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We apply a contour deformation technique in momentum space to the newly developed Gamow
shell model, and study the drip-line nuclei 5He, 6He and 7He. A major problem in Gamow shell-
model studies of nuclear many-body systems is the increasing dimensionality of many-body config-
urations due to the large number of resonant and complex continuum states necessary to reproduce
bound and resonant state energies. We address this problem using two different effective operator
approaches generalized to the complex momentum plane. These are the Lee-Suzuki similarity trans-
formation method for complex interactions and the multi-reference perturbation theory method. The
combination of these two approaches results in a large truncation of the relevant configurations com-
pared with direct diagonalization. This offers interesting perspectives for studies of weakly bound
systems.

I. INTRODUCTION

We expect that present and proposed nuclear structure
research facilities for radioactive beams will open new
territory into regions of heavier nuclei. Such systems
pose significant challenges to existing nuclear structure
models since many of these nuclei will be unstable and
short-lived. How to deal with weakly bound systems and
coupling to resonant states is an open and interesting
problem in nuclear spectroscopy. Weakly bound systems
cannot be properly described within a standard shell-
model approach since even bound states exhibit a strong
coupling with the continuum.

It is therefore important to investigate theoretical
methods that will allow for a description of systems in-
volved in such element production. Ideally, we would like
to start from an ab initio approach with the free nucleon-
nucleon interaction and eventually also three-body inter-
actions as the basic building blocks for the derivation of
an effective shell-model interaction. The newly developed
Gamow shell model offers such a possibility, see for ex-
ample Refs. [1, 2, 3, 4, 5, 6, 7, 8, 9]. Similarly, the recent
work on the continuum shell-model by Volya and Zelevin-
sky [10] conveys similar interesting prospectives. Here
we focus on the Gamow shell model, which has proved
to be a powerful tool in describing and understanding
the formation of multi-particle resonances within a shell-
model formulation. Representing the shell-model equa-
tions using a Berggren basis [11, 12, 13, 14, 15, 16], allows
for a simple interpretation of multi-particle resonances
in terms of single-particle resonances, as opposed to the
traditional harmonic oscillator representation, where res-
onances never appear explicitly.

Although the Gamow shell-model approach is a pow-
erful tool in this respect, there are major computational
and theoretical challenges that need to be overcome if
we aim at a realistic description of weakly bound and
unbound nuclei. One of the challenges regarding the
Gamow shell model discussed in Refs. [4, 5], was the
problem of choosing a contour in the complex k-plane
that in the many-particle case selects the physical inter-
esting states from the dense distribution of continuum
states. In Refs. [4, 5] the authors employ a “square-
well” contour, which in the two-particle case separates
the resonances from the complex-continuum states. In
the case where more than two particles are present in
the shell-model space, the resonant states mix with the
complex continuum states, and an identification of the
multi-particle resonances becomes difficult.

In this work we consider as a test case the light
drip-line nuclei 5,6,7He, and the formation of resonances
in these nuclei starting from a single-particle picture.
These nuclei have also been studied with a number of
other methods, see for example Ref. [17], and references
therein. We construct a single-particle basis using the
contour deformation method in momentum space, dis-
cussed in detail in Ref. [16], see also Ref. [18] for further
references on complex scaling. We show that choosing a
rotated plus translated contour in the complex plane, a
large portion of the many-particle energy surface is free
from complex continuum states. This choice of contour
isolates the physical resonances, and allows for a clear
distinction of many-particle resonances from the dense
distribution of complex continuum states, also in the case
when the number of particles exceeds two.

The most severe problem and future challenge is that
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the shell-model dimension increases dramatically for n >
2 particles moving in a large valence space, this is what
we henceforth refer to as the dimensionality problem.
Using a technique such as the traditional Lanczos itera-
tion method [19] fails in Gamow shell-model calculations.
Dealing with large real symmetric matrices, the Lanczos
scheme is a powerful method when one wishes to calcu-
late the states lowest in energy. In Gamow shell-model
calculations there may be a large number of complex con-
tinuum states lying below the physical resonances in real
energy. In addition it is difficult to predict where the
multi-particle resonances will appear after diagonaliza-
tion. In Refs. [6, 7] this problem was circumvented by
choosing a small number of complex continuum states in
the single-particle basis. It was also pointed out that the
results obtained were not converged with respect to the
number of single-particle continuum orbits. In Ref. [2]
another approach was considered, where at most two
particles where allowed to move in complex continuum
states. This was based on the assumption that these
configurations play the dominant role in the formation of
many-particle resonances, and configurations where more
than two particles move in continuum states could be ne-
glected.

