios for the possible future evolution
of the measurements of Rn and Rc were introduced in Ref. [91]:
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Table 1: The B → πK observables for the three scenarios introduced in the text

Quantity SM Scen. A Scen. B Scen. C Experiment
Rn 1.12 0.88 1.03 1 0.83± 0.08

Rc 1.15 0.96 1.13 1 1.01± 0.09

Adir
CP(B±→π0K±) 0.04 0.07 0.06 0.02 −0.04 ± 0.04

Adir
CP(Bd→π0KS) 0.06 0.04 0.03 0.09 −0.02 ± 0.13

Amix
CP (Bd→π0KS) −0.82 −0.89 −0.91 −0.70 −0.31 ± 0.26

∆S 0.13 0.21 0.22 0.01 −0.38 ± 0.26

∆A −0.07 −0.04 −0.05 −0.09 −0.16 ± 0.04

Table 2: Rare decay branching ratios for the three scenarios introduced in the text. The Bs → µ+µ− channel will
be discussed in more detail in Section 10.5.

Decay SM Scen. A Scen. B Scen. C Exp. bound
(90% C.L.)

BR(K+ → π+νν̄)/10−11 9.3 2.7 8.3 8.4 (14.7+13.0
−8.9 )

BR(KL → π0νν̄)/10−11 4.4 11.6 27.9 7.2 < 2.9× 104

BR(KL → π0e+e−)/10−11 3.6 4.6 7.1 4.9 < 28

BR(B → Xsνν̄)/10−5 3.6 2.8 4.8 3.3 < 64

BR(Bs → µ+µ−)/10−9 3.9 9.2 9.1 7.0 < 1.5 × 102

BR(KL → µ+µ−)SD/10−9 0.9 0.9 0.001 0.6 < 2.5

– Scenario A: q = 0.48, φ = −93◦, which is in accordance with the currrent rare decay bounds and
the B → πK data [see (257)].

– Scenario B: q = 0.66, φ = −50◦, which yields an increase of Rn to 1.03, and some interesting
effects in rare decays. This could, for example, happen if radiative corrections to theB 0

d → π−K+

branching ratio enhance Rn [208], though this alone would probably account for only about 5%.
– Scenario C: here it is assumed that Rn = Rc = 1, which corresponds to q = 0.54 and φ = 61◦.

The positive sign of φ distinguishes this scenario strongly from the others.

The patterns of the observables of the B → πK and rare decays corresponding to these scenarios are
collected in Tables 1 and 2, respectively. We observe that the K → πνν̄ modes, which are theoretically
very clean (for a recent review, see Ref. [209]), offer a particularly interesting probe for the different
scenarios. Concerning the observables of the B → πK system, Amix

CP (Bd→π0KS) is very interesting:
this CP asymmetry is found to be very large in Scenarios A and B, where the NP phase φ is negative.
On the other hand, the positive sign of φ in Scenario C brings Amix

CP (Bd → π0KS) closer to the data,
in agreement with the features discussed in Section 8.3. A similar comment applies to the direct CP
asymmetry of B± → π0K±.

In view of the large uncertainties, unfortunately no definite conclusions on the presence of NP can
be drawn at this stage. However, the possible anomalies in the B → πK system complemented with
the one in B → φK may actually indicate the effects of a modified EW penguin sector with a large
CP-violating NP phase. As we just saw, rare K and B decays have an impressive power to reveal such
a kind of NP. Finally, let us stress that the analysis of the B → ππ modes, which signals large non-
factorizable effects, and the determination of the UT angle γ described above are not affected by such
NP effects. It will be interesting to monitor the evolution of the corresponding data with the help of the
strategy discussed above.
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9 Entering a new territory: b→ d penguins
9.1 Preliminaries
Another hot topic which emerged recently is the exploration of b → d penguin processes. The non-
leptonic decays belonging to this category, which are mediated by b → ds̄s quark transitions (see the
classification in Section 3.3.1), are now coming within experimental reach at the B factories. A similar
comment applies to the radiative decays originating from b→ dγ processes, whereas b→ d`+`− modes
are still far from being accessible. The B factories are therefore just entering a new territory, which is
still essentially unexplored. Let us now have a closer look at the corresponding processes.

9.2 A prominent example: B0
d → K0K̄0

The Feynman diagrams contributing to this decay can be obtained from those for B 0
d → φK0 shown in

Fig. 23 by replacing the anti-strange quark emerging from theW boson through an anti-down quark. The
B0
d → K0K̄0 decay is described by the low-energy effective Hamiltonian in (80) with r = d, where the

current–current operators may only contribute through penguin-like contractions, corresponding to the
penguin topologies with internal up- and charm-quark exchanges. The dominant role is played by QCD
penguins; since EW penguins contribute only in colour-suppressed form, they have a minor impact on
B0
d → K0K̄0, in contrast to the case of B0

d → φK0, where they may also contribute in colour-allowed
form.

If we apply the notation introduced in Section 7, again make use of the unitarity of the CKM
matrix and apply the Wolfenstein parametrization, we may write the B0

d → K0K̄0 amplitude as follows:

A(B0
d → K0K̄0) = λ3A(ÃtP − ÃcP)

[
1− ρKKeiθKKeiγ

]
, (258)

where

ρKKe
iθKK ≡ Rb

[
ÃtP − ÃuP
ÃtP − ÃcP

]
. (259)

This expression allows us to calculate the CP-violating asymmetries with the help of the formulae given
in Section 5.5, taking the following form:

Adir
CP(Bd → K0K̄0) = D1(ρKK , θKK ; γ) (260)

Amix
CP (Bd → K0K̄0) = D2(ρKK , θKK ; γ, φd) . (261)

Let us assume, for a moment, that the penguin contributions are dominated by top-quark ex-
changes. In this case, (259) simplifies as

ρKKe
iθKK → Rb . (262)

Since the CP-conserving strong phase θKK vanishes in this limit, the direct CP violation in B0
d → K0K̄0

vanishes, too. Moreover, if we take into account that φd = 2β in the SM and use trigonometrical relations
which can be derived for the UT, we find that the mixing-induced CP asymmetry also would be zero.
These features suggest an interesting test of the b → d flavour sector of the SM (see, for instance,
Ref. [210]). However, contributions from penguins with internal up- and charm-quark exchanges are
expected to yield sizeable CP asymmetries inB0

d → K0K̄0 even within the SM, so that the interpretation
of these effects is much more complicated [211]; these contributions contain also possible long-distance
rescattering effects [212], which are often referred to as ‘GIM’ and ‘charming’ penguins and recently
received a lot of attention [213].

Despite this problem, interesting insights can be obtained through the B 0
d → K0K̄0 observ-

ables [214]. By the time the CP-violating asymmetries in (260) and (261) can be measured, the angle
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γ of the UT will also be reliably known, in addition to the B0
d–B̄0

d mixing phase φd. The experimental
values of the CP asymmetries can then be converted into ρKK and θKK , in analogy to the B → ππ
discussion in Section 8.2. Although these quantities are interesting to obtain insights into the B → πK
parameter ρce

iθc [see (237)] through SU(3) arguments, and can be compared with theoretical predic-
tions, for instance, those of QCDF, PQCD or SCET, they do not provide—by themselves—a test of the
SM description of the FCNC processes mediating the decay B0

d → K0K̄0. However, so far, we have
not yet used the information offered by the CP-averaged branching ratio of this channel. It takes the
following form:

BR(Bd → K0K̄0) =
τBd

16πMBd

×ΦKK × |λ3AÃtcP |2〈B〉 , (263)

where ΦKK denotes a two-body phase-space factor, ÃtcP ≡ ÃtP − ÃcP, and

〈B〉 ≡ 1− 2ρKK cos θKK cos γ + ρ2
KK . (264)

If we now use φd and the SM value of γ, we may characterize the decay B0
d → K0K̄0—within the

SM—through a surface in the observable space of Adir
CP,Amix

CP and 〈B〉. In Fig. 30, we show this surface,
where each point corresponds to a given value of ρKK and θKK . It should be emphasized that this
surface is theoretically clean since it relies only on the general SM parametrization of B 0

d → K0K̄0.
Consequently, should future measurements give a value in observable space that should not lie on the
SM surface, we would have immediate evidence for NP contributions to b̄→ d̄ss̄ processes.

