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E-mail: Are.Raklev@cern.ch

Ola K. Øye

Department of Physics and Technology, University of Bergen, N-5007 Bergen, Norway

E-mail: oye@ift.uib.no

Abstract: We investigate the measurement of supersymmetric particle masses at the LHC

in gravitino dark matter (GDM) scenarios where the next-to-lightest supersymmetric part-

ner (NLSP) is the lighter scalar tau, or stau, and is stable on the scale of a detector. Such

a massive metastable charged sparticle would have distinctive Time-of-Flight (ToF) and

energy-loss (dE/dx) signatures. We summarise the documented accuracies expected to be

achievable with the ATLAS detector in measurements of the stau mass and its momentum

at the LHC. We then use a fast simulation of an LHC detector to demonstrate techniques

for reconstructing the cascade decays of supersymmetric particles in GDM scenarios, using

a parameterisation of the detector response to staus, taus and jets based on full simulation

results. Supersymmetric pair-production events are selected with high redundancy and

efficiency, and many valuable measurements can be made starting from stau tracks in the

detector. We recalibrate the momenta of taus using transverse-momentum balance, and

use kinematic cuts to select combinations of staus, taus, jets and leptons that exhibit peaks

in invariant masses that correspond to various heavier sparticle species, with errors often

comparable with the jet energy scale uncertainty.
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1. Introduction

One of the main motivations for supersymmetry is the existence of a natural candidate

for cold dark matter (CDM) [1, 2] in models in which R-parity is conserved, thus making

the lightest supersymmetric partner (LSP) stable. Most detector studies of supersym-

metric models have focused on the constrained minimal supersymmetric standard model

(CMSSM), in which the soft supersymmetry-breaking parameters: the gaugino masses

m1/2, the scalar masses m0 and the trilinear parameters A0, are each assumed to be uni-

versal at some high scale, and the LSP is assumed to be the lightest neutralino. With the

precision measurement of the CDM density obtained by combining data from the WMAP

experiment with other cosmological data [3, 4], and taking into account accelerator con-

straints, the CMSSM parameter space has become quite restricted [5]. Collider signatures

of these models typically involve missing energy from escaping neutralinos.

However, there is another plausible CDM candidate in R-conserving supersymmetric

models, namely the supersymmetric partner of the graviton, the gravitino [6–19]. The grav-

itino mass, m3/2, is poorly constrained by accelerator experiments and the astrophysical

and cosmological constraints are very different from those on the neutralino. In gravitino

dark matter (GDM) scenarios the next-to-lightest supersymmetric partner (NLSP) has a

very long lifetime, particularly in gravity-mediated models of supersymmetry breaking, in
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which the gravitino’s couplings to other particles are suppressed by an inverse power of the

Planck mass. In the case of a neutralino NSLP and an arbitrary gravitino mass, the allowed

parameter space of CMSSM is expanded and the classic supersymmetric signature of miss-

ing energy at colliders remains. Here we study instead the intriguing possibility of a charged

NLSP, in particular the case where the NSLP is the lighter stau, τ̃1. In gravity-mediated

models with R conservation, the stau would be stable on the scale of a detector, and every

supersymmetric event would contain a pair of massive metastable charged leptons. Because

of their large mass and low velocities, these would have distinctive Time-of-Flight (ToF)

and energy-loss (dE/dx) signatures. Moreover, most supersymmetric events in such stau

NLSP scenarios also contain a pair of τ leptons as well as energetic jets and possibly other

leptons [20].

In Section 2 we review the properties of three benchmark points for GDM models with

a stau NLSP, which were first proposed in [20]. Subsequently, in Section 3, we summarise

the documented expectations for the ATLAS detector response to the metastable τ̃1 with

limited integrated luminosity, focusing on the accuracy achievable at the LHC in measure-

ments of the stau mass and momentum for these benchmark points, taking into account

trigger information and looking at cuts to reject possible backgrounds. In Section 4 we

use a parametrised fast simulation to investigate the capabilities of ATLAS to measure

the masses of other supersymmetric particles in GDM models by reconstructing super-

symmetric cascade decays. For this we use as building blocks the staus themselves, the

accompanying τ leptons, whose full momenta we can reconstruct using transverse momen-

tum information, hadronic jets and any accompanying charged leptons. In the benchmark

scenario ǫ, with a relatively light spectrum, many different sparticle species may be re-

constructed in this way and their masses measured with a high accuracy. In the heavier

benchmark scenarios ζ, η, fewer sparticles can be reconstructed and with worse accuracy,

even at the fairly high integrated luminosity considered. Finally, in Section 5 we draw our

main conclusions.

2. The GDM Benchmark Points

Three GDM benchmark points with a τ̃1 NLSP, named (ǫ, ζ, η), were proposed in [20].

These were formulated in the framework of minimal supergravity (mSUGRA) models [21],

in which the gravitino mass is fixed equal to the universal soft supersymmetry-breaking

masses of scalar particles at a GUT input scale: m3/2 = m0, and there is a simple relation

between the soft trilinear and bilinear parameters: A0 = B0 + m0. This relationship can

be used to fix the ratio of the Higgs vacuum expectation values tan β from the electroweak

vacuum conditions. Further, the value A0 = (3 −
√

3)m0 found in the Polonyi model

of supersymmetry breaking in a hidden sector is assumed [22]. The resulting allowed

GDM parameter space may be displayed as a region in the (m1/2,m0) plane, subject to

theoretical, phenomenological and cosmological constraints.

This region is restricted, in particular, by the requirement of maintaining the cosmolog-

ical concordance between the values of the baryon-to-entropy ratio inferred from the cosmic

microwave background radiation and from astrophysical light-element abundances, which
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constrain NLSP decays and cut the parameter space down to a wedge in the (m1/2,m0)

plane, throughout which the τ̃1 is the NLSP and is metastable. The shape of this wedge,

taken from [20], is shown in Fig. 1 as the area restricted to lie below the upper black line.

The ǫ benchmark point is a collider-friendly point at low values of m1/2 and m0 sitting

near the apex of the cosmologically-allowed wedge. It features relatively large production

cross sections for supersymmetric events at the LHC, as seen in Table 1. The ζ and η

points represent more challenging scenarios at higher values of m1/2, and hence with lower

cross sections. The point ζ lies at the boundary of the cosmologically-allowed area, where

the NLSP lifetime exceeds 106 s, whereas η is characteristic of models with a relatively

low τ̃1 lifetime ∼ 104 s, shown as the lower black line in Fig. 1, below which additional

constraints due to hadronic interactions in the early universe become important [25–27]. A

recent analysis indicates that earlier constraints were overly restrictive, so that the point η

lies well within the allowed region [23]. None of these three benchmark points give the full

amount of CDM required by WMAP, if one takes into account only the gravitino abun-

dance due to decays of the NLSP after freeze-out. The missing CDM could be provided by

additional gravitino production mechanisms in the early Universe, or other components of

CDM such as axions.

Model σ(τ̃1τ̃
∗
1
) σ(g̃g̃) σ(g̃q̃) σ(q̃q̃) σ(q̃q̃∗) σ(χ̃0

2
χ̃±

1
)

ǫ 0.0242 0.220 1.36 0.755 0.445 0.114

ζ 0.00124 0.000194 0.00391 0.00851 0.00148 0.00229

η 0.00157 0.000195 0.00394 0.00859 0.00150 0.00229

Table 1: The main supersymmetric production cross sections at the LHC, in pb, including Drell-

Yan production of τ̃1 pairs, pair production of strongly-interacting sparticles and associated produc-

tion of neutralinos and charginos, computed to NLO for the GDM benchmarks using Prospino2 [24].

Note that these differ from those given in [20], mainly because of the larger gluino and squark masses

obtained from ISAJET (see below) and partly because we use different parton density functions (see

Section 3).