Our aim in this work is to propose an effective in-
teraction scheme which allows for a much larger num-
ber of complex continuum states in the calculations, and
in addition takes into account the mixing of configura-
tions where all particles may move in complex contin-
uum states. We show that if one aims at accurate cal-
culations of the multi-particle resonances, the effect of
all particles moving in the continuum may not always be
neglected. Our choice of contour allows for a perturba-
tive treatment of the many-particle resonances, and we
propose a perturbation theory based scheme which com-
bines the Lee-Suzuki similarity transformation method
[20, 21, 22, 23] and the so-called multi-reference pertur-
bation method [24, 25, 26] to account for couplings with
configurations where all single-particles move in complex
continuum states.

Presently, Gamow shell-model calculations have been
performed with phenomenological nucleon-nucleon in-
teractions. A major challenge is to construct effective
nucleon-nucleon interactions for drip-line nuclei starting
from a realistic nucleon-nucleon interaction. In this pa-
per we focus on the choice of contour and the dimen-
sionality problem. The effective nucleon-nucleon inter-
action adopted is purely phenomenological. However,
the scheme we present, although implemented with a
phenomenological nucleon-nucleon interaction, allows to
define effective interactions computed with the complex
scaled single-particle basis. The problem of construct-
ing an effective interaction based on present interaction
models for the nucleon-nucleon force will be considered
in a forthcoming work.

The outline of this work is as follows. Sec. II gives a
brief description of the contour deformation method in
momentum space, and presents calculations of the en-

ergy spectrum of the nuclei 5,6,7He. Sec. III presents
first the Lee-Suzuki transformation method generalized
to complex interactions. Thereafter we apply the similar-
ity transformation method to the unbound nucleus 7He
and give a convergence study of its Jπ = 3/2−1 ground
state resonance. Sec. IV gives a brief outline of the multi-
reference perturbation method, and its application to the
ground state of 7He. In Sec. V we present an effective
interaction scheme, which combines the Lee-Suzuki sim-
ilarity transformation and the multi-reference perturba-
tion method, for calculation of multi-particle resonances
in weakly bound nuclei. Sec. VI gives the conclusions of
the present study and future perspectives and challenges
for Gamow shell-model calculations.

II. THE GAMOW SHELL MODEL

The newly developed Gamow shell model has proved
to be a powerful tool in describing and understanding
multi-particle resonances appearing in nuclei near the
drip-lines. Here we discuss how two- and three-particle
resonances are formed in 6He and 7He, and how they are
to be understood in terms of a single-particle picture.
The specific choice of contour in the complex k-plane
makes it easy to identify and interpret the multi-particle
resonances. In this section no truncations are made, all
possible configurations within a model space are used in
the shell model calculations.

A. Berggren Basis in the Momentum

Representation

In Ref. [16] we studied the contour deformation method
applied to the momentum space Schrödinger equation.
It was discussed and shown how the specific choices of
contours based on the analytic structure of the poten-
tial may allow for a unified description of bound, anti-
bound (virtual) and resonant states. We will apply this
method to obtain a single-particle Berggren basis for use
in Gamow shell-model calculations. Here we briefly out-
line the contour deformation method, and refer the reader
to Ref. [16] for a more rigorous discussion.

The analytically continued Schrödinger equation on a
general inversion symmetric contour takes the form

~
2

2µ
k2ψnl(k) +

2

π

∫

C+

dqq2Vl(k, q)ψnl(q) = Enlψnl(k).

(1)
Here both k and q are defined on an inversion symmetric
contour C+ in the lower half complex k-plane, resulting
in a closed integral equation. The eigenfunctions consti-
tute a complete bi-orthogonal set, normalized according
to the Berggren metric [11, 12, 13, 14, 15], namely

1 =
∑

n∈C

|ψnl〉〈ψ∗
nl| +

∫

C+

dkk2|ψl(k)〉〈ψ∗
l (k)|. (2)
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In this work we construct a single-particle Berggren en-
semble on a rotated plus translated contour, CR+T , in
the complex k-plane, studied in detail in Ref. [16]. The
contour C+

R+T is part of the inversion symmetric contour

CR+T = C+
R+T + C−

R+T displayed in Fig. 1. The com-
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FIG. 1: Contour C+

R+T = L1 + L2 + L3 is given by the solid

line, while the contour C−

R+T is given by the dashed line. The

contour CR+T = C+

R+T + C−

R+T is inversion symmetric. The
single-particle spectrum which is exposed by this contour is
marked by filled circles • and the excluded spectrum by open
circles ◦. The full spectrum includes bound states (B), anti-
bound (A), decay (D) and capture (C) resonant states.

plete set of single-particle orbits defined by this contour
will then include anti-bound, bound and resonant states.
This basis serves as our starting point for Gamow shell-
model calculations.