Looking at Fig. 30, we see that 〈B〉 takes an absolute minimum. Indeed, if we keep ρKK and θKK
as free parameters in (264), we find

〈B〉 ≥ sin2 γ , (265)

which yields a strong lower bound because of the favourably large value of γ. Whereas the direct and
mixing-induced CP asymmetries can be extracted from a time-dependent rate asymmetry [see (152)],
the determination of 〈B〉 requires further information to fix the overall normalization factor involving
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the penguin amplitude ÃtcP . The strategy developed in Refs. [82, 83] offers the following two avenues,
using data for

i) B → ππ decays, i.e., b→ d transitions, implying the following lower bound:

BR(Bd → K0K̄0)min = ΞKπ ×
(
1.39 +1.54

−0.95

)
× 10−6 , (266)

ii) B → πK decays, i.e., b → s transitions, which are complemented by the B → ππ system to
determine a small correction, implying the following lower bound:

BR(Bd → K0K̄0)min = ΞKπ ×
(
1.36 +0.18

−0.21

)
× 10−6 . (267)

Here factorizable SU(3)-breaking corrections are included, as is made explicit through

ΞKπ =

[
fK0

0.331

0.258

fπ0

]2

, (268)

where the numerical values for the B → K,π form factors fK,π0 refer to a recent light-cone sum-rule
analysis [215]. At the time of the derivation of these bounds, the B factories reported an experimental
upper bound of BR(Bd → K0K̄0) < 1.5×10−6 (90% C.L.). Consequently, the theoretical lower bounds
given above suggested that the observation of this channel should just be ahead of us. Subsequently, the
first signals were indeed announced, in accordance with (266) and (267):

BR(Bd → K0K̄0) =

{
(1.19+0.40

−0.35 ± 0.13) × 10−6 (BaBar [216]) ,
(0.8± 0.3 ± 0.1) × 10−6 (Belle [217]) .

(269)

The SM description ofB0
d → K0K̄0 has thus successfully passed its first test. However, the experimental

errors are still very large, and the next crucial step—a measurement of the CP asymmetries—is still
missing. Using QCDF, an analysis of NP effects in this channel was recently performed in the minimal
supersymmetric standard model [218]. For further aspects of B0

d → K0K̄0, the reader is referred to
Ref. [214].

9.3 Radiative b→ d penguin decays: B̄ → ργ

Another important tool to explore b → d penguins is provided by B̄ → ργ modes. In the SM, these
decays are described by a Hamiltonian with the following structure [67]:

Hb→dγeff =
GF√

2

∑

j=u,c

V ∗jdVjb

[
2∑

k=1

CkQ
jd
k +

8∑

k=3

CkQ
d
k

]
. (270)

Here the Qjd
1,2 denote the current–current operators, whereas the Qd

3...6 are the QCD penguin operators,
which govern the decay B̄0

d → K0K̄0 together with the penguin-like contractions of Qcd
1,2 and Qud

1,2. In
contrast to these four-quark operators,

Qd7,8 =
1

8π2
mbd̄iσ

µν(1 + γ5)
{
ebiFµν , gsT

a
ijbjG

a
µν

}
(271)

are electro- and chromomagnetic penguin operators. The most important contributions to B̄ → ργ orig-
inate from Qjd

1,2 and Qd
7,8, whereas the QCD penguin operators play only a minor role, in contrast to

B̄0
d → K0K̄0. If we use again the unitarity of the CKM matrix and apply the Wolfenstein parametriza-

tion, we may write
A(B̄ → ργ) = cρλ

3APργtc
[
1− ρργeiθργe−iγ

]
, (272)
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where cρ = 1/
√

2 and 1 for ρ = ρ0 and ρ±, respectively, Pργtc ≡ Pργt −Pργc , and

ρργe
iθργ ≡ Rb

[Pργt −Pργu
Pργt −Pργc

]
. (273)

Here we follow our previous notation, i.e., the Pργj are strong amplitudes with the following interpreta-
tion: Pργu and Pργc refer to the matrix elements of

∑2
k=1CkQ

ud
k and

∑2
k=1CkQ

cd
k , respectively, whereas

Pργt corresponds to −∑8
k=3CkQ

d
k. Consequently, Pργu and Pργc describe the penguin topologies with

internal up- and charm-quark exchanges, respectively, whereas P ργt corresponds to the penguins with
the top quark running in the loop. Let us note that (272) refers to a given photon helicity. However, the
b quarks couple predominantly to left-handed photons in the SM, so that the right-handed amplitude is
usually neglected [219]; we shall return to this point below. Comparing (272) with (258), we observe
that the structure of both amplitudes is the same. In analogy to ρKKeiθKK , ρργeiθργ may also be affected
by long-distance effects, which represent a key uncertainty of B̄ → ργ decays [147, 219].

If we replace all down quarks in (270) by strange quarks, we obtain the Hamiltonian for b → sγ
processes, which are already well established experimentally [61]:

BR(B± → K∗±γ) = (40.3 ± 2.6) × 10−6 (274)

BR(B0
d → K∗0γ) = (40.1 ± 2.0) × 10−6 . (275)

In analogy to (272), we may write

A(B̄→K∗γ)= −λ
3APK∗γtc√

ε

[
1+ερK∗γe

iθK∗γe−iγ
]
, (276)

where ε was introduced in (221). Thanks to the smallness of ε, the parameter ρK∗γeiθK∗γ plays an
essentially negligible role for the B̄ → K∗γ transitions.

Let us have a look at the charged decays B± → ρ±γ and B± → K∗±γ first. If we consider their
CP-averaged branching ratios, we obtain

BR(B± → ρ±γ)

BR(B± → K∗±γ)
= ε

[
Φργ

ΦK∗γ

] ∣∣∣∣∣
Pργtc
PK∗γtc

∣∣∣∣∣

2

Hργ
K∗γ , (277)

where Φργ and ΦK∗γ denote phase-space factors, and

Hργ
K∗γ ≡

1− 2ρργ cos θργ cos γ + ρ2
ργ

1 + 2ερK∗γ cos θK∗γ cos γ + ε2ρ2
K∗γ

. (278)

Since B± → ρ±γ and B± → K∗±γ are related through the interchange of all down and strange quarks,
the U -spin flavour symmetry of strong interactions allows us to relate the corresponding hadronic am-
plitudes to each other; the U -spin symmetry is an SU(2) subgroup of the full SU(3)F flavour-symmetry
group, which relates down and strange quarks in the same manner as the conventional strong isospin
symmetry relates down and up quarks. Following these lines, we obtain

|Pργtc | = |PK
∗γ

tc | (279)

ρργe
iθργ = ρK∗γe

iθK∗γ ≡ ρeiθ . (280)

Although we may determine the ratio of the penguin amplitudes |Ptc| in (277) with the help of (279)—
up to SU(3)-breaking effects to be discussed below—we are still left with the dependence on ρ and
θ. However, keeping ρ and θ as free parameters, it can be shown that H ργ

K∗γ satisfies the following
relation [220]:

Hργ
K∗γ ≥

[
1− 2ε cos2 γ +O(ε2)

]
sin2 γ , (281)
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where the term linear in ε gives a shift of about 1.9%.