For the purposes of this paper, the effective masses of sparticles at the electroweak

scale for these benchmark points were calculated by running the universal high-scale masses

down to low scales using ISAJET 7.69 [28]. This gives somewhat larger masses than found

in [20] using the SSARD code, in particular for the strongly-interacting sparticles. Both

the GUT-scale input parameters and the resulting physical masses are given in Table 2

(as in [20], we assume sign(µ) = + and mt = 178 GeV for all three points). The decay

widths and branching ratios of the supersymmetric particles were re-calculated from these

masses using the decay code SDECAY 1.1a [29], except for the three-body decays of the

first- and second-generation right-handed sleptons, which are not included in SDECAY, and

whose decays instead are taken from ISAJET.

One of the most important decays of these GDM models, at least for those within the

reach of the LHC, is that of the right-handed squark: q̃R → qχ̃0
1

with branching ratios of

almost 100% at all three points. This is followed by the decay χ̃0

1
→ τ τ̃1 in a large fraction

of events (92/75/69 % for the three points), so that the decays of two right-handed squarks
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result in the relatively clean final states qqττ τ̃1τ̃1 in a large fraction of the events. From the

branching ratio of this decay chain shown in the left plot of Fig. 1, we see that this signature

is a quite generic feature for the class of GDM models with a τ̃ NLSP. In the experiments it

should be possible to trigger on the pair of high-pT jets produced in the primary q̃R → qχ̃0
1

or the pair of tau jets, and one can then identify the stau by its peculiar signature as a

slow moving muon and measure its mass and momentum to high precision, as discussed in

the next Section. One can also identify the decay products of the τ and reconstruct the

full τ momenta using transverse momentum balance, as we show in Section 4. Thus, these

events can be fully reconstructed and we can make a precise determination of the masses

of all three supersymmetric particles involved in the decay cascade. From this decay chain

one may also be able think of reconstructing the gluino g̃ from its decays into squark-quark

pairs, as we discuss later for benchmark point ǫ.

The decays of left-handed squarks have in general more leptons in the final state,

for example when decaying via χ̃0
2
→ ℓℓ̃L and ℓ̃L → ℓχ̃0

1
, with the total branching ratio

shown in the right plot of Fig. 1. With knowledge of the χ̃0
1

mass, this makes possible the

reconstruction of the left-handed slepton and the χ̃0
2
. However, left-handed squark decays

into charginos are more difficult to use because of neutrinos in the final state, either directly

from the chargino decay, or from the leptonic decay of a W .

Whilst the branching ratio of the left-handed squark is too low to search for events

with two such decay chains, the considerations for triggering, particle identification and

reconstruction are similar to those for the right-handed squark. The appearance of hard

leptons help identify the decay chain, but give additional combinatorial difficulties in par-

ticle identification as we will see in Section 4. Nevertheless, it seems possible to reconstruct

this decay chain, at least for the benchmark point ǫ, as we discuss later.
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Figure 1: Total branching ratios for the q̃R → qχ̃0

1
→ qτ τ̃1 (left) and q̃L → qχ̃0

2
→ qℓℓ̃L → qℓℓχ̃0

1
→

qℓℓτ τ̃1 (right) decay chains in the (m1/2, m0) parameter plane. The solid black lines indicate the

boundary of the cosmologically allowed region of parameter space explored in [20].
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At the ǫ benchmark point the supersymmetric events are dominated by gluino/squark

production followed by cascade decays. For the low cross-section benchmark points ζ and

η, we see from Table 1 that these events make up a smaller fraction of the total number of

supersymmetric events. Here Drell-Yan and associated neutralino and chargino production

become more important. These events feature less jet activity and heavier, slower staus,

and may lead to some trigger problems (see Section 3.2). By considering only the Drell-Yan

cross-section, taking into consideration triggering and reconstruction efficiencies for stau

pair production, one could investigate the reach of the LHC in setting model-independent

exclusion limits on the mass of the stau. However, this would require a very detailed

understanding of the effects of the background cuts suggested in Section 3.3 on SM events

in the limit where the background tends to zero, and is perhaps best left to a full detector

simulation. Here we will instead focus on some interesting decay chains starting from the

associated production. The branching ratio of the decay χ̃±

1
→ τ ν̃τ → τW τ̃1 is shown in

Fig. 2, and is almost identical to that for the decay χ̃0
2
→ ντ ν̃τ → ντWτ̃1, as the decays

differ essentially only by the mass of the tau. If we can reconstruct the W produced in

both cases from its hadronic decay and combine with the correct stau candidate, this gives

us direct access to the tau-sneutrino and, possibly, chargino masses.

Among the lighter particles of Table 2 that one would expect to be copiously produced

at the LHC in the case the ǫ benchmark, we have not yet discussed decays involving the

ℓ̃R, the right-handed selectron or smuon. These are dominantly produced in decays of

neutralinos, the only exception being the direct pair-production of the sleptons, which

have low cross sections. In fact, only in the decay of the lightest neutralino is there a

significant rate, due to the preference for decays to left-handed sleptons, and even here it is

suppressed relative to decays to the lighter stau. The ℓ̃R decays in turn almost exclusively

to the three bodies ℓτ τ̃1. In the right plot of Fig. 2 we show the total branching ratio of
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Figure 2: Branching ratio for the decay chains χ̃±

1
→ τ ν̃τ → τW τ̃1 (left) and χ̃0

1
→ ℓℓ̃R → ℓℓτ τ̃1

(right) in the (m1/2, m0) parameter plane. The solid black lines indicate the cosmologically allowed

region of parameter space explored in [20].
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the decay χ̃0
1
→ ℓℓ̃R → ℓℓτ τ̃1. One could hope to reconstruct the ℓ̃R mass from this decay,

starting from the stau. However, the low branching ratio at the point ǫ, combined with

the soft spectra of the leptons from the decay, due to the small mass differences, makes

this very difficult. Our attempts leave us with only a few events. The larger branching

ratios and harder leptons of the two other benchmarks are unfortunately balanced out by

the overall much lower cross sections. It thus seems to be very challenging to reconstruct

the ℓ̃R in GDM models at the LHC, and we do not discuss the ℓ̃R further.

The first four decay chains we discussed above will be the main focus of our at-

tempts at reconstructing supersymmetric masses in Section 4. The fact that, as shown

in Figs. 1 and 2, the total branching ratios for these decay chains are relatively high across

large regions of the (m1/2,m0) plane, with a dominating branching ratio for the chain ini-

tiated by q̃R → qχ̃0

1
in all the explored range of the allowed parameter space, up to values

of m1/2 ∼ 2 TeV, suggests that the techniques discussed here would be of wide utility at

the LHC.

For the most part, we limit our discussions to simulations of the high-cross-section

benchmark point ǫ, and only summarise our results for the other two points. We draw

attention to instances where there are important differences between the benchmark points,

and we refer the reader to [20] for further details about them.

3. Fast Monte Carlo Simulation

For the fast simulation we have generated proton-proton collisions at the LHC energy using

PYTHIA 6.326 [30] and CTEQ 5M1 parton distribution functions [31]. For the ǫ benchmark

point we show results on mass measurements for a total integrated luminosity of 30 fb−1,

corresponding to the planned initial running of the LHC at low luminosity. In the cases of

the ζ and η points, which have relatively low cross sections, we show results for statistics

equivalent to 300 fb−1. These may then be viewed as estimates of the ultimate precisions

achievable for these benchmark points without an upgrade of the LHC luminosity.

3.1 Parametrisation of Detector

The detector simulation has been carried out using the generic LHC detector simulation

AcerDET1.0 [32], taking the ATLAS detector as our model for a LHC detector. Here

we give a short summary of the most important choices made for the AcerDET settings:

We consider a lepton to be identified if it has transverse momentum pT > 5(6) GeV

and |η| < 2.5 for electrons (muons). A lepton is considered isolated if it is at a distance

∆R > 0.4, where ∆R ≡
√

(∆φ)2 + (∆η)2, from other leptons and jets, and if the transverse

energy deposited in a cone ∆R = 0.2 around the lepton is less than 10 GeV. Jets are

reconstructed by a cone-based algorithm from clusters and are accepted if the jet has

pT > 15 GeV within a cone ∆R = 0.4. The jets are re-calibrated using an included flavour-

independent parametrisation, optimised to give the correct resonance mass in dijet decays.