B. Single-Particle Spectrum of 5He

We consider first the unbound nucleus 5He. This nu-
cleus may be modeled by an inert 4He core with a neu-
tron moving mainly in the resonant spin-orbit partners
p3/2 and p1/2. The Jπ = 3/2−1 resonance, to be asso-
ciated with the single-particle orbit p3/2, is experimen-
tally known to have a width of Γ ≈ 0.60 MeV while the
Jπ = 1/2−1 resonance, associated with the single-particle
orbit p1/2, has a large width Γ ≈ 4 MeV. For more infor-
mation on these systems, see for example the recent re-
view by Jonson [17]. The core-neutron interaction in 5He
may be phenomenologically modeled by the SBB (Sack,
Biedenharn and Breit) potential [27]. The SBB poten-
tial is of Gaussian type with a spin-orbit term, fitted to
reproduce the neutron - 4He scattering phase shifts. In
momentum space the SBB potential, which consist of a

central part c and a spin-orbit term ~σ~l, reads

Vlj(k, k
′) = V c

lj(k, k
′) + (~σ ·~l )V σl

lj (k, k′), (3)

with

V i
l,j(k, k

′) = −gi
π

4α2
i

1√
kk′

exp(−
(

k2 + k′
2

4α2
i

)

)Il+1/2

(

kk′

2α2
i

)

,

(4)
where the subscripts lj refer to the single-particle orbital
and angular momentum quantum numbers l and j, re-
spectively. The term Il+1/2(z) is a Bessel function of the
first kind with complex arguments. Fitting this poten-
tial to reproduce the 5He single-particle spectrum and
phase-shifts results in gc = 47.4 MeV, gσl = 5.86 MeV
and αc = ασl = 2.3 fm−1.

In the complex k-plane the Gaussian potential diverges
exponentially for |Im[k]| > |Re[k]|. If we apply the com-
plex scaling technique, which consists of solving the mo-
mentum space Schrödinger equation on a purely rotated
contour, we get the restriction θ < π/4 on the rotation
angle. Even for smaller angles we may get a poor con-
vergence, since the Gaussian potential oscillates strongly
along the rotated contours. On the other hand, choosing
a contour of the type C+

R+T solves this problem, allowing
for a continuation in the third quadrant of the complex
k-plane. Furthermore, it yields a faster and smoother de-
cay of the Gaussian potential along the chosen contour.

Since 5He has only resonances in its spectrum, viz., no
anti-bound states, there is no need for an analytic con-
tinuation in the third quadrant of the complex k-plane,
as done in Ref. [16] for the free nucleon-nucleon interac-
tion. We choose a contour of the type C+

R+T rotated with
θ = π/4 and translated with |Im[k]| = 0.4 sin(π/4) ≈
0.28 fm−1 in the fourth quadrant of the complex k-plane.
Figs. 2 and 3 give plots of the single-particle spectrum in
5He for the spin-orbit partners p3/2 and p1/2 respectively.
We have used 50 integration points along the rotated CR,
and the translated CT parts of the contour C+

R+T in the
complex k-plane.
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FIG. 2: Plot of the p3/2 single-particle spectrum in 5He for
a Gaussian single-particle potential. The resonance is well
located. The remaining points represent the non-resonant
continuum.

Table I gives the convergence of the p3/2 and the
p1/2 single-particle resonances as function of integration
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FIG. 3: Plot of the p1/2 single-particle spectrum in 5He for
a Gaussian single-particle potential. The resonance is well
located. The remaining points represent the non-resonant
continuum.

points along the contour CR+T . We observe that with
12 points along the rotated path and 12 points along
the translated line, one has a reasonable convergence of
the resonance energy, giving in total 48 single-particle
states for the valence space consisting of the lj orbits
{p3/2, p1/2} with their pertinent momenta k defined by
the number of mesh points. It is clear that if several
particles were to move in this space, the dimensional-
ity would become enormous. It is therefore important,
even at the single-particle stage, to optimize the distri-
bution of continuum states, in order that the main fea-
tures of the system are reproduced with a small num-
ber of single-particle resonances and complex continuum
states. Notice also that the calculated width of the 1/2

−

TABLE I: Convergence of p3/2 and p1/2 resonance energies in
5He as function of the number of integration points NR along
the rotated CR and NT along the translated part CT of the
contour. Energies are given in units of MeV.

Jπ = 3/2− Jπ = 1/2−

NR NT Re[E] Im[E] Re[E] Im[E]

10 10 0.752321 -0.329830 2.148476 -2.912522

12 12 0.752495 -0.327963 2.152992 -2.913609

20 20 0.752476 -0.328033 2.154139 -2.912148

30 30 0.752476 -0.328033 2.154147 -2.912162

40 40 0.752476 -0.328033 2.154147 -2.912162

resonance is somewhat larger (≈ 6 MeV) than the exper-
imental value (≈ 4 MeV), see Ref. [17].

