VOLUME 91, NUMBER 16

PHYSICAL REVIEW LETTERS

week ending
17 OCTOBER 2003

The ¢t + n + n System and SH
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The one-proton knockout channel from °He (240 MeV/u) impinging on a carbon target has been
investigated. The triton fragments originating from this channel were detected in coincidence with the
two neutrons. A broad structure, peaked at 3 MeV above the 7 + 2n threshold, is observed in the ¢ +
n + n-relative energy spectrum. It is shown that this structure is mainly due to a /™ = 1/27 resonance
as expected for the °H ground state, and from the observed angular and energy correlations, being used
for the first time in °H studies, that the neutrons to a large extent occupy the p shell.
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There is at present a lively debate concerning the ex-
istence of "H as a narrow low-energy resonance state. The
results presented in this Letter give—for the first time—
access to internal correlations in the SH system. This new
and, as we feel, decisive information may be used to settle
this important problem.

The structure of an unbound heavy hydrogen system
(A = 4) is expected to be similar to that of neutron-rich
helium isotopes, namely, an inert core surrounded by
valence neutrons [1-3]. In this Letter we discuss the ¢ +
n + n system relevant for "H. The experimental studies of
SH started four decades ago with evidence that it is
B-unstable with a half-life of about 100 ms [4]. Since
then, the quest for SH has been undertaken in many
laboratories, and today the consensus is that a bound SH
does not exist. However, this far, experiments aiming at
an identification of >H have led to contradictory results
(see the compilation [5] and Refs. [6—8]).

The main experimental method for the identification of
the unbound isotopes in the experiments mentioned above
is the missing-mass method combined with an analysis
based on deviations of the measured spectra from phase
space evaluations. However, this method should be used
with caution at low beam energies when many particles in
the final state are close in momentum space and thus the
phase space may strongly be modified by their final-state
interaction.

At high beam energies, the reaction mechanism is
much simpler than at low energies. The nucleon knockout
channel dominates, and by selecting a structurally close
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projectile, resonances observed by the method of invari-
ant mass measurement are almost free from background
stemming from other reaction mechanisms [9]. Our ap-
proach is to use the one-proton knockout reaction from
®He at high bombarding energy and construct the relative
energy spectrum in the ¢ + n + n center of mass system
(E,nn)- The interpretation of the data is done in the frame-
work of an analysis using a restricted set of hyperspheri-
cal harmonics (HH) [10,11]. This, in order to obtain the
relative weights of the predominant partial waves, and
further to assign the spin and parity to the structure seen
in the energy spectrum. A detailed account, including
discussions on background corrections and misidentified
one-neutron events, is presented in [12].

The radioactive °He beam was produced in a fragmen-
tation reaction of a primary '80 beam (340 MeV/u)
impinging on a 8 g/cm? Be production target, delivered
by the Schwerionensynchrotron (SIS) at the Gesellschaft
fiir Schwerionenforschung mbH (GSI) in Darmstadt,
Germany. The separation of ®He from the reaction prod-
ucts was performed with the fragment separator (FRS) by
magnetic rigidity analysis. The secondary ®He beam
(240 MeV/u) was then directed towards a carbon reac-
tion target (thickness 1.87 g/cm?) situated in front of the
large-gap dipole magnet spectrometer ALADIN and the
large area neutron detector, LAND [13]. The coincident
tritons and neutrons from the reaction were identified and
their momenta measured. Details about the setup can be
found in Refs. [12,14]. The measured distributions have
been corrected for instrumental effects such as restricted

© 2003 The American Physical Society 162504-1



VOLUME 91, NUMBER 16

PHYSICAL REVIEW LETTERS

week ending
17 OCTOBER 2003

acceptance and efficiency. The momentum distributions
of the tritons and neutrons and the reconstructed momen-
tum of SH (¢ + n + n) reveal a peak centered at a value
corresponding to the projectile velocity in longitudinal
direction. This is an important observation showing that
the proton knockout just cut out a proton from °He with
very low momentum transfer to the r + n + n system.
The measured momenta of the triton and the neutrons
were transformed into the projectile rest frame by using
the appropriate relativistic expressions. In this system the
longitudinal and transverse widths of the momentum
distributions are approximately the same.

The distribution of the total kinetic energy E,,, in the
three-body system equivalent of an invariant mass spec-
trum is shown in Fig. 1. The observed structure exhibits a
width of about 6 MeV (FWHM) with a maximum at about
3 MeV.

Two observations are important for the further analy-
sis; (i) The triton and the two neutrons are found to have
essentially the velocity of the primary ®He beam, and
(i1) the E,,, spectrum shows a structure akin to a reso-
nance. First we discuss possible artifacts that may give a
peak structure in E,,,,,.

(i) The experimental filter—Instrumental effects due to
restricted acceptance or efficiency may have been incor-
rectly accounted for during the analysis resulting in a
distortion of the spectrum. We have therefore in addition
to the ¢ + n + n data, also analyzed the ¢ + n events and
compared the results with the known *H results [12]. We
find in the energy region of interest here an excellent
agreement between the position and width of the “H
resonance with that of previous experiments [5]. The
shape of the E,,, spectrum in thus not due to experimen-
tal distortions.