We use the pT parametrised b-tagging efficiency and light jet rejection, for a low-luminosity

environment, given in [33]. For tau jets we use a lower cut on transverse momentum of

pT > 20 GeV, and the parametrised tau-tagging efficiency and rejection factors from [34].
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For the detector’s response to staus, we take our
Model ǫ ζ η

m1/2 440 1000 1000

m0 20 100 20

tan β 15 21.5 23.7

A0 -25 -127 -25

Masses

|µ| 569 1186 1171

h0 119 124 124

H0 626 1293 1261

A0 622 1285 1253

H± 632 1296 1264

χ0
1

175 417 417

χ0
2

339 805 804

χ0

3
574 1192 1176

χ0

4
587 1200 1184

χ±

1
340 807 806

χ±

2
587 1200 1184

g̃ 1026 2191 2191

eL, µL 306 684 677

eR, µR 171 387 374

νe, νµ 290 669 662

τ1 153 338 319

τ2 309 677 670

ντ 288 660 653

uL, cL 935 1991 1988

uR, cR 902 1911 1908

dL, sL 938 1993 1990

dR, sR 899 1903 1900

t1 710 1545 1553

t2 900 1842 1840

b1 852 1807 1804

b2 883 1851 1846

Table 2: Proposed GDM bench-

mark points taken from [20]. Mass

spectra [GeV] are calculated using

ISAJET 7.69 [28].

parametrisation of the momentum resolution from [35,

36], which performed a full simulation of the response

of the ATLAS muon system to a metastable stau of

mass 101 GeV, in a Gauge Mediated Supersymmetry

Breaking (GMSB) model. This momentum dependent

resolution is used to smear the stau momentum in the

detector simulation. We have performed a smearing

with width σp, given by

σp

p
= k1p ⊕ k2

√

1 +
m2

τ̃1

p2
⊕ k3

p
, (3.1)

where k1 is the parameter of the sagitta measurement

error, k2 represents the multiple scattering and k3 the

fluctuation of energy loss in the calorimeter. From [35]

we take the values k1 = 0.0118, k2 = 0.02 and k3 = 89.

For the measurement of the velocity of staus and

muons, we use the parametrisation of the velocity res-

olution from [35, 36]. In our simulation we smear the

true velocity by:

σβ

β
= 0.028β, (3.2)

which was found by looking at the fit quality of tracks

in the muon system as a function of the particle’s

assumed arrival time in the Monitored Drift Tubes

(MDT), subsequently minimising the χ2 as a function

of the arrival time to find the correct Time-of-Flight

(ToF). This is a conservative estimate of the resolu-

tion as the simulation was carried out in the central

detector, for η = 0.1. For larger pseudo-rapidities

the resolution is expected to improve, due to a longer

flight path. An alternative way to measure the ToF

would be to use the timing of hits in the Resistive

Plate Chambers (RPC), responsible for muon trigger-

ing, which may be able to provide similar precision.

3.2 Trigger

It was suggested in [20] that the triggering efficiency for events in GDM scenarios will be

high. A full simulation of these benchmark points, which will include triggers, is under

way [37], and we have every reason to believe that due to the generically large jet and

lepton activity in the supersymmetric events we will have trigger efficiencies in the high

90% range for all three benchmarks. As an estimate of the trigger, in our fast simulation

we have required each event to have at least one of the following:
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• A jet with pT > 290 GeV,

• three jets with pT > 130 GeV,

• four jets with pT > 90 GeV,

• one muon or stau with pT > 20 GeV, or

• two muons or staus with pT > 6 GeV.

These are the jet and muon trigger thresholds for the ATLAS detector, taken from [38],

where we conservatively use the high-luminosity thresholds and ignore electromagnetic,

missing-energy and tau triggers. Since one may fail to trigger on a slow stau in the normal

running of the LHC detectors because it arrives at the trigger station too late, we addition-

ally require triggering staus to have a velocity of βγ > 0.9. This number is a conservative

estimate from the ATLAS geometry, to give a trigger in the correct bunch crossing. Staus

with |η| ≈ 1 have the longest distance to travel between RPC layers. Given a 25 ns gap

between bunch crossings and a distance of ≈ 15.5 m to the outer RPC layer the critical

velocity is β = 0.67, or βγ = 0.9, ignoring any significant energy loss.

3.3 Background

In order to separate the staus from background muons in the supersymmetric events, and

to remove the Standard Model background, we use the following cuts, which we will refer

to as the standard GDM cuts:

• There should be exactly two stau candidates in each event,

• these should be isolated and within the geometrical acceptance of the muon chambers

as per the requirements for the muons listed above,

• they should have pT > 50 GeV,

• they should have a velocity βγ < 6.0, and

• they should have a mass estimate from their momentum and velocity that is consistent

with the stau mass after it has been measured (see Section 4.1);

• in addition, the sum of the number of leptons (muons or electrons) with pT > 10 GeV

and tau-tagged jets1 with pT > 20 GeV in each event should be exactly two.

The final cut is made on the basis that in GDM scenarios with a τ̃1 NLSP, the vast majority

of events will contain two taus in addition to the pair of staus, and these should be identified

to fully reconstruct the particles in the supersymmetric decay chains (see Section 4.2). Note

that we have a much looser cut on βγ than used in [36]. We still expect to remove most

SM background because of the requirement of two stau candidates in each event, and in

particular because of the extra requirement of two tau candidates.

1Assuming a 50% tau tagging efficiency.
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After our trigger requirements and these cuts, we should have a very powerful rejection

on Standard Model background events. We have tested this hypothesis in a fast simulation

of a background sample consisting of the equivalent of 30 fb−1 of tt̄ events with an NLO cross

section of 737 pb [39], and samples of pT binned QCD, W+jets, Z+jets and WW/WZ/ZZ

production events. The total numbers of events are 1.75 · 106 for QCD and 2.5 · 105 for

the other processes. We find no events that survive the cuts listed above, and, in order

to find the first events that pass the cuts, we would need to relax the velocity cut to

βγ < 8.3, after which we find one WW/WZ/ZZ event that passes. However, with the

limited statistics available, in particular for QCD, this null result must be interpreted with

care. For example, the parametrisation of the β resolution assumes a Gaussian shape. If

the true distribution has significantly larger tails, this will affect the power of the cut on βγ.

A full simulation study of the muon velocity resolution would be required to investigate

this possibility. It is partially because of this issue that we prefer to use a loose cut on

βγ. Despite these problems, with the additional cuts made in the searches for various

supersymmetric particles presented in Section 4, we expect that the cuts presented here

will render negligible the Standard Model background in our analysis.

4. Reconstruction of Masses in GDM Models

In this Section, we incorporate the parametrisation of the response of the ATLAS detector

to the slow-moving τ̃1s from Section 3 in a fast simulation of sparticle pair production and

cascade decays at an LHC detector. This enables us to assess the possibility of identifying

various heavier sparticles and the precision obtainable in mass measurements in GDM

models. Since we have no escaping LSP in these GDM models, we are not limited to

the standard measurements of the endpoints and shapes of kinematic distributions, see

e.g. [40–47], and we can fully reconstruct sparticles, starting from the stau NLSP.

We begin in Section 4.1 by looking at the starting point of all our mass measurements,

the measurement of the stau mass. Then, in Section 4.2 we demonstrate the complete

reconstruction of the tau momenta for events with only two taus and no hard neutrinos.

Section 4.3 deals with the reconstruction of the decay chain q̃R → qχ̃0
1
→ qτ τ̃1, and

Section 4.4 deals with the reconstruction of the cascade q̃L → qχ̃0
2
→ qℓℓ̃ → qℓℓχ̃0

1
→ qℓℓτ τ̃1.