Concerning possible SU(3)-breaking effects to (280), they may only enter this tiny correction
and are negligible for our analysis. On the other hand, the SU(3)-breaking corrections to (279) have a
sizeable impact. Following Refs. [221, 222], we write

[
Φργ

ΦK∗γ

] ∣∣∣∣∣
Pργtc
PK∗γtc

∣∣∣∣∣

2

=

[
M2
B −M2

ρ

M2
B −M2

K∗

]3

ζ2 , (282)

where ζ = Fρ/FK∗ is the SU(3)-breaking ratio of the B± → ρ±γ and B± → K∗±γ form factors; a
light-cone sum-rule analysis gives ζ−1 = 1.31 ± 0.13 [223]. Consequently, (281) and (282) allow us to
convert the measured B± → K∗±γ branching ratio (274) into a lower SM bound for BR(B± → ρ±γ)
with the help of (277) [220]:

BR(B± → ρ±γ)min =
(
1.02 +0.27

−0.23

)
× 10−6 . (283)

A similar kind of reasoning holds also for the U -spin pairs B± → K±K,π±K and B± →
K±K∗, π±K∗, where the following lower bounds can be derived [220]:

BR(B±→K±K)min = ΞKπ ×
(
1.69 +0.21

−0.24

)
×10−6 (284)

BR(B±→K±K∗)min = ΞKπ ×
(
0.68 +0.11

−0.13

)
×10−6 , (285)

with ΞKπ given in (268). Thanks to the most recent B-factory data, we now also have evidence for
B± → K±K decays:

BR(B±→K±K) =

{
(1.5 ± 0.5± 0.1) × 10−6 (BaBar [216])
(1.0 ± 0.4± 0.1) × 10−6 (Belle [217]) ,

(286)

whereas the upper limit of 5.3 × 10−6 for B± → K±K∗ still leaves a lot of space. Obviously, we may
also consider the B± → K∗±K, ρ±K system [220]. However, since currently only the upper bound
BR(B± → ρ±K) < 48 × 10−6 is available, we cannot yet give a number for the lower bound on
BR(B± → K∗±K). Experimental analyses of these modes are strongly encouraged.

Let us now turn to B̄0
d → ρ0γ, which receives contributions from exchange and penguin annihi-

lation topologies that are not present in B̄0
d → K̄∗0γ; in the case of B± → ρ±γ and B± → K∗±γ,

which are related by the U -spin symmetry, there is a one-to-one correspondence of topologies. Making
the plausible assumption that the topologies involving the spectator quarks play a minor role, and taking
the factor of cρ0 = 1/

√
2 in (272) into account, the counterpart of (283) is given by

BR(Bd → ρ0γ)min =
(
0.51 +0.13

−0.11

)
× 10−6 . (287)

At the time of the derivation of the lower bounds for the B → ργ branching ratios given above,
the following experimental upper bounds (90% C.L.) were available:

BR(B± → ρ±γ) <

{
1.8× 10−6 (BaBar [224])
2.2× 10−6 (Belle [225])

(288)

BR(Bd → ρ0γ) <

{
0.4× 10−6 (BaBar [224])
0.8× 10−6 (Belle [225]) .

(289)

Consequently, it was expected that the B̄ → ργ modes should soon be discovered at theB factories [220].
Indeed, the Belle Collaboration recently reported the first observation of b→ dγ processes [226]:

BR(B± → ρ±γ) =
(
0.55+0.43+0.12

−0.37−0.11

)
× 10−6 (290)
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BR(Bd → ρ0γ) =
(
1.17+0.35+0.09

−0.31−0.08

)
× 10−6 (291)

BR(B → (ρ, ω)γ) =
(
1.34+0.34+0.14

−0.31−0.10

)
× 10−6 , (292)

which was one of the hot topics of the 2005 summer conferences [227]. These measurements still suffer
from large uncertainties, and the pattern of the central values of (290) and (291) would be in conflict with
the expectation following from the isospin symmetry. It will be interesting to follow the evolution of the
data. The next important conceptual step would be the measurement of the corresponding CP-violating
observables, though this is still in the distant future.

An alternative avenue to confront the data for the B → ργ branching ratios with the SM is pro-
vided by converting them into information on the sideRt of the UT. To this end, the authors of Refs. [221,
222] also use (282), and calculate the CP-conserving (complex) parameter δa entering ρργe

iθργ =
Rb [1 + δa] in the QCDF approach. The corresponding result, which favours a small impact of δa,
takes leading and next-to-leading order QCD corrections into account and holds to leading order in the
heavy-quark limit [222]. In view of the remarks about possible long-distance effects made above and
the B-factory data for the B → ππ system, which indicate large corrections to the QCDF picture for
non-leptonic B decays into two light pseudoscalar mesons (see Section 8.2), it is, however, not obvious
that the impact of δa is actually small. The advantage of the bound following from (281) is that it is—by
construction—not affected by ρργeiθργ at all.

9.4 General lower bounds for b→ d penguin processes
Interestingly, the bounds discussed above are actually realizations of a general, model-independent bound
that can be derived in the SM for b→ d penguin processes [220]. If we consider such a decay, B̄ → f̄d,
we may—in analogy to (258) and (272)—write

A(B̄ → f̄d) = A
(0)
d

[
1− %deiθde−iγ

]
, (293)

so that the CP-averaged amplitude square is given as follows:

〈|A(B → fd)|2〉 = |A(0)
d |2

[
1− 2%d cos θd cos γ + %2

d

]
. (294)

In general, %d and θd depend on the point in phase space considered. Consequently, the expression

BR(B → fd) = τB

[∑

Pol

∫
dPS 〈|A(B → fd)|2〉

]
(295)

for the CP-averaged branching ratio, where the sum runs over possible polarization configurations of
fd, does not factorize into |A(0)

d |2 and [1 − 2%d cos θd cos γ + %2
d] as in the case of the two-body decays

considered above. However, if we keep %d and θd as free, ‘unknown’ parameters at any given point in
phase space, we obtain

〈|A(B → fd)|2〉 ≥ |A(0)
d |2 sin2 γ , (296)

which implies

BR(B → fd) ≥ τB
[∑

Pol

∫
dPS |A(0)

d |2
]

sin2 γ . (297)

In order to deal with the term in square brackets, we use a b → s penguin decay B̄ → f̄s, which
is the counterpart of B̄ → f̄d in that the corresponding CP-conserving strong amplitudes can be related
to one another through the SU(3) flavour symmetry. In analogy to (276), we may then write

A(B̄ → f̄s) = −A
(0)
s√
ε

[
1 + ε%se

iθse−iγ
]
. (298)
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If we neglect the term proportional to ε in the square bracket, we arrive at

BR(B → fd)

BR(B → fs)
≥ ε

[∑
Pol

∫
dPS |A(0)

d |2∑
Pol

∫
dPS |A(0)

s |2

]
sin2 γ . (299)

Apart from the tiny ε correction, which gave a shift of about 1.9% in (281), (299) is valid exactly in the
SM. If we now apply the SU(3) flavour symmetry, we obtain

∑
Pol

∫
dPS |A(0)

d |2∑
Pol

∫
dPS |A(0)

s |2
SU(3)F−→ 1 . (300)

Since sin2 γ is favourably large in the SM and the decay B̄ → f̄s will be measured before its b →
d counterpart—simply because of the CKM enhancement—(299) provides strong lower bounds for
BR(B → fd).

It is instructive to return briefly to B → ργ. If we look at (299), we observe immediately that
the assumption that these modes are governed by a single photon helicity is no longer required. Conse-
quently, (283) and (287) are actually very robust with respect to this issue, which may only affect the
SU(3)-breaking corrections to a small extent. This feature is interesting in view of the recent discussion
in Ref. [228], where the photon polarization in B → ργ and B → K ∗γ decays was critically analysed.

We can now also derive a bound for the B± → K∗±K∗, ρ±K∗ system, where we have to sum in
(299) over three polarization configurations of the vector mesons. The analysis of the SU(3)-breaking
corrections is more involved than in the case of the decays considered above, and the emerging lower
bound of BR(B± → K∗±K∗)min ∼ 0.6 × 10−6 is still very far from the experimental upper bound of
71 × 10−6. Interestingly, the theoretical lower bound would be reduced by ∼ 0.6 in the strict SU(3)
limit, i.e., would be more conservative [220]. A similar comment applies to (266), (267) and (284), (285).
On the other hand, the B → ργ bounds in (283) and (287) would be enhanced by ∼ 1.7 in this case.
However, here the theoretical situation is more favourable since we have not to rely on the factorization
hypothesis to deal with the SU(3)-breaking effects as in the case of the non-leptonic decays.