(ii) Three-body phase space.—A three-body phase
space distribution for >H decay would have an energy
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FIG. 1 (color online). Relative energy spectrum of the ¢ +
n + n system. The experimental data are shown with statistical
uncertainties. The estimated cross section is 30(10) mb. The
solid line is the result of a three-body microscopic calculation
assuming I™ = 1/2% [2]. The dashed black line (iii) represents
an excited ®He resonance and the gray dashed line (iv), a
calculation using a realistic ®He wave function from Ref. [15],
see text.
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dependence ~E?. In the energy region of interest here,
this would not give a peaklike structure.

(iii) ®He resonance decay—We have also checked
whether an excitation of ®°He above the ¢ + 2n + p thresh-
old followed by its decay could mimic this distribution.
Note that the decay products from this channel would
have longitudinal velocities close to the projectile veloc-
ity, similar to the experimental observation. To estimate
the shape of a relative energy spectrum from this possible
channel we use

dN jEmax FE%nn X — Etnn
dEtnn E.., (Er + Q - X)Z + F2/4

dx, (1)

where E, and T are the ®He resonance energy and width,
respectively. E.,, is the available energy in the system.
The first resonance above the ¢ + 2n + p threshold in °He
from Ref. [5] (Q = —20.8 MeV, E, =233 MeV, I' =
14.8 MeV) was used in the calculation. The shape of the
calculated distribution is shown in Fig. 1 as a black
dashed line (iii). It deviates strongly from the experimen-
tal distribution.

(iv) Initial-state effect—Finally, we checked whether
correlations arising solely from the ®He ground-state
wave function (i.e., without involving a real *H reso-
nance), could mimic the observed spectrum. We used
the result from Ref. [15] which is shown in Fig. 1 as a
gray dashed line (iv). We find that the initial-state corre-
lations are not strong enough to reproduce the experimen-
tal spectrum.

The conclusion is that the observed spectrum repre-
sents a resonance. However, a conventional analysis using
a Breit-Wigner expression is not appropriate to analyze a
broad few-body resonance and the maximum observed at
3 MeV cannot be identified with the resonance position in
a straightforward way. The spectrum was therefore com-
pared with calculations made within a strict three-body
t+n+n dynamics [2], with 7 =1/2%, E. =
2.5-3.0 MeV, and I' =34 MeV. As can be seen in
Fig. 1, good agreement is achieved between the experi-
mental data and the calculated distribution with [7 =
1/27, considered to be the YH ground-state configuration
in [2].

To independently confirm the I™ = 1/2" assignment,
an analysis of the energy and angular correlations in the
t + n + n system was performed as follows.

We introduce a set of normalized Jacobi momentum
coordinates:

_ <M12>1/2(P1 P2 >
qp2 = 5 — =
L)
_ <M312>1/Z<P3 P tP )
qz-12 = T —
ms

nmy + my
where m;, 12, M3-12, and p;, (i = 1,2, 3) are masses,
reduced masses, and momenta of the particles in the
projectile rest frame, respectively. Two different Jacobi
coordinates are used, A and B. In A indices 2,3 are
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related to neutrons and 1 to the triton, while in B 1, 2 are

related to the neutrons and 3 the triton. The total kinetic

energy in the ¢ + n + n system is then equal to E,,, =
2 2

912 T 45-12-

The three-body configuration is then determined by the
angle ¥ between the Jacobi momenta q;, and qz_i,, by
the total energy of the three-body system E,,, and by
the energy shared by a pair of particles & = g3,/E,,.
Finally, the energy and angular correlations in the ¢ +
n + n system can be described by a probability distribu-
tion ‘W(e, ), representing the probability of finding the
system in a configuration in vicinity of definite values &
and ¥.

This distribution was determined from the experimen-
tal data and its projections on angular and energy axis in
the two different Jacobi coordinates are shown in Fig. 2
where (i) and (iii) are shown in Jacobi configuration A
(n — tn) and, (ii) and (iv) in configuration B (¢t — nn). The
distribution W(e, ) was constructed from events re-
stricted to the vicinity of the peak position (E,,, ~
1-5 MeV) in the 3H relative energy spectrum.

In order to determine the weights of the different
partial waves in the ¢ + n + n system from the experi-
mental data, the method proposed in Ref. [11] was used.
The method is based on a fitting procedure using the HH
series expansion of the amplitudes of the three-body
decay.

Fitting the data we used an approximation excluding
the core spin and with K = 0,2 and lx(y) =0, 1. These
components exhaust 97% of the norm of the *He ground-
state wave function [16]. The expansion is characterized
by a set of complex amplitudes Cgy;,; for the respective
harmonics (namely, Cyyp9, Co200» Co211> and Ci,11), Where
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FIG. 2 (color online). Projections of the probability distribu-
tion W(e, @) in two different Jacobi coordinate systems.
(i),(iii) are shown in Jacobi configuration A (n — tn), (ii),(iv)
in configuration B (t — nn). The experimental data are shown
with statistical uncertainties. The solid lines represent the fit to
the distributions on the basis of HH expansion after convolu-
tion with the detector resolution.
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S is the total spin of the two neutrons, K the hypermo-
mentum, and I, are the angular momenta connected
with the q;, and q;_;, coordinates, respectively. Note,
that the antisymmetrization of the wave function with
respect to the two neutrons results in Cy,1; = 0 in Jacobi
system B.