C. Two-Particle Resonances in 6He

Here we present results for the resonant spectra of 6He.
We employ again a shell-model picture with 6He modeled
by an inert 4He core and two valence neutrons moving
in the lj orbits {p3/2, p1/2}, ignoring the recoil from the

core. The model space consists then of all momenta k de-
fined by the set of mesh points along the various contours,
pertinent to these two lj orbits. Using the single-particle
wave functions for 5He of Subsec II B, we can in turn con-
struct an anti-symmetric two-body wave function based
on these single-particle wave functions, viz.,

ΨJM
α (1, 2) =

∑

a≤b

CJM
a,b ΦJM

a,b (1, 2), (5)

where the indices a, b represent the various single-particle
orbits. Here ΦJ

a,b(1, 2) is an anti-symmetric two-particle
basis state in the j − j coupling scheme. The sum over
single-particle orbits is limited by a ≤ b since we deal
with identical particles only. The expansion coefficients
fulfill the completeness relation

1 =
∑

a≤b

(

CJM
a,b

)2
, (6)

and the two-particle Berggren basis forms a complete set

1 =
∑

a≤b

|ΦJM
a,b (1, 2)〉〈Φ̃JM

a,b (1, 2)|. (7)

Here 〈Φ̃JM
a,b (1, 2)| is the complex conjugate of 〈ΦJM

a,b (1, 2)|.
As an effective two-neutron interaction Vij we use a phe-
nomenological interaction of Gaussian type, separable in
ri, rj, given by

Vij(ri, rj) = V0 exp(−α2(r2i + r2j ))
∑

λ

(Yλ(i) ·Yλ(j)). (8)

Two model spaces were considered. The first case in-
cludes only the p3/2 single-particle orbit for various val-
ues of the momentum k to be defined below. The second
model space includes also the p1/2 single-particle orbit
and its relevant momenta. For both model spaces we
fit the interaction strength to reproduce the 0+ binding
energy in 6He. We have observed that the position of
the 2+ resonance in 6He depends on the range α of the
Gaussian interaction, even though the 0+ ground state
does not change with α. Unfortunately it turns out that
for larger values of α the energy fit is better, but the
convergence as function of meshpoints is poorer. In our
calculations we have chosen a value of α which is a com-
promise between a small number of mesh points along
the contour and a reasonable good fit of the resonant
energy spectra. This demonstrates that the two-particle
resonant spectrum depends on the radial shape of the in-
teraction and suggests that we should rather deal with
an effective interaction derived from realistic models for
the nucleon-nucleon interaction. The parameters used
in our calculations are V0 = −5.315 MeV for the model
space involving only the (p3/2) states and V0 = −4.549
MeV for a model space consisting of both single-particle
quantum states p3/2 and p1/2. We use α = 4.8 fm−1 for
both model spaces.

Figs. 4 and 5 show the 0+ and 2+ energy spectrum,
respectively, for 6He after a full diagonalization of the
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two-particle shell-model equation. Here the model space
is defined by the p3/2 and p1/2 single-particle orbits. This

model space yields a bound 0+ state as well as a resonant
0+ state. Moreover, we obtain two resonant 2+ states.
Observe that the choice of contour (C+

R+T ) separates all
physical relevant states from the dense distribution of
complex continuum states in the energy plane. By this
choice of contour the identification of multi-particle res-
onances is fairly easy, and one may study the resonant
trajectories as the interaction strength is varied.
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FIG. 4: Plot of 0+

1 bound- and 0+

2 resonant state in 6He for
a model space consisting of the p3/2 and p1/2 single-particle
orbits. The bound and resonant states are well located. The
remaining points represent the non-resonant continuum.
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FIG. 5: Plot of 2+ resonances in 6He for a model space consist-
ing of the p3/2 and p1/2 single-particle orbits. Both resonant
states are well located. The remaining points represent the
non-resonant continuum.

The stability of the 0+ and 2+ results as function of the
number of mesh points is demonstrated in Tables II and
III. Limiting first the attention to a model space consist-

ing only of the p3/2 orbit, we note that with NR = 12 in-
tegration points along the rotated path CR and NT = 12
points along the translated line CT , convergence is sat-
isfactory, even with a total of 300 two-particle states.

TABLE II: Convergence of the 0+

1 bound state energy in 6He
in terms of the number integration points NR and NT along
the rotated CR and the translated part CT of the contour,
respectively. The number N2p gives the dimension of the two-
particle anti-symmetrized basis. Here only p3/2 single-particle
orbits are included. Energies are given in units of MeV.