Finally, in Section 4.5 we discuss the possibility of measuring sneutrino and chargino masses

using dijet decays of W bosons produced in supersymmetric cascade decays.

4.1 Measuring the Stau Mass

We first present an estimate of the achievable precision on the measurement of the stau

mass for the parametrisation of the momentum and velocity resolution given in Section 3.1.

After the trigger simulation presented in Section 3.2, and making the standard GDM cuts

of Section 3.3 with the exception of the cut on the stau mass and the requirement of two

tau candidates, we plot in Fig. 3 (left) a scatter plot of the measured velocity βγmeas versus

the measured mass for single staus, as inferred from

mτ̃1 =
pmeas

βγmeas

. (4.1)

– 9 –



We see a large spread in the masses for high βγ, corresponding to high momenta. This

is expected as the assumed momentum resolution deteriorates significantly above a few

hundred GeV, and the velocity resolution worsens at higher velocity due to the shorter ToF.

One effect of the momentum dependence of the resolution is that the spread has a clear

bias towards higher masses, which would be a systematic effect for a mass measurement

using all events passing the cuts. We also see a grouping of events at high βγ and low

masses. These are mis-measured muons that have been assigned velocities that are too

low, and thus passed the GDM cuts used. This is particularly clear for the SM background

events which are shown in red.

Because the low-velocity events have a much smaller spread and less bias towards

higher masses, it would be advantageous to use only these in a mass measurement. As we

commented in Section 3.2, the staus from these events will be missed by the trigger system

because they are too slow. This does not mean that they would be missed completely

by the LHC detectors, since their muon systems are designed sufficiently robustly as to

record hits in a large time window after a collision. However, it does mean that we will

have to rely on other triggers, e.g., calorimetric triggers, or triggers on muons from the

decay of the heavier sparticles. Exactly how far down in velocity it is possible to go must

be the subject of full detector studies that lie beyond the scope of this paper. In [35] the

velocities of the staus were found to be measurable at least down to βγ = 0.44, albeit

for a simulation of single staus in the muon system only. However, in [36] a conservative

approach to the trigger issue was followed, ignoring events where the staus did not reach

the muon chambers inside the time window of the muon triggers, and using a lower cut of

βγ ≥ 0.75. Assuming that the trigger rates from our simplified trigger cuts are not entirely

unrealistic and that we can reconstruct staus with velocities down to βγ ≈ 0.3, we make
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Figure 3: Scatter plot of measured velocity βγmeas versus measured mass (left), with supersym-

metric events in black and SM background events in red, and a corresponding plot of the measured

stau mass (right) with an additional cut on the velocity of 0.3 < βγ < 0.6.
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an additional cut on βγ < 0.6 for the sample used to measure the stau mass, and plot

the corresponding mass distribution in Fig. 3 (right). Fitting the mass distribution with a

Gaussian we get a stau mass for the ǫ benchmark of

mτ̃1 = 152.485 ± 0.021 GeV, (4.2)

to be compared with the nominal value of mτ̃1 = 152.475 GeV.

To investigate the dependence of the measured stau mass on the lower limit on the

velocity of staus that we can identify, we show in Fig. 4 the reconstructed stau mass as a

function of the lower βγ cut value for three different values of the upper cut on βγ. The

general tendency is, as could be expected, an increase in the systematic error, represented

by the increase in distance from the nominal mass value, as the lower cut value is raised and

low-velocity events are discarded 2. As the lower cut approaches the upper cut value, this

effect flattens out, while of course the statistical error increases with the reduction in the

number of events. It is clear that, for a lower cut on βγ, in choosing the upper cut one must

trade the loss of statistics against the reduction of systematic error from the higher-velocity

staus. We see that there is very little change in the stau mass determination if the lower

limit on βγ is increased to 0.44 [35]. We also note that the error in mτ̃ remains below the

per-mille level even if we restrict the analysis to 0.6 < βγ < 0.9. In all the examples shown

in Fig. 4, the error in calculating mτ̃ is negligible compared with the errors encountered in

the reconstruction of higher-mass states decaying into staus.

Based on the clear separation of muons

γβ
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1τ∼
m

152.3

152.4

152.5

152.6

152.7

152.8

152.9

153

Figure 4: The stau mass from a Gaussian fit as a

function of a lower cut on βγ. The solid circles show

the results for an upper cut of βγ < 0.6, the triangles

βγ < 0.9 and the squares βγ < 1.2. The red line

shows the nominal mass value.

and staus in the scatter plot of Fig. 3,

we require in the further analyses that

stau candidates have inferred masses above

100 GeV. This value was also used in

the background analysis of Section 3.3.

We use the stau mass of (4.2) in the fol-

lowing discussions, although the much

larger errors involved in the reconstruc-

tion of heavier sparticles means that we

are insensitive to the exact value, within

the errors discussed in this Section. The

results for the other two benchmarks

are analogous, and the resulting masses

can be found in Table 3. The statisti-

cal errors are at the sub-permille level,

which is below the expected uncertainty

on the lepton energy scale of order 0.1%,

and on the same level as the results

given for various GMSB scenarios in [36]. From Fig. 4, we conclude that it should be

possible also to keep the systematic error from the momentum and velocity measurements

at the same level if we are able to reconstruct staus with velocities down to βγ = 0.6.
2It is possible that this systematic effect could be modelled and (at least partially) mitigated in a more

complete analysis.
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The possibility of making further measurements on the staus by looking for staus

trapped in the LHC detectors or in surrounding matter was discussed in [20]. Trapped,

decaying staus could make a measurement of the stau lifetime possible, leading to an

indirect determination of the gravitino mass, assuming the macroscopically determined

value of the Planck scale, and could potentially even lead to a microscopic determination of

the Planck scale and a test of supergravity if the gravitino mass could be measured directly

from the decay kinematics [45, 48]. However, these exciting possibilities lie somewhat

outside of the scope of this paper.

Model ǫ ζ η

Mass

τ̃1 152.485 ± 0.021 338.24 ± 0.09 319.02 ± 0.09

ν̃τ 291.8 ± 1.2 666.4 ± 1.9 659.6 ± 1.1

ℓ̃L 307.9 ± 2.0 674.6 ± 3.4 673.5 ± 3.5

χ̃0
1

176.6 ± 0.9 418.3 ± 1.8 419.6 ± 3.7

χ̃0
2

339.2 ± 2.0 (796.5 ± 6.5) (801.0 ± 7.2)

q̃L 923.4 ± 3.7 - -

q̃R 895.8 ± 2.8 1811.2 ± 332.3 -

b̃ 888.9 ± 57.7 - -

Table 3: The mass measurements and statistical errors [in GeV] obtained in the simulations of the

GDM benchmark points. The numbers in brackets ( ) are obtained from a fit to the edge in the

dilepton spectrum. Jet and lepton energy scale errors are not included.

4.2 Recalibrating Taus

As was already mentioned in Sec-

νp

νp
1

y

x

2

p
Τ

1
pj

pj
2

Figure 5: Schematic drawing of the τ decay products

~pj1 and ~pj2 , the missing momentum 6~pT and the recon-

structed neutrino momenta ~pν1
and ~pν2

, projected on

the transverse plane.

tion 3.3, in all R-parity conserving GDM

scenarios with a τ̃1 NLSP, with the ex-

ception of Drell-Yan pair productions

of staus and some events yielding tau

neutrinos, each event will contain two

τs in addition to the pair of τ̃1s. In

Section 4.1 we discussed the measure-

ment of the τ̃1 mass. We can detect

and measure the masses of many of the

heavier sparticles by reconstructing de-

cay chains that lead to the τ̃1s. For

example, at benchmark point ǫ, essen-

tially 100% of the lightest neutralinos

χ̃0

1
decay into τ̃1 + τ , and this branching ratio is also very large at the other two points

(∼ 70%). One can reconstruct a χ̃0
1

mass peak by combining τ̃1-τ pairs, but to do this

one needs to know the momenta of the accompanying τs, which in turn decay and lose

momentum to escaping neutrinos.
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Assuming that a τ is relativistic in the laboratory frame, as will indeed be the case

for any τ that would pass our acceptance criteria, its hadronic decay will give a jet and a

neutrino travelling in essentially the same direction. If there are exactly two τs in an event,

and no other source of missing momentum, the sum of the missing transverse momenta

from the neutrinos can be projected onto the two axes formed by the hadronic tau-decay

jets in the transverse plane, as illustrated in Fig. 5. Knowing the azimuthal angles of the

two τs, one can determine the two components of each of the tau neutrino momenta in

the transverse plane, and their momenta in the z direction follow from requiring that the

neutrinos travel in the same direction as the jet. The same recalibration procedure can be

used for τ pair decays into one or two leptons, with leptons taking the roles of the hadronic

jets, and the sum of two τ decay neutrino momenta taking the role of the single τ decay

neutrino of the hadronic case.