Let us finally come to another application of (299), which is offered by decays of the kind
B̄ → π`+`− and B̄ → ρ`+`−. It is well known that the ρd terms complicate the interpretation of
the corresponding data considerably [147]; the bound offers SM tests that are not affected by these con-
tributions. The structure of the b → d`+`− Hamiltonian is similar to (270), but involves the additional
operators

Q9,10 =
α

2π
(¯̀̀ )V,A(d̄ibi)V−A . (301)

The b → s`+`− modes B̄ → K`+`− and B̄ → K∗`+`− were already observed at the B factories,
with branching ratios at the 0.6 × 10−6 and 1.4 × 10−6 levels [61], respectively, and received consider-
able theoretical attention (see, for example, Ref. [229]). For the application of (299), the charged decay
combinations B± → π±`+`−,K±`+`− and B± → ρ±`+`−,K∗±`+`− are suited best since the corre-
sponding decay pairs are related to each other through the U -spin symmetry [230]. The numbers given
above suggest

BR(B± → π±`+`−), BR(B± → ρ±`+`−) ∼> 10−8 , (302)

thereby leaving the exploration of these b → d penguin decays for the more distant future. Detailed
studies of the associated SU(3)-breaking corrections are encouraged. It is hoped that by the time the
B± → π±`+`−, ρ±`+`− modes can be measured, we shall have a good picture of these effects.

It will be interesting to confront all of these bounds with experimental data. In the case of the non-
leptonic Bd → K0K̄0, B± → K±K modes and their radiative B → ργ counterparts, they have already
provided a first successful test of the SM description of the corresponding FCNC processes, although the
uncertainties are still very large in view of the fact that we are just at the beginning of the experimental
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exploration of these channels. A couple of other non-leptonic decays of this kind may just be around the
corner. It would be exciting if some bounds were significantly violated through destructive interference
between SM and NP contributions. Since the different decay classes are governed by different operators,
we could actually encounter surprises!

10 B-decay studies in the LHC era: fully exploiting the Bs system
10.1 In pursuit of new physics with ∆Ms

Concerning experimental information about this mass difference, only lower bounds were available for
many years from the LEP experiments at CERN and SLD at SLAC [107]. Since the currently operating
e+e− B factories run at the Υ(4S) resonance, which decays into Bu,d, but not into Bs mesons, the
Bs system cannot be explored by the BaBar and Belle experiments3 . However, plenty of Bs mesons
are produced at the Tevatron (and will be later on at the LHC [232]), which—very recently—allowed
the measurement of ∆Ms, as summarized in (131) and (132). These new results were one of the hot
topics of spring 2006, and have already triggered several phenomenological papers (see, for example,
Refs. [233]– [241]).

As in Section 6 and Section 7.1, we shall follow the analysis of Ref. [101]. In order to describe
possible NP effects, we parametrize them through (164) and (165). The relevant CKM factor is |V ∗tsVtb|.
Using once again the unitarity of the CKM matrix and including next-to-leading order terms in the
Wolfenstein expansion as given in Ref. [36], we have

∣∣∣∣
Vts
Vcb

∣∣∣∣ = 1− 1

2
(1− 2Rb cos γ) λ2 +O(λ4) . (303)

Consequently, apart from the tiny correction in λ2, the CKM factor for ∆Ms is independent of γ and
Rb, which is an important advantage in comparison with the Bd-meson system. The accuracy of the SM
prediction of ∆Ms is hence limited by the hadronic mixing parameter fBsB̂

1/2
Bs

. If we consider the ratio
ρs introduced in (166) and use the CDF measurement in (132), we obtain

ρs|JLQCD = 1.08+0.03
−0.01(exp)± 0.19(th) (304)

ρs|(HP+JL)QCD = 0.74+0.02
−0.01(exp)± 0.18(th) , (305)

where we made the experimental and theoretical errors explicit. These numbers are consistent with the
SM case ρs = 1, but suffer from significant theoretical uncertainties, which are much larger than the
experimental errors. Nevertheless, it is interesting to note that the (HP+JL)QCD result is 1.5σ below
the SM; a similar pattern arises in (193) and (194), though at the 1σ level. Any more precise statement
about the presence or absence of NP requires the reduction of theoretical uncertainties.

In Fig. 31, we show the constraints in the σs–κs plane, which can be obtained from ρs with the
help of the contours shown in Fig. 18. We see that upper bounds of κs . 2.5 arise from the measurement
of ∆Ms. In the case of (305), σs would be constrainted to lie within the range 110◦ ≤ σs ≤ 250◦.
Consequently, the CDF measurement of ∆Ms leaves ample space for the NP parameters σs and κs. As
in the case of the Bd-meson system discussed in Section 7.1, this situation will change significantly as
soon as information about CP violation in the Bs-meson system becomes available. We shall return to
this topic in Section 10.2.

It is interesting to consider the ratio of ∆Ms and ∆Md, which can be written as follows:

∆Ms

∆Md
=
ρs
ρd

∣∣∣∣
Vts
Vtd

∣∣∣∣
2 MBs

MBd

ξ2 , (306)

3The asymmetric e+e− KEKB collider was recently also operated at the Υ(5S) resonance in an engineering run, allowing
the Belle experiment to take first Bs data [231].
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Fig. 31: The allowed regions (yellow/grey) in the σs–κs plane. Left panel: JLQCD lattice results (122). Right
panel: (HP+JL)QCD lattice results (123).
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Fig. 32: The dependence of ρs/ρd on γ for the central values of ∆Md,s in (130) and (132). Left panel: JLQCD
results (308). Right panel: (HP+JL)QCD results (309). The plots are nearly independent of Rb.

where the hadronic SU(3)-breaking parameter ξ is defined through

ξ ≡
fBsB̂

1/2
Bs

fBdB̂
1/2
Bd

. (307)

In the class of NP models with ‘minimal flavour violation’ (see Section 6, and Ref. [237] for a recent
analysis addressing also the ∆Ms measurement), we have ρs/ρd = 1, so that (306) allows the extraction
of the CKM factor |Vts/Vtd|, and hence |Vtd|, as |Vts| is known—to excellent accuracy—from (303). The
advantage of this determination lies in the reduced theoretical uncertainty of ξ as compared to fBdB̂

1/2
Bd

.
For the sets of lattice results in (122) and (123), we have

ξJLQCD = 1.14 ± 0.06+0.13
−0 (308)

ξ(HP+JL)QCD = 1.210+0.047
−0.035 . (309)

Using the expression

Rt ≡
1

λ

∣∣∣∣
Vtd
Vcb

∣∣∣∣ =
1

λ

∣∣∣∣
Vtd
Vts

∣∣∣∣
[
1− 1

2
(1− 2Rb cos γ) λ2 +O(λ4)

]
, (310)

we may convert the extracted value of |Vts/Vtd| into a measurement of the UT side Rt. As we noted
in Subsection 9.3, another determination of Rt can, in principle, be obtained from radiative decays, in
particular the ratio of branching ratios B(B → (ρ, ω)γ)/B(B → K ∗γ), but is presently limited by
experimental statistics; see Ref. [242] for a recent analysis.
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Alternatively, following Ref. [101], we may constrain the ratio ρs/ρd through the measured value
of ∆Ms/∆Md. To this end, we express—in analogy to (192)—the UT side Rt in terms of Rb and γ:

Rt =
√

1− 2Rb cos γ +R2
b , (311)

allowing the determination of Rt through processes that are essentially unaffected by NP. The resulting
value of Rt depends rather strongly on γ, which is the main source of uncertainty. Combining then (306)
and (310), we obtain the following expression for ρs/ρd:

ρs
ρd

= λ2
[
1− 2Rb cos γ +R2

b

] [
1 + (1− 2Rb cos γ)λ2 +O(λ4)

] 1

ξ2

MBd

MBs

∆Ms

∆Md
. (312)

In Fig. 32, we plot this ratio for the central values of ∆Md and ∆Ms in (130) and (132), respectively, as
a function of the UT angle γ for the values of ξ given in (122) and (123). We find that the corresponding
curves are nearly independent of Rb and that γ is actually the key CKM parameter for the determination
of ρs/ρd. The corresponding numerical values are given by:

ρs
ρd

∣∣∣∣
JLQCD

= 1.11+0.02
−0.01(exp)± 0.35(γ,Rb)

+0.12
−0.28(ξ) (313)

ρs
ρd

∣∣∣∣
(HP+JL)QCD

= 0.99+0.02
−0.01(exp)± 0.31(γ,Rb)

+0.06
−0.08(ξ) . (314)

Because of the large range of allowed values of γ in (182), this ratio is currently not stringently con-
strained. This situation should, however, improve significantly in the LHC era thanks to the impressive
determination of γ to be obtained at the LHCb experiment. In fact, a statistical accuracy of σstat(γ) ≈
2.5◦ is expected at LHCb after five years of data taking [232].