NR NT N2p Re[E] Im[E]

12 12 300 -0.980067 -0.000759

20 20 820 -0.979508 0.000000

25 25 1275 -0.979509 0.000000

TABLE III: Convergence of the 2+

1 resonant state energy in
6He as function of the number of integration points NR and
NT along the rotated CR and the translated part CT of the
contour, respectively. The number N2p gives the dimension
of the two-particle anti-symmetrized basis. Here only p3/2

single-particle orbits are included, and energies are given in
units of MeV.

NR NT N2p Re[E] Im[E]

12 12 300 1.215956 -0.267521

20 20 820 1.216495 -0.267745

25 25 1275 1.216496 -0.267745

Tables IV, V and VI repeat the above convergence anal-
ysis, but now employing a model space consisting of the
p3/2 and p1/2 single-particle orbits, and including also

the results for the lowest-lying 6He state with quantum
numbers Jπ = 1+. Increasing the model space brings
several new features. We note in Table IV that the first
excited 0+

2 state is a resonance. However, the stabil-
ity of the results as functions of the number of mesh
points is comparable to that seen in Tables II and III.
With approximately 12 mesh points we obtain results
close to the converged ones. Similar conclusions apply

TABLE IV: Convergence of 0+

1 bound and the 0+

2 resonant
state energy in 6He as function of the number of integra-
tion points NR and NT along the rotated CR and the trans-
lated part CT of the contour, respectively. The number N2p

gives the dimension of the two-particle anti-symmetrized ba-
sis. Here the p3/2 and p1/2 single-particle orbits are included.
Energies in units of MeV.

Jπ = 0+

1 Jπ = 0+

2

NR NT N2p Re[E] Im[E] Re[E] Im[E]

12 12 600 -0.980111 -0.000497 4.289194 -3.882119

20 20 1640 -0.979148 -0.000000 4.286186 -3.882878

25 25 2550 -0.979148 0.000000 4.286181 -3.882876

to the 1+
1 resonance and the two lowest-lying 2+ reso-
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nant states, see Tables V and VI for more details. We

TABLE V: Convergence of the 1+

1 resonance as function of the
number of integration points NR and NT along the rotated
CR and the translated part CT of the contour, respectively.
The number N2p gives the dimension of the two-particle anti-
symmetrized basis. Here the p3/2 and p1/2 single-particle or-
bits are included. Energies in units of MeV.

Jπ = 1+

NR NT N2p Re[E] Im[E]

12 12 1128 1.945539 -2.920286

20 20 3160 1.940263 -2.930619

25 25 4950 1.940266 -2.930608

TABLE VI: Convergence of the 2+

1 and 2+

2 resonance energy
in 6He as function of the number of integration points NR and
NT along the rotated CR and the translated part CT of the
contour, respectively. The number N2p gives the dimension
of the two-particle anti-symmetrized basis. Here the p3/2 and
p1/2 single-particle orbits are included. Energies in units of
MeV.

Jπ = 2+

1 Jπ = 2+

2

NR NT N2p Re[E] Im[E] Re[E] Im[E]

12 12 876 1.149842 -0.203052 2.372295 -2.122474

20 20 2420 1.150527 -0.203060 2.372818 -2.123253

25 25 3775 1.150527 -0.203060 2.372817 -2.123254

note that the experimental value for the width of the
first excited Jπ = 2+

1 is Γ ≈ 113 KeV and the energy
is Re[E]2+

1

= 1797 KeV. Our simplified nucleon-nucleon

interaction gives a qualitative reproduction of the data.
In a future work we plan to include a realistic nucleon-
nucleon interaction for studies of such systems.

We end this subsection by analyzing the squared
amplitude of the single-particle configurations
|RR〉, |RC〉, |CC〉 of the 0+, 1+ and 2+ bound- and
resonant wave functions. The results are shown in
Tables VII,VIII, IX, X and XI. The reason for doing this
analysis is due to the fact that our single-particle basis
consists of resonant and continuum single-particle orbits.
By performing such an analysis we can disentangle
the contribution from for example the non-resonant
continuum. In these tables, |RR〉 stands for both
single-particle orbits being a resonant single-particle
orbit, |RC〉 means that one single-particle orbit is a
resonant single-particle orbit and the other a non-
resonant continuum single-particle orbit, while for |CC〉
both single-particle orbits are from the non-resonant
single-particle continuum. All the results show that the
configurations where both single-particles are resonant
orbits, have the largest amplitude in the two-body wave
function. It is also seen, that the configurations where
both particles are in complex continuum states have a
small effect on the formation of two-particle resonances
in 6He. This is a useful result which we will exploit

below when we define effective interactions for smaller
spaces.