In our tau recalibration we assume that there are no other large contributions to

the missing momentum. Possible sources is the mis-measurement of jet energies or hard

neutrinos from the decay of heavy particles. These will change the direction and magnitude

of the missing momentum vector in the transverse plane. This can partially be checked for

by testing that the direction of the missing momentum lies inside the opening angle of the

two taus.

The result of this momentum re-

part
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Figure 6: The relative error between the parton-

level and measured momenta of τs at the ǫ (red), ζ

(green) and η (blue) benchmark points. We show the

momenta both before (dotted line) and after (solid

line) recalibration.

calibration is shown in Fig. 6, where we

plot the relative error on the tau mo-

mentum before (dotted line) and after

(solid line) recalibration, for the three

benchmark points. We have used a 50%

tau-jet tagging efficiency, and require

that for each event the sum of the num-

ber of tagged tau jets and leptons (no

staus) with pT > 10 GeV is exactly two,

to have an unambiguous pair of tau can-

didates for the recalibration. No trigger

or background cuts have been used.

We observe a dramatic improvement

in the momentum resolution compared

to uncalibrated taus for all three bench-

mark points, although with a significant

tail of taus with momenta that are too

high. The smearing of the tau momen-

tum is partially due to other contributions to the momentum imbalance as already men-

tioned above, leading to a mis-calibration, but also due to the mis-tagging of tau jets and/or

mis-identification of leptons as coming from tau decays. These mis-identifications can also

be seen in the pre-recalibration distribution, as a tail to momenta higher than the parton

momentum. We see a marked difference between the ǫ benchmark and the other two, the

ǫ benchmark having a worse resolution. This could be expected from the relatively lower
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amount of activity in ζ and η events, where the Drell-Yan and associated production is

more pervasive, resulting in fewer mis-identifications.

4.3 Reconstructing the Decay q̃ → qχ̃0

1
→ qτ τ̃1

The great majority of right-handed squark, q̃R, decays (92 %) and a few of the left-handed

squark, q̃L, decays (4 %) at the ǫ benchmark point lead directly to the final state qχ̃0

1
. To

reconstruct the masses of the lightest neutralino χ̃0
1

and the first two, almost degenerate,

generations of squarks, we seek to isolate events with two squarks, where both decay

according to this clean decay chain 3

q̃ → qχ̃0

1 → qτ τ̃1. (4.3)

We first select events that survive our trigger requirements and the standard GDM cuts of

Section 3.3. These remove the Standard Model background, and leave us with an identified

pair of staus. The energies of these staus are then re-calibrated to reflect the mass measured

in Section 4.1. Using the parametrised tau-tagging described in [34], with an assumed tau-

tagging efficiency of 50%, we select events where the sum of the number of tau jets with

pT > 20 GeV and leptons with pT > 10 GeV is exactly two. These are then our basis for

reconstructing two taus with the technique discussed in Section 4.2. The staus and taus

are matched according to charge, keeping only those events where there is an unambiguous

assignment. This implies that all events with same-sign staus and all events with two tau

jets are rejected. We do not consider any measurement of tau charge from the hadronic

jet, leaving this as a possible improvement. However, one should note that, while this

will certainly increase the available statistics, the lower tagging efficiency for hadronic tau

decays compared to the efficiency of identifying leptons means that one would have roughly

the same number of leptonic and hadronic tau candidates. Moreover, the momenta of the

hadronic jets would be known with worse accuracy than those of the leptons.

Calculating the invariant masses of the τ̃ -τ combinations surviving these cuts we arrive

at the distribution shown in the left plot of Fig. 7 for the ǫ benchmark. In blue we show

the distribution due to events with two χ̃0
1
→ τ̃1 + τ decays, while the red distribution is

the supersymmetric background. The total distribution shows a clear peak corresponding

to the χ̃0

1
mass. We fit the distribution by a third-degree polynomial assumption for the

background and a Breit-Wigner distribution for the peak, giving a χ̃0
1

mass and statistical

error of

mχ̃0
1

= 176.6 ± 0.9 GeV, (4.4)

which is to be compared with the nominal value of mχ̃0
1

= 175.2 GeV. The wide shape of

the signal distribution is due to smearing from the momentum resolution of the staus, and

contributes to the overestimate of the χ̃0

1
mass. For the ζ and η points the results are very

similar, but with significantly lower statistics, even at 300 fb−1. The masses and errors

found are listed in Table 3.
3We use ‘clean’ here in the sense that the events contain no hard leptons other than the two τ s from

the χ̃
0
1 decay, and only two hard jets, modulo initial-state radiation (ISR) and final-state radiation (FSR).

They should therefore provide good measurements of the transverse missing momenta from the neutrinos

in τ decays.
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To find the (right-handed) squark mass, we want to isolate events that contain two of

the decays of Eq. (4.3). This is done by adding to the cuts used above the following:

• We require two jets with pT > 300, 150 GeV,

• no other jets with pT > 150 GeV,

• missing transverse energy ET < 50 GeV, and

• to increase statistics we relax the unambiguous assignment requirement for the τ -τ̃

pairs, keeping those not directly excluded by charge considerations and which have

an invariant mass within two times the peak width of the χ̃0

1
, Γχ̃0

1
= 25.9 GeV.

Here the cut on missing energy attempts to remove events with additional hard neutrinos,

not coming from the decay of the final taus in the decay chain.

The two hardest jets in the event are then combined with the τ̃ -τ pairs and the invariant

masses of the triples are found. The invariant mass distribution is shown on the right in

Fig. 7. The surviving events are very predominantly decays of the q̃R, and the total

distribution again shows a clear peak, now corresponding to the q̃R mass 4. Fitting the

distribution with a second-degree polynomial for the background plus a Breit-Wigner, at

the ǫ benchmark point we find

mq̃R
= 895.8 ± 2.8 GeV. (4.5)

This can be compared to the nominal value of mq̃R
= 900.8 GeV at the ǫ benchmark

point. The background tail to wards lower invariant masses tends to result in a small

4As we show below, the q̃L mass can be measured using a different decay chain.
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Figure 7: The τ̃ -τ (left) and jet-τ̃ -τ (right) invariant mass distributions for the ǫ benchmark point.

For the left plot the blue distribution is for events containing two decays χ̃0

1
→ τ τ̃1, for the right

plot events containing two q̃ → qχ̃0

1
→ qτ τ̃1 decay chains. The red distributions include all other

events surviving the cuts described in the text.
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underestimate of the mass. We note that the accuracy of the squark mass measurement

is dependent on the jet recalibration routine used. The statistical error after three years

at low luminosity is lower than the systematical error expected from the uncertainty in

the absolute jet energy scale, which is estimated to be of the order of 1% (see Chapter 12

of [38]). For the ζ benchmark point we again have a clear excess of events over background,

and we can reconstruct a mass peak, but only containing a few dozen events. The statistical

error for ζ is large, and varies somewhat with binning and fit range. For η only two signal

events survive all cuts, compared to a background of ten, thus we are not able to reconstruct

the q̃R in this case. We list the numerical results in Table 3.