Let us introduce a scenario for the year 2010 that is characterized by γ = (70 ± 5)◦ and the
(HP+JL)QCD parameters in (123). We then find

ρs
ρd

∣∣∣∣
2010

= 1.07 ± 0.09(γ,Rb)
+0.06
−0.08(ξ) = 1.07 ± 0.12 , (315)

where we made the errors arising from the uncertainties of γ and ξ explicit, and, in the last step, added
them in quadrature. Consequently, the hadronic uncertainties and those induced by γ would now be of
the same size, which should provide additional motivation for the lattice community to reduce the error
of ξ even further. Despite the impressive reduction of uncertainty compared to the 2006 values in (313)
and (314), the numerical value in (315) would still not allow a stringent test of whether ρs/ρd equals one:
to establish a 3σ deviation from 1, central values of ρs/ρd = 1.4 or 0.7 would be needed. The assumed
uncertainty of γ of 5◦ could also turn out to be too pessimistic, in which case even more progress would
be needed from the lattice side to match the experimental accuracy.

The result in (315) would not necessarily suggest that there is no physics beyond the SM. In fact,
the central values of ρd = 0.69 ± 0.16 and ρs = 0.74 ± 0.18 would both be smaller than 1, i.e., would
both deviate from the SM picture, although the hadronic uncertainties would again not allow us to draw
definite conclusions. In order to shed further light on these possible NP contributions, the exploration of
CP-violating effects in the Bs-meson system is essential, which can be performed with the help of the
‘golden’ decay B0

s → J/ψφ.

10.2 B0
s → J/ψφ

As can be seen in Fig. 20, the decay B0
s → J/ψφ is simply related to B0

d → J/ψKS through a replace-
ment of the down spectator quark by a strange quark. Consequently, the structure of the B 0

s → J/ψφ de-
cay amplitude is completely analogous to that of (169). On the other hand, the final state of B 0

s → J/ψφ

59

FLAVOUR PHYSICS AND CP VIOLATION

161



50 60 70 80 90

-0.3

-0.2

-0.1

0

0.1
= 0.35Rb

Rb
= 0.40

Rb
= 0.45

Rb
= 0.50

γ [deg]

s
in

φ
s

SM

0.3 0.35 0.4 0.45 0.5

-0.3

-0.2

-0.1

0

0.1

s
in

φ
s

Rb

Fig. 33: sinφs for a scenario with flavour-universal NP, i.e., φNP
s = φNP

d , as specified in Eq. (318), and φd = 43.4◦.
Left panel: sinφs as a function of γ for various values of Rb. Right panel: sinφs as a function of Rb for various
values of γ [solid line: γ = 65◦, dashed lines: γ = (45◦, 85◦)].

consists of two vector mesons, and is hence an admixture of different CP eigenstates, which can, how-
ever, be disentangled through an angular analysis of the B0

s → J/ψ[→ `+`−]φ[→ K+K−] decay
products [111,243]. The corresponding angular distribution exhibits tiny direct CP violation, and allows
the extraction of

sinφs +O(λ
3
) = sinφs +O(10−3) (316)

through mixing-induced CP violation. Since we have φs = −2δγ = −2λ2η ∼ −2◦ in the SM, the
determination of this phase from (316) is affected by hadronic uncertainties of O(10%), which may be-
come an issue for the LHC era. These uncertainties can be controlled with the help of flavour-symmetry
arguments through the B0

d → J/ψρ0 decay [244].

Needless to say, the big hope is that large CP violation will be found in this channel. Since
the CP-violating effects in B0

s → J/ψφ are tiny in the SM, such an observation would give us an
unambiguous signal for NP [117,245,246]. As the situation for NP entering through the decay amplitude
is similar to B → J/ψK , we would get evidence for CP-violating NP contributions to B 0

s–B̄0
s mixing,

and could extract the corresponding sizeable value of φs [117]. Such a scenario may generically arise
in the presence of NP with ΛNP ∼ TeV [119], as well as in specific models, including supersymmetric
frameworks and models with extra Z ′ bosons (see Ref. [101] and references therein).

Thanks to its nice experimental signature, B0
s → J/ψφ is very accessible at hadron colliders,

and can be fully exploited at the LHC. After one year of data taking (which corresponds to 2 fb−1),
LHCb expects a measurement with the statistical accuracy σstat(sinφs) ≈ 0.031; adding modes such as
Bs → J/ψη, J/ψη′ and ηcφ, σstat(sinφs) ≈ 0.013 is expected after five years [232]. Also ATLAS and
CMS will contribute to the measurement of sinφs, expecting uncertainties at the 0.1 level after one year
of data taking, which corresponds to 10 fb−1 [247,248]. In order to illustrate the impact of NP effects on
the quantity

sinφs = sin(−2λ2Rb sin γ + φNP
s ) , (317)

let us assume that the NP parameters satisfy the simple relation

σd = σs, κd = κs , (318)

i.e., that in particular φNP
d = φNP

s . This scenario would be supported by (315), although it would not
belong to the class of models with MFV, as new sources of CP violation would be required. As we have
seen in Section 7.1, the analysis of the B0

d data for Rincl
b = 0.45 indicates a small NP phase around
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−0.04 ± 0.02. Right panel: a NP scenario with (sinφs)exp = −0.20 ± 0.02. The solid lines correspond to
cosφs > 0, the dotted lines to cosφs < 0.

−10◦ in the Bd system. In the above scenario, that would imply the presence of the same phase in the
Bs system, which would interfere constructively with the small SM phase and result in CP asymmetries
at the level of −20%. CP-violating effects of that size can easily be detected at the LHC. This exercise
demonstrates again the great power of the Bs-meson system to reveal CP-violating NP contributions
to B0

q–B̄0
q mixing. The presence of a small NP phase could actually be considerably magnified, as

illustrated in Fig. 33.

Let us finally also discuss the impact of CP violation measurements on the allowed region in the
σs–κs plane in our 2010 scenario. To this end, we consider two cases:

i) (sinφs)exp = −0.04± 0.02, in accordance with the SM;
ii) (sinφs)exp = −0.20± 0.02, in accordance with the NP scenario of Fig. 33.

The measurement of sinφs implies a twofold solution for φs and, therefore, also for φNP
s . However, this

ambiguity can be resolved through the determination of the sign of cosφs, which can be fixed through
the strategies proposed in Ref. [117]. In Fig. 34, we show the situation in the σs–κs plane4. The dotted
lines refer to negative values of cosφs. Assuming that these are experimentally excluded, we are left with
strongly restricted regions, although κs could still take sizeable ranges, with upper bounds κs ≈ 0.5. In
the SM-like scenario, values of σs around 180◦ would arise, i.e., a NP contribution with a sign opposite
to the SM. However, due to the absence of new CP-violating effects, the accuracy of lattice results would
have to be considerably improved in order to allow the extraction of a value of κs incompatible with 0.
On the other hand, a measurement of (sinφs)exp = −0.20 ± 0.02 would give a NP signal at the 10σ

level, with κs & 0.2. A determination of κs with 10% uncertainty requires fBsB̂
1/2
Bs

with 5% accuracy,
i.e., the corresponding error in (123) has to be reduced by a factor of 2.

Since our discussion does not refer to a specific model of NP, the question arises whether there are
actually extensions of the SM that still allow large CP-violating NP phases in B 0

s–B̄0
s mixing. This is in

fact the case, also after the measurement of ∆Ms. In Ref. [101], where also a comprehensive guide to
the relevant literature can be found, this exciting feature was illustrated by considering models with an
extra Z ′ boson and SUSY scenarios with an approximate alignment of quark and squark masses.

Let us now continue our discussion of the Bs-meson system by having a closer look at other
benchmark processes.