The weights of the different partial waves were ex-
tracted by simultaneously fitting the four distributions
shown in Fig. 2 taking the experimental resolution into
account.

The result is shown in Table I, and its correspondence
with the experimental data is demonstrated in Fig. 2.

The resulting probability distribution W(e, ) in
Jacobi set B without corrections for the experimental
resolution is shown in Fig. 3.

The configurations with Cyggy and Coyqg directly result
in a total spin I™ = 1/2%. Some portion of the Ciy;
component can also be assigned to this spin and parity.

From the weights given in Table I, the conclusion is
thus that the I” = 1/2" state in the H system is popu-
lated with a probability of larger than 63(4)%. Further, a
transformation to Jacobi system A, provided by Raynal-
Revai coefficients [17], results in about 80% probability of
a configuration with two neutrons in the p shell [12].

It should be noted that the weight of the configuration
with K = 0 in >H is significantly larger than that calcu-
lated for ®He. The increase of this component is expected
due to the smaller three-body centrifugal barrier deter-
mined by K in this decay channel. Further, the increase of
the K = 0O contribution can be attributed to the n-n inter-
action in the final state, strongly distinguished in
Fig. 2(ii),(iii). The effects of the n-n interaction are well
pronounced even though the experimental phase differ-
ence B results in a decrease of the interference term
compared with the *He calculation. Compared to SHe, the
component with § =1 and K = 2 is also larger in the
experimental SH data. However, as mentioned above, it
cannot be compared in a straightforward way but the
difference might be attributed to the ¢ — n final-state
interaction.

For jj coupling, the S = 1 component, which is di-
rectly related to Cyyyy, is to about 33% in the pure (ps/,)*
configuration. The transformation of the experimental
data from the LS coupling scheme used in the current
analysis into the jj coupling scheme remains ambiguous
as far as the phase of C;,;; cannot be determined from the

TABLE I Weights |Csk;; |* of the different partial waves
(given in percent), obtained from the experimental data in
Jacobi set B. The theoretical calculations for the ®He ground-
state wave function are from Ref. [16]. The phase differences
(B) between Cyggp and Cypqy are given in degrees.

Config. | Coooo > | Conoo 1> | Craii > Boaoo  Reference
SH 18(3) 45(2) 37(4) 61(2) Pres. exp.
%He 4 78 15 0 [16] theo.
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FIG. 3. Two dimensional plot of the probability distribution
W(e, cos(1)), extracted using the series expansion of the final
state wave function into the hyperspherical functions with
amplitudes adjusted to fit the experimental data. The inset
sketches the used coordinate system B.

experimental data. A transformation adopting the phase
shift from the °He calculation [16] would result in about
80% of the weight of a configuration with the two neu-
trons in p3, shell, and only 1% would be left for a
possible p/,-shell admixture.

Thus, a good resemblance between the *He wave func-
tion and the structure of the ¢t + n + n system is found,
and the observed differences are qualitatively explained
by the decay processes of the preformed *H.

The probability distribution "W (e, %) shown in Fig. 3
reveals several features which are not seen in the projec-
tions in Fig. 2. The angular distributions are almost flat
when the relative energy & between the two neutrons is
close either to O or to 1. In contrast it behaves almost as
sin>® when & is close to 0.5. This is connected with the
fact that the contribution from the K =2, S = 0 har-
monic is strongly suppressed in this region and the har-
monic with K = 2, § = 1 predominantly determines the
correlations. Further, the probability distribution W
along the fractional energy axis (&) reveals two distinct
peaks clearly seen in the vicinity of % = 0 and 180°. The
peaks are described mainly by the interference of the
harmonics with K =2, S=0 and K=0, §$=0 and
reflects the dynamical correlations which have been dis-
cussed for the ®He wave function in microscopic calcu-
lations [16]. In the conjugated spatial coordinates the two
measured peaks correspond to the di-neutron configura-
tion with the two neutrons forming a cluster on one side of
the triton and to the cigarlike configuration where the
neutrons are separated from each other by the triton core.

We conclude the following: The reconstructed >H spec-
trum from ®He proton knockout is rather different from
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the sharp peak reported in Refs. [6,8] but in fair agree-
ment with the results presented in Refs. [7,18]. It is shown
that the observed shape cannot be attributed to back-
ground processes. Furthermore, it agrees with calcula-
tions made within strict three-body ¢ + n + n dynamics
[2] assuming an I” = 1/2% ground state of *H only.
The experimental three-body correlations are analyzed
in a model independent way with the result, that the
apparent resonance with both neutrons in the p shell
has spin and parity /™ = 1/2%. Thus its structure re-
sembles that of ‘He.
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