By using jet-τ̃ -τ combinations where the jet is tagged as coming from a b quark, we can

estimate the b̃ mass. Because of the low statistics obtainable with 30 fb−1 of luminosity

we can provide only a rough estimate of a combined b̃1 and b̃2 mass. Assuming a 53%

b-tagging efficiency, with light jet rejection as discussed in Section 3, we have

mb̃ = 888.9 ± 57.7 GeV (4.6)

We note that, whilst the production cross sections of the b̃1 and b̃2 are of the same magni-

tude, the branching ratio of b̃2 → bχ̃0

1
is much larger than that of b̃1, as b̃2 is mostly b̃R. Con-

sequently, events with b̃2 dominate this mass measurement. We recall that mb̃2
= 883 GeV

at the benchmark point ǫ. For the other two benchmark points we were unable to measure

the b-squark masses due to the low number of events.

Almost a half of the sparticle pair-production events at the LHC at benchmark point

ǫ would include gluinos, and the great majority of their decays would be into squark-quark

pairs. One may therefore hope to reconstruct a g̃ mass peak by plotting the invariant

masses of jet-jet-τ̃ -τ combinations. However, if we take the events lying within twice the

width of the squark mass peak found here, and add a second jet to each jet-τ̃ -τ combination

we find that while there is a clear peak at the gluino mass in events which contain the decay

of Eq. (4.3), initiated by a gluino, the supersymmetric background has a similar shape at

roughly the same position and is of the same magnitude, thus preventing any gluino mass

determination. This can be understood in terms of the softer nature of the jets from the

gluino decay as compared to the squark decay; the background jets have a very similar

kinematic distribution. One possible idea, which is beyond the scope of this paper to

explore further, is the decay g̃ → tt̃1 → ttχ̃0

1
. This could be used to find the gluino mass

if the top decays involved could be fully reconstructed. The decay has the advantage of a

large branching ratio, but reconstructing the W involved from hadronic decays will present

a formidable challenge. For the other two benchmark points, although the jets from gluino

decays are somewhat harder, the background problem still remains.

It might be possible to improve on the above results by refining the event selection,

e.g., by using only leptonic τ decays for high statistics scenarios, and/or by making a

more sophisticated analysis of the final states, for example by modelling the expected

supersymmetric background in a more sophisticated way than our polynomial assumptions.

However, the results in Fig. 7 and Eqs. (4.4) and (4.5) already improve significantly on those

shown in [20], where no attempt was made to correct for the missing neutrino momenta

in τ decays, and the full kinematics of the decay was not exploited. We also observe that
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for the ǫ benchmark point our statistical errors are in general below the expected levels of

errors from systematical uncertainties in lepton and jet energy scales at the LHC.

4.4 Reconstructing the Decay q̃ → qχ̃0
2
→ qℓℓ̃ → qℓℓχ̃0

1
→ qℓℓτ τ̃1

Although the long decay chain

q̃ → qχ̃0

2 → qℓℓ̃ → qℓℓχ̃0

1 → qℓℓτ τ̃1, (4.7)

predominantly of the left-handed squark via a left-handed slepton, has a much lower branch-

ing ratio than the decay of the right-handed squark discussed in the previous Section, it has

a distinctive signature of between two and four leptons, depending on the τ decay modes,

in addition to the pair of τ̃s.

It is well known that a very use-
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Figure 8: The different-flavour subtracted dilep-

ton invariant mass distribution for the ǫ benchmark

point. We also show the opposite-sign, same-flavour

distribution (blue, dashed line) and the opposite-

sign, different-flavour distribution (red, dashed line).

ful step in the reconstruction of anal-

ogous decay chains in neutralino dark

matter scenarios is the measurement of

the dilepton spectrum resulting from χ̃0
2
→

ℓℓχ̃0

1
decays. Accordingly, we start here

by also looking at the dilepton edge for

the ǫ benchmark point, plotting the in-

variant mass of pairs of same-flavour,

opposite-sign leptons in the MC data.

After the standard GDM cuts from Sec-

tion 3 to isolate events with two staus,

loosening the cut on tau candidates to

allow for more leptons, we pick events

with a minimum of two additional lep-

tons, each having pT > 30 GeV.5 Com-

bining all pairs of these leptons with the

same flavour and opposite sign we arrive

at the blue distribution in Fig. 8. We

can remove the background of uncorre-

lated leptons by making the standard subtraction of the same flavour distribution (red)

under the lepton universality assumption. The resulting, well known, triangular-shaped

distribution from the decay χ̃0
2
→ ℓℓ̃ → ℓℓχ̃0

1
appears, and we can perform a fit to the end-

point. Using a straight line fit, smeared by a Gaussian distribution to simulate sparticle

finite-width effects and detector smearing at the edge, we measure

mmax

ℓℓ = 118.6 ± 1.0 GeV, (4.8)

5We have checked that the generated SM background discussed in Section 3.3 remains zero after these

changes.
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where mmax

ℓℓ is the position of the di-lepton edge, given in terms of the masses of the

sparticles in the decay chain by the following formula:

(mmax

ℓℓ )2 =
(m2

χ̃0
2

− m2

ℓ̃
)(m2

ℓ̃
− m2

χ̃0
1

)

m2

ℓ̃

. (4.9)

The nominal value for the ǫ benchmark is mmax

ℓℓ = 119.7 GeV. For ζ and η the endpoints

are found at mmax

ℓℓ = 332.2 ± 9.0 GeV and mmax

ℓℓ = 339.1 ± 9.8 GeV, respectively.

With this information in hand we start the search for the decay in (4.7). First we

attempt a reconstruction of the slepton mass in the decay ℓ̃ → ℓχ̃0
1
→ ℓτ τ̃1, using the

standard GDM cuts of Section 3.3 with some modifications:

• We allow for additional leptons to the tau candidates, iterating over the assigment

of leptons as tau candidates or as “additional”,

• we require that we have no more than two tau-tagged jets to avoid neutrinos from

other tau decays, and

• the tau candidates are paired with staus, and we keep only events where there is at

least one pair with consistent charge and invariant mass within two times the width

of the χ̃0
1

mass peak, as measured in Section 4.3.

Following these cuts we add the additional lepton(s) to the reconstructed χ̃0
1
, and show the

resulting invariant mass distribution of the lepton-τ -τ̃ triples in the left plot of Fig. 9. After

fitting the distribution with an assumed linear background and Breit-Wigner resonance we

find a slepton mass of

mℓ̃ = 307.9 ± 2.0 GeV, (4.10)

which can be compared with the nominal value of mℓ̃L
= 305.9 GeV.

The peak in the blue distribution to the left of the resonance that can be seen in

Fig. 9 is due to the combination of χ̃0
1

candidates with the softer lepton coming from χ̃0
2

decays, while the peak in the red distribution is due to generic soft leptons added to the

χ̃0

1
resonance. From this we suspect that a scenario with a small ml̃ −mχ̃0

1
mass difference

will encounter the same problems as the gluino mass measurement, while the χ̃0

2
mass will

still be easily accessible. In such scenarios there will be an advantage in first measuring

the χ̃0
2

mass.

For the other two benchmark points we get similar distributions, but again of course

with less events and fitted masses with larger statistical errors. For ζ we get mℓ̃ = 674.6±
3.4 GeV, and for η, mℓ̃ = 673.5 ± 3.5 GeV. We note that the value for ζ is quite some

distance from the nominal value of mℓ̃ = 683.8 GeV. The distribution of the resonance

peak is very broad and extends towards lower invariant masses from a maximum around

the true maximum.

Starting from the slepton resonance we make the following additional cuts to find the

mass of the χ̃0

2
for the ǫ benchmark point:

• We take events with lepton-τ̃ -τ combinations within twice the width of the slepton

mass peak,
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• we require events to have at least two leptons in addition to the tau candidates,

• the additional leptons are required to have opposite sign and same flavour, and to

have an invariant mass mℓℓ < 120 GeV, on the basis of the measured dilepton edge.