4The closed lines agree with those shown in the right panel of Fig. 31, as our 2010 scenario is based on the (HP+JL)QCD
lattice results.
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Fig. 35: Feynman diagrams contributing to B0
q → Dqūq and B̄0

q → Dqūq decays

Fig. 36: Interference effects between B0
q → Dqūq and B̄0

q → Dqūq decays

10.3 Bs → D±s K
∓ and Bd → D±π∓

The decays Bs → D±s K
∓ [249] and Bd → D±π∓ [250] can be treated on the same theoretical basis,

and provide new strategies to determine γ [90]. Following this paper, we write these modes, which are
pure ‘tree’ decays according to the classification of Section 3.3.1, generically as Bq → Dqūq. As can
be seen from the Feynman diagrams in Fig. 35, their characteristic feature is that both a B 0

q and a B̄0
q

meson may decay into the same final state Dqūq. Consequently, as illustrated in Fig. 36, interference
effects between B0

q–B̄0
q mixing and decay processes arise, which allow us to probe the weak phase φq+γ

through measurements of the corresponding time-dependent decay rates.

In the case of q = s, i.e.,Ds ∈ {D+
s , D

∗+
s , ...} and us ∈ {K+,K∗+, ...}, these interference effects

are governed by a hadronic parameter Xse
iδs ∝ Rb ≈ 0.4, where Rb ∝ |Vub/Vcb| is the usual UT side,

and hence are large. On the other hand, for q = d, i.e., Dd ∈ {D+, D∗+, ...} and ud ∈ {π+, ρ+, ...}, the
interference effects are described by Xde

iδd ∝ −λ2Rb ≈ −0.02, and hence are tiny. In the following,
we shall only consider Bq → Dquq modes, where at least one of the Dq, ūq states is a pseudoscalar
meson; otherwise a complicated angular analysis has to be performed.

The time-dependent rate asymmetries of these decays take the same form as (152). It is well known
that they allow a theoretically clean determination of φq + γ, where the ‘conventional’ approach works
as follows [249, 250]: if we measure the observables C(Bq → Dqūq) ≡ Cq and C(Bq → D̄quq) ≡ Cq
provided by the cos(∆Mqt) pieces, we may determine the following quantities:

〈Cq〉+ ≡
1

2

[
Cq + Cq

]
= 0, 〈Cq〉− ≡

1

2

[
Cq − Cq

]
=

1−X2
q

1 +X2
q

, (319)

where 〈Cq〉− allows us to extract Xq . However, to this end we have to resolve terms entering at the X 2
q

level. In the case of q = s, we have Xs = O(Rb), implying X2
s = O(0.16), so that this should actually

be possible, though challenging. On the other hand, Xd = O(−λ2Rb) is doubly Cabibbo-suppressed.
Although it should be possible to resolve terms of O(Xd), this will be impossible for the vanishingly
smallX2

d = O(0.0004) terms, so that other approaches to fixXd are required [250]. For the extraction of
φq+γ, the mixing-induced observables S(Bq → Dqūq) ≡ Sq and S(Bq → D̄quq) ≡ Sq associated with
the sin(∆Mqt) terms of the time-dependent rate asymmetry must be measured. In analogy to (319), it is
convenient to introduce observable combinations 〈Sq〉±. Assuming that Xq is known, we may consider
the quantities
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s+ ≡ (−1)L

[
1 +X2

q

2Xq

]
〈Sq〉+ = + cos δq sin(φq + γ) (320)

s− ≡ (−1)L

[
1 +X2

q

2Xq

]
〈Sq〉− = − sin δq cos(φq + γ) , (321)

which yield

sin2(φq + γ) =
1

2

[
(1 + s2

+ − s2
−)±

√
(1 + s2

+ − s2
−)2 − 4s2

+

]
, (322)

implying an eightfold solution for φq+γ. If we fix the sign of cos δq through factorization, still a fourfold
discrete ambiguity is left, which is limiting the power for the search of NP significantly. Note that this
assumption allows us also to fix the sign of sin(φq + γ) through 〈Sq〉+. To this end, the factor (−1)L,
where L is the Dqūq angular momentum, has to be properly taken into account. This is a crucial issue
for the extraction of the sign of sin(φd + γ) from Bd → D∗±π∓ decays.

Let us now discuss new strategies to explore CP violation through Bq → Dqūq modes, fol-
lowing Ref. [90]. If ∆Γs is sizeable, the ‘untagged’ rates introduced in (149) allow us to measure
A∆Γ(Bs → Dsūs) ≡ A∆Γs and A∆Γ(Bs → D̄sus) ≡ A∆Γs . Introducing, in analogy to (319), observ-
able combinations 〈A∆Γs〉±, we may derive the relations

tan(φs + γ) = −
[ 〈Ss〉+
〈A∆Γs〉+

]
= +

[〈A∆Γs〉−
〈Ss〉−

]
, (323)

which allow an unambiguous extraction of φs + γ if we fix the sign of cos δq through factorization.
Another important advantage of (323) is that we do not have to rely on O(X 2

s ) terms, as 〈Ss〉± and
〈A∆Γs〉± are proportional to Xs. On the other hand, a sizeable value of ∆Γs is of course needed.

If we keep the hadronic quantities Xq and δq as ‘unknown’, free parameters in the expressions for
the 〈Sq〉±, we may obtain bounds on φq + γ from

| sin(φq + γ)| ≥ |〈Sq〉+| , | cos(φq + γ)| ≥ |〈Sq〉−| . (324)

If Xq is known, stronger constraints are implied by

| sin(φq + γ)| ≥ |s+| , | cos(φq + γ)| ≥ |s−| . (325)

Once s+ and s− are known, we may of course determine φq + γ through the ‘conventional’ approach,
using (322). However, the bounds following from (325) provide essentially the same information and are
much simpler to implement. Moreover, as discussed in detail in Ref. [90] for several examples within the
SM, the bounds following from the Bs and Bd modes may be highly complementary, thereby providing
particularly narrow, theoretically clean ranges for γ.

Let us now further exploit the complementarity between theB0
s → D

(∗)+
s K− andB0

d → D(∗)+π−

processes. Looking at the corresponding decay topologies, we see that these channels are related to each
other through an interchange of all down and strange quarks. Consequently, applying again the U -spin
symmetry implies as = ad and δs = δd, where as ≡ Xs/Rb and ad ≡ −Xd/(λ

2Rb) are the ratios of the
hadronic matrix elements entering Xs and Xd, respectively. There are various possibilities to implement
these relations [90]. A particularly simple picture arises if we assume that as = ad and δs = δd, which
yields

tan γ = −
[

sinφd − S sinφs
cosφd − S cosφs

]
φs=0◦

= −
[

sinφd
cosφd − S

]
. (326)

63

FLAVOUR PHYSICS AND CP VIOLATION

165



Here we have introduced

S ≡ −R
[〈Sd〉+
〈Ss〉+

]
(327)

with

R ≡
(

1− λ2

λ2

)[
1

1 +X2
s

]
, (328)

where R can be fixed with the help of untagged Bs rates through

R =

(
fK
fπ

)2
[

Γ(B̄0
s → D

(∗)+
s π−) + Γ(B0

s → D
(∗)−
s π+)

〈Γ(Bs → D
(∗)+
s K−)〉+ 〈Γ(Bs → D

(∗)−
s K+)〉

]
. (329)

Alternatively, we can only assume that δs = δd or that as = ad [90]. An important feature of this
strategy is that it allows us to extract an unambiguous value of γ, which is crucial for the search of NP;
first studies for LHCb are very promising in this respect [251]. Another advantage with respect to the
‘conventional’ approach is that X2

q terms have not to be resolved experimentally. In particular, Xd does
not have to be fixed, and Xs may only enter through a 1+X2

s correction, which can straightforwardly be
determined through untagged Bs rate measurements. In the most refined implementation of this strategy,
the measurement of Xd/Xs would only be interesting for the inclusion of U -spin-breaking corrections
in ad/as. Moreover, we may obtain interesting insights into hadron dynamics and U -spin breaking.