TABLE VII: Expansion coefficients of the 0+

1 bound state in
6He. The p3/2 and p1/2 single-particle orbits define the model
space. See text for further discussions.

(

p2
3/2

) (

p2
1/2

)

Re[C2] Im[C2] Re[C2] Im[C2]

|RR〉 1.10488 -0.83161 0.22620 -0.16120

|RC〉 -0.06036 0.88137 -0.19842 0.22423

|CC〉 -0.09716 -0.04974 0.02486 -0.06305

TABLE VIII: Expansion coefficients of the 0+

2 resonance in
6He. The p3/2 and p1/2 single-particle orbits define the model
space. See text for further discussions.

(

p2
3/2

) (

p2
1/2

)

Re[C2] Im[C2] Re[C2] Im[C2]

|RR〉 -0.01136 -0.08003 0.90189 0.33029

|RC〉 0.04282 -0.03939 0.05966 -0.24478

|CC〉 0.00617 0.00494 0.00082 0.02896

TABLE IX: Expansion coefficients of the 1+ resonance in
6He. The p3/2 and p1/2 single-particle orbits define the model
space. See text for further discussions.

(

p1/2p3/2

) (

p2
1/2

) (

p2
3/2

)

Re[C2] Im[C2] Re[C2] Im[C2] Re[C2] Im[C2]

|RR〉 0.71068 -0.03739

|RC〉 0.00381 -0.06948 0.00016 0.00003 0.02224 0.01171

|CR〉 0.20647 0.05208 0.00037 0.00071 0.07067 0.03807

|CC〉 -0.00984 -0.00149 -0.00031 -0.00009 -0.00424 0.00585

D. Three-Particle Resonances in 7He

Finally we consider the unbound nucleus 7He, whose
ground state (Jπ = 3/2−) is located ≈ 0.5 MeV above the
6He ground state, with a measured width Γ ≈ 160 keV.
Other continuum structures, with tentative spin assign-
ments Jπ = 1/2−, and Jπ = 5/2−, have been observed,
see for example Ref. [17] for an extensive review of the
experimental situation. In this subsection we limit the at-
tention to a model defined by the p3/2 single-particle or-

bits only. Thus our single-particle basis from 5He implies
that only a Jπ = 3/2

−
resonance may be formed. The

reason we do not include the p1/2 single-particle orbits is
that we aim at a diagonalization in the full space, tak-
ing into account all complex continuum couplings. This
model calculation will serve as a later reference. In the
case of 24 mesh points in momentum space for the p3/2

single-particle quantum numbers lj, the total dimension
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TABLE X: Expansion coefficients of the 2+

1 resonance in
6He. The p3/2 and p1/2 single-particle orbits define the model
space. See text for further discussions.

(

p1/2p3/2

) (

p2
3/2

)

Re[C2] Im[C2] Re[C2] Im[C2]

|RR〉 0.11394 -0.00494 0.96962 0.05539

|RC〉 -0.00474 0.02531 -0.00178 -0.00018

|CR〉 -0.02776 -0.03796 -0.05069 -0.02708

|CC〉 0.00229 -0.00772 -0.00089 -0.00282

TABLE XI: Expansion coefficients of the 2+

2 resonance in
6He. The p3/2 and p1/2 single-particle orbits define the model
space. See text for further discussions.

(

p1/2p3/2

) (

p2
3/2

)

Re[C2] Im[C2] Re[C2] Im[C2]

|RR〉 0.88847 -0.03742 0.08911 -0.03742

|RC〉 -0.04888 0.05674 -0.00104 -0.00055

|CR〉 0.06058 -0.03336 -0.00072 -0.02469

|CC〉 0.01131 -0.00447 0.00115 -0.00220

d of the (Jπ = 3/2−) three-particle problem is d = 9224,
if, in addition, we were to include 24 single-particle mo-
menta for the p1/2 single-particle quantum numbers lj,
we would have roughly d ∼ 40000 three-body configura-
tions.