Taking all allowed lepton pairs in an event and plotting the invariant mass of the lepton-

lepton-τ̃ -τ combinations, we arrive at the distribution in the right-hand plot of Fig. 9.

Fitting the clear mass peak with a Breit-Wigner function we find a χ̃0

2
mass of

mχ̃0
2

= 339.3 ± 2.0 GeV, (4.11)

to be compared with the nominal value mχ̃0
2

= 339.4 GeV.

For the ζ and η points, the statistics are very low after all cuts. We find no real mass

peak for ζ, with only a handful of events scattered over a large mass interval, and a very

broad resonance for η, from which one can estimate mχ̃0
2

= 800 ± 50 GeV. However, from

the formula for the dilepton edge in Eq. (4.9) and the χ̃0
1

mass found in the previous Section

we can calculate the χ̃0
2

mass and statistical error for ζ and η. The results are listed in

Table 3.

The information from the dilepton edge could also be used to restrict further the masses

at the ǫ benchmark by a combined χ2 fit, but the effect is small, although the statistical

error on the χ̃0
2

mass can be halved. To increase the accuracy of the mass determination, in

particular for the benchmark points with low cross sections, it could also be interesting to

pursue the other invariant mass distributions that can be constructed from the leptons in

this decay chain, e.g., the lepton-stau invariant masses and the lepton-lepton-stau invariant

mass. A generalisation of the formulae of [47], which describe the shapes of invariant mass
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Figure 9: The lepton-τ̃ -τ (left) and lepton-lepton-τ̃ -τ (right) invariant-mass distributions for the

ǫ benchmark point. The blue distributions are for signal events, events containing a decay ℓ̃ →
ℓχ̃0

1
→ ℓτ τ̃1 (left) and χ̃0

2
→ ℓℓ̃ → ℓℓχ̃0

1
→ ℓℓτ τ̃1 (right), while the red distributions include all other

events that pass the cuts given in the text.
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distributions in cascade decays, to include massive stable end-products like the stau is also

possible. This is, however, outside the scope of this initial study.

What remains from the decay chain in (4.7) is to determine the left-handed squark

mass. Taking the events in the χ̃0
2

mass peak, we add the two hardest jets of the event to

the reconstructed χ̃0
2
. Because there is a significant fraction of background events, mostly

events where the χ̃0
2

does not come from the decay of a left-handed squark, we additionally

require a missing transverse energy ET < 50 GeV. While statistics are very low as a result of

this selection, we find a mass peak and can perform a fit with a Breit-Wigner distribution.

The result is plotted in Fig 10, and we find a left-handed squark mass of

mq̃L
= 923.4 ± 3.7 GeV, (4.12)

Compared to the common mass of the first two generations of both families, md̃L,s̃L
=

938.2 GeV and mũL,c̃L
= 934.5 GeV, this fit result is slightly low, indicating that there

may be some systematical effect, and with a relative error of the order of 1%. However,

comparing with the squark mass found in the previous Section, this analysis clearly demon-

strate that there are two different masses and the decay chains allow us to assign the left-

and right-handedness as we have done. Since we could not reconstruct a χ̃0

2
mass peak,

the q̃L mass is of course also inaccessible with this technique at the ζ and η benchmarks.

4.5 Reconstructing ν̃τ and χ̃±

1
Decays

The high fraction of the total cross section that comes from the associated production

of χ̃±

1
χ̃0

2
pairs at the ζ and η benchmark points, together with the large production of

neutralinos and charginos in the decays of squarks at all three points, makes the dominant

decays of χ̃±

1
potentially as interesting as the χ̃0

2
decay via a left-handed slepton that was

τ∼τqllm
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discussed in the previous Section. Accordingly, we look now at the corresponding decays

of the chargino.

In the case of the ǫ benchmark point, the decay chain χ̃±

1
→ τ ν̃τ → τW τ̃1 has a total

branching ratio of 9.5%, and the decay χ̃0
2
→ ντ ν̃τ → ντWτ̃1, a branching ratio of 9.0%.

This makes the search for a ν̃τ resonance feasible, if we can reconstruct hadronic decays of

the W in the supersymmetric events.

The reconstruction of W s produced in the decays of heavy particles at the LHC is diffi-

cult because of the large jet background in the high multiplicity environment. Additionally,

since W s will be so copiously produced in SM events at the LHC, it will be difficult to

find effective background cuts. When a W is produced with little boost in the laboratory

frame, the jets from the decay are relatively soft and easily drown among the other jets

of the event. For boosted W s the jets are harder, but have a much smaller opening angle

in the lab frame, and are thus easily mistaken for a single jet by a cone jet algorithm.

The quest for possible improvements in the search for hadronic decays of heavy bosons in

supersymmetric events by the use of different jet algorithms is an interesting topic, but lies

beyond the scope of this paper. As we shall see, because of the excellent rejection of the

Standard Model backgrounds afforded by the properties of the stau, the identification of

W candidates is easier in the GDM scenarios.

To isolate events with the decay ν̃τ → Wτ̃1, we apply the standard GDM cuts of

Section 3, with the exception of the requirement of two tau candidates. Instead we tighten

the cut on stau velocity to βγ < 2.7, which we again find removes all SM background.

This allows us a very simple identification of events with W s. We require one and only one

combination of two jets in the event which has:

• Invariant mass within two times the width, ΓW = 2.12 GeV, of the W mass, mW =

80.42 GeV, and

• an opening angle θ < π
4

in the laboratory frame.

The cut on angle is effective in rejecting the large background of events without a W ,

where by chance two relatively soft jets have the correct invariant mass, while, for reasons

discussed above, it is a typical property of W s that come from the decays of heavier

sparticles. After these cuts and after combining the reconstructed W candidates with

the closest stau we arrive at the invariant mass distribution shown in Fig 10. The signal

distribution (blue) shows a clear peak above the background (red), which consists mostly

of events without a W . By fitting the total distribution with the sum of a third-degree

polynomial for the background and a Breit-Wigner distribution for the peak, we arrive at

a value of the tau-sneutrino mass of

mν̃τ
= 291.8 ± 1.2 GeV (4.13)

to be compared with the nominal value of mν̃τ
= 288.5 GeV. The overestimated value for

ǫ is due to the long tails of the signal distribution to the right of the peak, which in turn

comes from combinatorial effects, such as pairing the W with the wrong stau candidate.
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From events in the tau-sneutrino resonance peak we should in principle be able to

reconstruct the chargino mass by adding tau jets to the reconstructed sneutrinos. However,

the large background and the soft nature of these taus means that the signal drowns in a

background of the same shape and position, much as in the case of the gluinos. For the ζ

and η benchmark points the situation is similar, we can reconstruct a ν̃τ mass peak, but

no chargino. The sneutrino masses found for these points are listed in Table 3.

5. Conclusions

We have demonstrated in this paper that the LHC detectors (as exemplified here by the

ATLAS detector), would have the abilities to make many valuable measurements in bench-

mark supersymmetric scenarios with gravitino dark matter and a τ̃ NLSP. The triggers

planned would record GDM events with high redundancy and efficiency, and the robust

designs of the detectors would enable them to characterise very well τ̃s produced in LHC

collisions. Once recorded, the τ̃ tracks in GDM events could be identified with high ef-

ficiency, and useful momentum, ToF and dE/dx measurements would be made. We find

that it should be possible to measure the stau mass with statistical and systematic errors

at the sub-permille level, assuming only the reconstruction of staus with velocity down to

βγ ≈ 0.6. The majority of GDM events with a pair of τ̃ NLSPs would also contain a pair

of τ leptons, which should be detectable with good efficiency at the LHC. Combining these

with the τ̃ measurements would enable first the χ̃0

1
and subsequently heavier sparticles

to be reconstructed and their masses measured with accuracies that often approach the

expected systematic energy scale uncertainty of jets and leptons. We demonstrate these

abilities with the aid of τ momentum recalibration using transverse momentum balance,

and making appropriate kinematic cuts on the final-state kinematic distributions in spar-

ticle cascade decays. Our results are consistent with the preliminary estimates of sparticle

observability made in [20].