The colour-suppressed counterparts of the Bq → Dqūq modes are also interesting for the explo-
ration of CP violation. In the case of the Bd → DKS(L), Bs → Dη(′), Dφ, ... modes, the interference
effects between B0

q–B̄0
q mixing and decay processes are governed by xfse

iδfs ∝ Rb. If we consider
the CP eigenstates D± of the neutral D-meson system, we obtain additional interference effects at the
amplitude level, which involve γ, and may introduce the following ‘untagged’ rate asymmetry [153]:

Γfs+− ≡
〈Γ(Bq → D+fs)〉 − 〈Γ(Bq → D−fs)〉
〈Γ(Bq → D+fs)〉+ 〈Γ(Bq → D−fs)〉

, (330)

which allows us to constrain γ through the relation

| cos γ| ≥ |Γfs+−| . (331)

Moreover, if we complement Γfs+− with

〈Sfs〉± ≡
1

2

[
Sfs+ ± Sfs−

]
, (332)

where Sfs± ≡ Amix
CP (Bq → D±fs), we may derive the following simple but exact relation:

tan γ cosφq =

[
ηfs〈Sfs〉+

Γfs+−

]
+ [ηfs〈Sfs〉− − sinφq] , (333)

with ηfs ≡ (−1)LηfsCP. This expression allows a conceptually simple, theoretically clean and essentially
unambiguous determination of γ [153]. Since the interference effects are governed by the tiny parameter
xfde

iδfd ∝ −λ2Rb in the case of Bs → D±KS(L), Bd → D±π0, D±ρ0, ..., these modes are not as
interesting for the extraction of γ. However, they provide the relation

ηfd〈Sfd〉− = sinφq +O(x2
fd

) = sinφq +O(4× 10−4) , (334)

allowing very interesting determinations of φq with theoretical accuracies one order of magnitude higher
than those of the conventional B0

d → J/ψKS and B0
s → J/ψφ approaches [153]. As we pointed

out in Section 7.1, these measurements would be very interesting in view of the new world average of
(sin 2β)ψKS

.
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10.4 B0
s → K+K− and B0

d → π+π−

The decay B0
s → K+K− is a b̄ → s̄ transition, and involves tree and penguin amplitudes, as the

B0
d → π+π− mode [167]. However, because of the different CKM structure, the latter topologies

actually play the dominant role in the B0
s → K+K− channel. In analogy to (208), we may write

A(B0
s → K+K−) =

√
ε C′

[
eiγ +

1

ε
d′eiθ

′
]
, (335)

where ε was introduced in (221), and the CP-conserving hadronic parameters C ′ and d′eiθ
′

correspond to
C and deiθ , respectively. The corresponding observables then take the following generic form:

Adir
CP(Bs → K+K−) = G′1(d′, θ′; γ) (336)

Amix
CP (Bs → K+K−) = G′2(d′, θ′; γ, φs) , (337)

in analogy to the expressions for the CP-violating B0
d → π+π− asymmetries in (213) and (214). Since

φd = (43.4 ± 2.5)◦ is already known (see Section 7.1) and φs is negligibly small in the SM—or can
be determined through B0

s → J/ψφ should CP-violating NP contributions to B0
s–B̄0

s mixing make
it sizeable—we may convert the measured values of Adir

CP(Bd → π+π−), Amix
CP (Bd → π+π−) and

Adir
CP(Bs → K+K−), Amix

CP (Bs → K+K−) into theoretically clean contours in the γ–d and γ–d′

planes, respectively. In Fig. 37, we show these contours for an example, which corresponds to the central
values of (217) and (218) with the hadronic parameters (d, θ) in (230).

As can be seen in Fig. 26, the decay B0
d → π+π− is actually related to B0

s → K+K− through
the interchange of all down and strange quarks. Consequently, each decay topology contributing to
B0
d → π+π− has a counterpart in B0

s → K+K−, and the corresponding hadronic parameters can be
related to each other with the help of the U -spin flavour symmetry of strong interactions, implying the
following relations [167]:

d′ = d , θ′ = θ . (338)

Applying the former, we may extract γ and d through the intersections of the theoretically clean γ–
d and γ–d′ contours. As discussed in Ref. [167], it is also possible to resolve straightforwardly the
twofold ambiguity for (γ, d) arising in Fig. 37, thereby leaving us with the ‘true’ solution of γ = 74◦

in this example. Moreover, we may determine θ and θ ′, which allow an interesting internal consistency
check of the second U -spin relation in (338). An alternative avenue is provided if we eliminate d and
d′ through the CP-violating Bd → π+π− and Bs → K+K− observables, respectively, and then extract
these parameters and γ through the U -spin relation θ ′ = θ.

As illustrated in Fig. 38, this strategy is very promising from an experimental point of view for
the LHCb experiment, where an accuracy for γ of a few degrees can be achieved [147, 232, 252]. As
far as possible U -spin-breaking corrections to d′ = d are concerned, they enter the determination of γ
through a relative shift of the γ–d and γ–d′ contours; their impact on the extracted value of γ therefore
depends on the form of these curves, which is fixed through the measured observables. In the examples
discussed in Refs. [119, 167], as well as in the one shown in Fig. 37, the extracted value of γ would be
very stable under such effects. Let us also note that the U -spin relations in (338) are particularly robust
since they involve only ratios of hadronic amplitudes, where all SU(3)-breaking decay constants and
form factors cancel in factorization and also chirally enhanced terms would not lead to U -spin-breaking
corrections [167]. On the other hand, the ratio |C ′/C|, which equals 1 in the strict U -spin limit and enters
the U -spin relation

Amix
CP (Bs → K+K−)

Adir
CP(Bd → π+π−)

= −
∣∣∣∣
C′
C

∣∣∣∣
2 [ BR(Bd → π+π−)

BR(Bs → K+K−)

]
τBs
τBd

, (339)

is affected by U -spin-breaking effects within factorization. An estimate of the corresponding form factors
was recently performed in Ref. [253] with the help of QCD sum rules, which is an important ingredient
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Fig. 37: The contours in the γ–d(′) plane for an example with d = d′ = 0.52, θ = θ′ = 146◦, φd = 43.4◦,
φs = −2◦, γ = 74◦, which corresponds to the CP asymmetries Adir

CP(Bd → π+π−) = −0.37 and
Amix

CP (Bd → π+π−) = +0.50 (see Sections 7.3 and 8.2), as well as Adir
CP(Bs → K+K−) = +0.12 and

Amix
CP (Bs → K+K−) = −0.19.

Fig. 38: Experimental LHCb feasibility study for the contours in the γ–d(′) plane, as discussed in Ref. [252]

for a SM prediction of the CP-averaged Bs → K+K− branching ratio [83]. Following these lines, the
prediction

BR(Bs → K+K−) = (35 ± 7)× 10−6 (340)

was obtained in Refs. [83, 200] from the CP-averaged Bd → π∓K± branching ratio. On the other
hand, the CDF Collaboration announced recently the observation of the Bs → K+K− channel, with the
following branching ratio [254]:

BR(Bs → K+K−) = (33 ± 5.7± 6.7) × 10−6 , (341)

which is in excellent accordance with (340). For other recent analyses of the Bs → K+K− decay, see
Refs. [255, 256].