In Refs. [6] and [7] the dimensionality problem was
circumvented by choosing a small number complex con-
tinuum states, typically of the order of five, although it
was found that a larger number continuum states had to
be included to obtain converged results. Our aim in this
subsection is to study the full effect of a coupling to the
complex continuum, and show that if one is to obtain
accurate results, the effect of all particles moving in the
continuum on the formation of multi-particle resonances
may be important. In addition we include a larger num-
ber of continuum states, in order to achieve a satisfactory
convergence. As for 6He, we construct a three-body wave
function using the single-particle wave functions defined
in 5He. The three-body wave function is expanded in a
three-particle anti-symmetric Berggren basis

ΨJM
α (1, 2, 3) =

∑

a≤b≤c

CJM
(a,b)cΦ

JM
(a,b)c(1, 2, 3), (9)

where the completeness relation reads

1 =
∑

a≤b≤c

|ΦJM
(a,b)c(1, 2, 3)〉〈Φ̃JM

(a,b)c(1, 2, 3)|, (10)

with

1 =
∑

a≤b≤c

(CJM
(a,b)c))

2. (11)

The two-body nucleon-nucleon interaction is the same
as that used for 6He. Fig. 6 gives the energy spectrum af-
ter a full diagonalization of the three-particle shell-model

equation. It is seen that the choice of contour in cal-
culating the single-particle spectrum is again optimal if
we wish to consider the fact that all physical interest-
ing states are well separated from the dense distribution
of complex scattering states. The Jπ = 3/2− resonance
appears at the energy E3/2− = −(0.12 + 0.12i) MeV.

The plotted energy spectrum shows that the 0+ and 2+

states in 6He, and the 3/2− state in 5He, form complex
thresholds in the energy spectrum of the Jπ = 3/2− spec-
trum in 7He, see Tables. I, II and III. The physical inter-
pretation of these three-particle states is, in the case of
the 6He thresholds, that two of the neutrons form either
the 0+ ground state or the 2+ resonant state, while the
third neutron is moving in a complex continuum state. A
diagonalization within the reduced space, where at most
two particles move in continuum states gives the reso-
nance energy −(0.14+0.16i) MeV, which shows that the
effect coming from all particles moving in the continuum
is not negligible, but small.

−1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Re[E] MeV

Im
[E

] M
eV

0+ threshold 

2+ threshold 
J = 3/2 
resonance 

FIG. 6: Plot of the 3/2− complex energy spectrum of 7He for a
model space consisting of p3/2 single-particle orbits only. The

Jπ = 3/2− resonance is located at E3/2− = −(0.120731 +
0.122211i) MeV.

Table XII gives the squared amplitudes of the vari-
ous single-particle configurations in the 7He ground state,
{|RRR〉, |RRC〉, |RCC〉, |CCC〉} , whereR again labels a
single-particle resonance and C a complex single-particle
continuum orbit. It is seen that the most important con-
figuration, as in the case of 6He, is the one where all
single-particles are in the p3/2 single-particle resonant or-
bit. The effect of configurations where all particles are
in continuum states is small, which suggest that the cou-
pling to configurations |CCC〉 may be taken into account
perturbatively. This a feature we will exploit in Secs. III
and IV.

In Fig. 6 we note that the Jπ = 3/2− ground state in
7He appears at energy of approximately 0.86 MeV above
the ground state in 6He, while the experimental value is
at approximately 0.5 MeV. This discrepancy with exper-
iment can be understood in terms of the configuration
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|RRR〉, and the choice of interaction. Focusing on the
first aspect and using coefficients of fractional parentage,
we can rewrite the |RRR〉 configuration as

|(p3/2)
3; Jπ = 3/2−〉 =

1

6
|(p3/2)

2
0p3/2; J

π = 3/2−〉−
√

5

6
|(p3/2)

2
2p3/2; J

π = 3/2−〉.
(12)

From the geometry one may conclude that the ground
state of 7He bears much more resemblance with the 2+

1

resonance than with the 0+
1 ground state of 6He. In

our calculations the 2+
1 resonance comes at an energy

≈ (1.2−0.26i) MeV, which is roughly 2.2 MeV above the
0+
1 ground state of 6He, to be contrasted with the exper-

imental value of ≈ 1.8 MeV, see Fig. 6. This suggests
that if we were to increase the attractive strength of the
Jπ = 2+ interaction in 6He and get a better agreement
with the experimental value, the Jπ = 3/2− resonant
ground state of 7He would get closer to the experimental
results.

TABLE XII: Expansion coefficients of the Jπ = 3/2− ground
state in 7He. Here only p3/2 single-particle orbits are included.