The LHC will be the first accelerator to explore a new energy domain, and there are

high hopes that it will reveal new physics beyond the Standard Model. Supersymmetry

is among the most ‘expected’ new physics surprises, which has been much studied by

the LHC collaborations as well as by theorists. Most of these studies have assumed the

‘expected’ missing-energy signature of R-conserving supersymmetry with a neutralino LSP,

though other possibilities have also been explored. It has been realised recently that some

of these other possibilities may be as generic as missing energy, and the scenario studied

here of gravitino dark matter and a stau NLSP is just one of many possible ‘unexpected’

possibilities. Nevertheless, it is encouraging that, although the LHC detectors were not

designed with such an exotic scenario explicitly in mind, they seem to be capable also

of dealing with such an ‘unexpected’ physics surprise. We have shown here that valuable

insight into such a gravitino dark matter scenario could be obtained already with a relatively

modest initial amount of LHC luminosity, and so could inform the design of possible future

experiments at the high-energy frontier.

– 22 –



Acknowledgments

We thank Giacomo Polesello for helpful discussions on a number of topics. ARR acknowl-

edges support from the European Community through a Marie Curie Fellowship for Early

Stage Researchers Training.

References

[1] H. Goldberg, Phys. Rev. Lett. 50 (1983) 1419.

[2] J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos, K. A. Olive and M. Srednicki, Nucl. Phys. B

238 (1984) 453.

[3] C. L. Bennett et al., Astrophys. J. Suppl. 148 (2003) 1 [arXiv:astro-ph/0302207];

[4] D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 148 (2003) 175

[arXiv:astro-ph/0302209].

[5] M. Battaglia, A. De Roeck, J. R. Ellis, F. Gianotti, K. A. Olive and L. Pape, Eur. Phys. J. C

33 (2004) 273 [arXiv:hep-ph/0306219].

[6] J. R. Ellis, J. E. Kim and D. V. Nanopoulos, Phys. Lett. B 145 (1984) 181.

[7] T. Moroi, H. Murayama and M. Yamaguchi, Phys. Lett. B 303 (1993) 289.

[8] J. R. Ellis, D. V. Nanopoulos, K. A. Olive and S. J. Rey, Astropart. Phys. 4 (1996) 371

[arXiv:hep-ph/9505438].

[9] M. Bolz, W. Buchmuller and M. Plumacher, Phys. Lett. B 443 (1998) 209

[arXiv:hep-ph/9809381].

[10] T. Gherghetta, G. F. Giudice and A. Riotto, Phys. Lett. B 446 (1999) 28

[arXiv:hep-ph/9808401].

[11] T. Asaka, K. Hamaguchi and K. Suzuki, Phys. Lett. B 490, 136 (2000)

[arXiv:hep-ph/0005136].

[12] M. Bolz, A. Brandenburg and W. Buchmuller, Nucl. Phys. B 606 (2001) 518

[arXiv:hep-ph/0012052].

[13] M. Fujii and T. Yanagida, Phys. Rev. D 66, 123515 (2002) [arXiv:hep-ph/0207339].

[14] M. Fujii and T. Yanagida, Phys. Lett. B 549, 273 (2002) [arXiv:hep-ph/0208191].

[15] J. L. Feng, A. Rajaraman and F. Takayama, Phys. Rev. Lett. 91 (2003) 011302

[arXiv:hep-ph/0302215].

[16] W. Buchmuller, K. Hamaguchi and M. Ratz, Phys. Lett. B 574 (2003) 156

[arXiv:hep-ph/0307181].

[17] J. R. Ellis, K. A. Olive, Y. Santoso and V. C. Spanos, Phys. Lett. B 588 (2004) 7

[arXiv:hep-ph/0312262].

[18] J. L. Feng, S. f. Su and F. Takayama, Phys. Rev. D 70 (2004) 063514 [arXiv:hep-ph/0404198].

[19] J. L. Feng, S. Su and F. Takayama, Phys. Rev. D 70 (2004) 075019 [arXiv:hep-ph/0404231].

[20] A. De Roeck, J. R. Ellis, F. Gianotti, F. Moortgat, K. A. Olive and L. Pape,

arXiv:hep-ph/0508198.

– 23 –



[21] H. P. Nilles, Phys. Rept. 110 (1984) 1.

[22] J. Polonyi, Budapest preprint KFKI-1977-93 (1977).

[23] F. D. Steffen, arXiv:hep-ph/0605306.

[24] W. Beenakker, R. Hopker and M. Spira, arXiv:hep-ph/9611232;

http://pheno.physics.wisc.edu/∼plehn/prospino/prospino.html
[25] M. H. Reno and D. Seckel, Phys. Rev. D 37 (1988) 3441.

[26] S. Dimopoulos, R. Esmailzadeh, L. J. Hall and G. D. Starkman, Nucl. Phys. B 311 (1989)

699.

[27] K. Kohri, Phys. Rev. D 64 (2001) 043515 [arXiv:astro-ph/0103411].

[28] H. Baer, F. E. Paige, S. D. Protopopescu and X. Tata, arXiv:hep-ph/0001086.

[29] M. Muhlleitner, A. Djouadi and Y. Mambrini, Comput. Phys. Commun. 168 (2005) 46

[arXiv:hep-ph/0311167].

[30] T. Sjostrand, S. Mrenna and P. Skands, JHEP 0605, 026 (2006) [arXiv:hep-ph/0603175].

[31] H. L. Lai et al. [CTEQ Collaboration], Eur. Phys. J. C 12 (2000) 375 [arXiv:hep-ph/9903282].

[32] E. Richter-Was, arXiv:hep-ph/0207355.

[33] ATLAS Collaboration, ATLAS inner detector: Technical design report, Vol. 1,

CERN-LHCC-97-16.

[34] M. Heldmann and D. Cavalli, ATLAS Public Note ATL-PHYS-PUB-2006-008.

[35] G. Polesello and A. Rimoldi, ATLAS Internal Note ATL-MUON-99-06.

[36] S. Ambrosanio, B. Mele, S. Petrarca, G. Polesello and A. Rimoldi, JHEP 0101 (2001) 014

[arXiv:hep-ph/0010081].

[37] J.R. Ellis, A.R. Raklev and O.K. Oye, in preparation.

[38] ATLAS Collaboration, ATLAS: Detector and physics performance technical design report,

Volume 1, CERN-LHCC-99-14.

[39] S. Frixione, P. Nason and B. R. Webber, JHEP 0308 (2003) 007 [arXiv:hep-ph/0305252].

[40] I. Hinchliffe, F. E. Paige, M. D. Shapiro, J. Soderqvist and W. Yao, Phys. Rev. D 55 (1997)

5520 [arXiv:hep-ph/9610544].

[41] H. Bachacou, I. Hinchliffe and F. E. Paige, Phys. Rev. D 62 (2000) 015009

[arXiv:hep-ph/9907518].

[42] B. C. Allanach, C. G. Lester, M. A. Parker and B. R. Webber, JHEP 0009 (2000) 004

[arXiv:hep-ph/0007009].

[43] C. G. Lester, CERN-THESIS-2004-003.

[44] B. K. Gjelsten, D. J. Miller and P. Osland, JHEP 12 (2004) 003 [arXiv:hep-ph/0410303].

[45] G. Weiglein et al. [LHC/LC Study Group], arXiv:hep-ph/0410364.

[46] B. K. Gjelsten, D. J. Miller and P. Osland, JHEP 0506, 015 (2005) [arXiv:hep-ph/0501033].

[47] D. J. Miller, P. Osland and A. R. Raklev, JHEP 03 (2006) 034 [arXiv:hep-ph/0510356].

[48] W. Buchmuller, K. Hamaguchi, M. Ratz and T. Yanagida, Phys. Lett. B 588, 90 (2004)

[arXiv:hep-ph/0402179].

– 24 –