In addition to the Bs → K+K−, Bd → π+π− and Bs → D±s K
∓, Bd → D±π∓ strategies dis-

cussed above, other U -spin methods for the extraction of γ were also proposed, using Bs(d) → J/ψKS

or Bd(s) → D+
d(s)D

−
d(s) [142], Bd(s) → K0(∗)K̄0(∗) [119, 244], B(s) → πK [257], or Bs(d) → J/ψη

modes [258]. In a very recent paper [259], two-body decays of charged B mesons were also considered.
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Fig. 39: Feynman diagrams contributing to B0
q → µ+µ− (q ∈ {s, d})

10.5 B0
s → µ+µ− andB0

d → µ+µ−

Let us finally have a closer look at the rare decay B0
s → µ+µ−, which we already encountered briefly in

Section 8.4. As can be seen in Fig. 39, this decay and its Bd-meson counterpart B0
d → µ+µ− originate

from Z0-penguin and box diagrams in the SM. The corresponding low-energy effective Hamiltonian is
given as follows [67]:

Heff = −GF√
2

[
α

2π sin2 ΘW

]
V ∗tbVtqηY Y0(xt)(b̄q)V−A(µ̄µ)V−A + h.c. , (342)

where α denotes the QED coupling and ΘW is the Weinberg angle. The short-distance physics is de-
scribed by Y (xt) ≡ ηY Y0(xt), where ηY = 1.012 is a perturbative QCD correction [260]– [262], and the
Inami–Lim function Y0(xt) describes the top-quark mass dependence. We observe that only the matrix
element 〈0|(b̄q)V−A|B0

q 〉 is required. Since here the vector-current piece vanishes, as the B0
q is a pseu-

doscalar meson, this matrix element is simply given by the decay constant fBq . Consequently, we arrive
at a very favourable situation with respect to the hadronic matrix elements. Since, moreover, NLO QCD
corrections were calculated, and long-distance contributions are expected to play a negligible role [260],
the B0

q → µ+µ− modes belong to the cleanest rare B decays. The SM branching ratios can then be
written in the following compact form [37]:

BR(Bs → µ+µ−) = 4.1 × 10−9

×
[

fBs
0.24 GeV

]2 [ |Vts|
0.040

]2 [ τBs
1.5 ps

] [ mt

167 GeV

]3.12
(343)

BR(Bd → µ+µ−) = 1.1× 10−10

×
[

fBd
0.20 GeV

]2 [ |Vtd|
0.008

]2 [ τBd
1.5 ps

] [ mt

167 GeV

]3.12
. (344)

The most recent upper bounds (95% C.L.) from the CDF Collaboration read as follows [263]:

BR(Bs → µ+µ−) < 1.0× 10−7, BR(Bd → µ+µ−) < 3.0 × 10−8 , (345)

while the D0 Collaboration finds the following (95% C.L.) upper limit [264]:

BR(Bs → µ+µ−) < 3.7× 10−7 . (346)

Using again relation (310) and neglecting the tiny corrections entering at the λ2 level, we find that
the measurement of the ratio

BR(Bd → µ+µ−)

BR(Bs → µ+µ−)
=

[
τBd
τBs

] [
MBd

MBs

] [
fBd
fBs

]2 ∣∣∣∣
Vtd
Vts

∣∣∣∣
2

(347)

would allow an extraction of the UT side Rt. Since the short-distance function Y cancels, this deter-
mination works not only in the SM, but also in the NP scenarios with MFV [137]. This strategy is
complementary to that offered by the ratio ∆Ms/∆Md discussed in the context of (306). If we look
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at this expression in the MFV case, where ρs/ρd = 1, and (347), we see that the following relation is
implied [265]:

BR(Bs → µ+µ−)

BR(Bd → µ+µ−)
=

[
τBs
τBd

][
B̂Bd
B̂Bs

][
∆Ms

∆Md

]
, (348)

which holds again in the context of MFV models, including the SM. Here the advantage is that the
dependence on (fBd/fBs)

2 cancels. Moreover, we may also use the data for the mass differences ∆Mq

to reduce the hadronic uncertainties of the SM predictions of the Bq → µ+µ− branching ratios [265]:

BR(Bs → µ+µ−) = (3.35 ± 0.32) ××10−9 (349)

BR(Bd → µ+µ−) = (1.03 ± 0.09) × 10−10 , (350)

where (349) is another application of the recent ∆Ms measurement at the Tevatron [237].

The current experimental upper bounds in (345) and (346) are still about two orders of magnitude
away from these numbers. Consequently, should the Bq → µ+µ− decays be governed by their SM
contributions, we could only hope to observe them at the LHC [147]. On the other hand, since the
Bq → µ+µ− transitions originate from FCNC processes, they are sensitive probes of NP. In particular,
the branching ratios may be dramatically enhanced in specific NP (SUSY) scenarios, as was recently
reviewed in Ref. [118]. Should this actually be the case, these decays may already be seen at Run II of
the Tevatron, and the e+e− B factories could observe Bd → µ+µ−. Let us finally emphasize that the
experimental bounds on Bs → µ+µ− can also be converted into bounds on NP parameters in specific
scenarios. In the context of the constrained minimal supersymmetric extension of the SM (CMSSM) with
universal scalar masses, such constraints were recently critically discussed by the authors of Ref. [266].

11 Conclusions and outlook
CP violation is now well established in the B-meson system, thereby complementing the neutral K-
meson system, where this phenomenon was discovered more than 40 years ago. The data of the e+e−

B factories have provided valuable insights into the physics of strong and weak interactions. Concern-
ing the former aspect, which is sometimes only considered as a by-product, the data give us important
evidence for large non-factorizable effects in non-leptonic B-decays, so that the challenge for a reliable
theoretical description within dynamical QCD approaches remains, despite interesting recent progress.
As far as the latter aspect is concerned, the description of CP violation through the KM mechanism has
successfully passed its first experimental tests, in particular through the comparison between the mea-
surement of sin 2β with the help of B0

d → J/ψKS and the CKM fits. However, the most recent average
for (sin 2β)ψKS

is now somewhat on the lower side, and there are a couple of puzzles in the B-factory
data. It will be very interesting to monitor these effects, which could be first hints for physics beyond the
SM, as the data improve. Moreover, it is crucial to refine the corresponding theoretical analyses further,
to have a critical look at the underlying working assumptions and to check them through independent
tests, and to explore correlations with other flavour probes.

Despite this impressive progress, there are still regions of the B-physics landscape left that are
essentially unexplored. For instance, b → d penguin processes are now entering the stage, since lower
bounds for the corresponding branching ratios that can be derived in the SM turn out to be very close
to the corresponding experimental upper limits. Indeed, we have now evidence for the Bd → K0K̄0

and B± → K±K channels, and the first signals for the radiative B → ργ transitions were reported,
representing one of the hot topics of the summer of 2005. These modes have now to be explored in much
more detail, and several other decays are waiting to be observed.

Another very interesting aspect of future studies is the Bs-meson system. Although the mass
difference ∆Ms was measured in the spring of 2006 at the Tevatron, many features of Bs physics are
still essentially unexplored. Concerning the measurement of ∆Ms, NP may actually be hiding in this
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quantity, but is currently obscured by parameter uncertainties. The smoking-gun signal for NP in B 0
s–B̄0

s

mixing would be the observation of sizeable CP violation inB0
s → J/ψφ and similar decays. Since there

are various specific extensions of the SM where such effects arise (also when taking the ∆Ms constraints
into account), we may hope that the LHC will detect them. Moreover, the Bs-meson system allows
several determinations of the angle γ of the UT in an essentially unambiguous way, which are another
key ingredient for the search of NP, and offers further tests of the SM through strongly suppressed rare
decays. After new results from Run II of the Tevatron, the promising physics potential of the Bs-meson
system can be fully exploited at the LHC, in particular by the LHCb experiment.

These studies can be nicely complemented through the kaon system, which governed the stage of
CP violation for more than 35 years. The future lies now in rare decays, in particular on the K+ →
π+νν̄ and KL → π0νν̄ modes; there is a proposal to measure the former channel at the CERN SPS,
and efforts to explore the latter at KEK/J-PARC in Japan. Furthermore, flavour physics offers several
other exciting topics. Important examples are top-quark physics, the D-meson system, the anomalous
magnetic moment of the muon, electric dipole moments and flavour violation in the charged lepton and
neutrino sectors.

The established neutrino oscillations as well as the evidence for dark matter and the baryon asym-
metry of the Universe tell us that the SM is incomplete, and specific extensions usually contain also new
sources of flavour and CP violation, which may manifest themselves at the flavour factories. Fortunately,
the LHC is expected to go into operation in the autumn of 2007. This new accelerator will provide in-
sights into electroweak symmetry breaking and, we hope, also give us direct evidence for physics beyond
the SM through the production and subsequent decays of NP particles in the ATLAS and CMS detectors.
It is obvious that there should be a very fruitful interplay between these ‘direct’ studies of NP, and the
‘indirect’ information provided by flavour physics5. I have no doubt that an exciting future is ahead of
us!
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