|p3
3/2〉

Re[C2] Im[C2]

|RRR〉 1.295549 -0.986836

|RRC〉 -0.184544 1.099729

|RCC〉 -0.115738 -0.110375

|CCC〉 0.004733 -0.002518

III. EFFECTIVE INTERACTIONS FOR THE

GAMOW SHELL MODEL

A. The Lee-Suzuki Similarity Transformation for

Complex Interactions

The previous section served to introduce and motivate
the application of complex scaling in studies of weakly
bound nuclear systems. However, employing such a mo-
mentum space basis soon exceeds feasible dimensionali-
ties in shell-model studies. To circumvent this problem
and to be able to define effective interactions of prac-
tical use in shell-model calculations, we introduce effec-
tive two-body interactions based on similarity transfor-
mation methods. These interactions are in turn employed
in Gamow shell-model calculations. We base our ap-
proach on the extensive works of Suzuki, Okamoto, Lee
and collaborators, see for example Refs. [20, 21, 22, 23].
This similarity transformation method has been widely
used in the construction of a effective two- and three-
body interactions for use in the No-Core shell-model ap-
proach of Barrett, Navratil, Vary and collaborators, see
for example Refs. [28, 29, 30, 31] and references therein.
However, since the similarity transformation method has
previously only been considered for real interactions, we

need to extend its use to Gamow shell-model calcula-
tions, implying a generalization to complex interactions.
To achieve the latter we introduce first the two-body
Schrödinger equation

(H0 + V12)|ψn〉 = En|ψn〉, (13)

here H0 includes the single-particle part of the Hamil-
tonian, kinetic energy and an eventual single-particle in-
teraction. The term V12 is the residual two-body inter-
action. We then expand the exact wave function ψn in
the anti-symmetric two-particle basis, generated by the
single-particle basis of H0, which corresponds to the ba-
sis from the 5He calculations of Subsec. II B. Thereafter
we choose a suitable single-particle model space p and its
complement space q. These single-particle spaces define
in turn our two- and many-particle model spaces

P =
∑

αP

|αP 〉〈α̃P |, (14)

and the complement space

Q =
∑

αQ

|αQ〉〈α̃Q|, (15)

where P is defined by both single-particle orbits being in
the p−space, and the complement space Q is given by all
two particle states where at least one particle is in the q-
space. The anti-symmetric two-particle basis follows the
Berggren metric

〈α̃′|α〉 = 〈α′∗|α〉 = δα′,α, (16)

and the projection operators fulfill the relations

P 2 = P, Q2 = Q, PT = P, (17)

and

QT = Q, P +Q = 1, PQ = 0. (18)

We wish to construct an effective two-body interaction
within the model space, reproducing in the P -space ex-
actly the NP model space eigenvalues of the full Hamil-
tonian. This can be accomplished by a similarity trans-
formation

H̃ = e−ωHeω, (19)

where ω is defined by ω = QωP . It follows that
ω2 = ω3 = ... = 0 and eω = P + Q + ω. The two-body
Schrödinger equation can then be rewritten in terms of
a 2 × 2 block structure

(

PH̃P PH̃Q

QH̃P QH̃Q

)(

Pψn

Qψn

)

= En

(

Pψn

Qψn

)

. (20)

If PH̃P is to be the two-particle effective interaction, the
decoupling condition PH̃Q = 0 must be fulfilled. One
may show that the decoupling condition becomes

QHP +QHQω − ωPHP − ωPHQω = 0, (21)
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with ω acting as a transformation from the model space
P to its complement Q, viz.,

〈α̃Q|ψn〉 =
∑

αP

〈α̃Q|ω|αP 〉〈α̃P |ψn〉. (22)

There is however no unique solution for ω. The effec-
tive interaction generated in the model space depends
on the NP exact solutions entering Eq. (22). This is
why the effective interaction generated by the similarity
transformation method is often referred to as a state de-
pendent effective interaction. The solution for ω may be
obtained as long as the matrix 〈α̃P |ψn〉 is invertible and
non-singular. Based on this we choose those NP exact
solutions with the largest overlap with the two-particle
model space. With the solution ω, the non-symmetric
effective interaction R is given by

R = PH̃P − PH0P = PV12P + PV12Qω. (23)

It would be preferable to obtain a complex symmetric
effective interaction, in order to take advantage of the
anti-symmetrization of the two-particle basis. This may
be accomplished by a complex orthogonal transformation

Veff = U−1(H0 + V12)U −H0, (24)

where U is complex orthogonal and defined by

U = exp(−S), S = arctanh(ω − ωT ), (25)

and

UTU = UUT = 1, UT = U−1. (26)

Such complex orthogonal transformations preserve the
Berggren metric xTx of any vector x ∈ {Cn}. This fea-
ture allows us to define a complex and symmetric effective
two-body interaction

Veff = (P+ωTω)1/2(PHP+PHQω)(P+ωTω)−1/2−H0.
(27)

In determining Veff , one has to find the square root of
the matrix A = (P + ωTω). In the case of A being real
and positive definite the method based on eigenvector
decomposition gives generally a stable solution. Using
the eigenvector decomposition, with Z representing an
orthogonal matrix, D being a diagonal matrix composed
of the eigenvalues, using A = ZDZT , ZTZ = ZZT = 1,
D = (D)1/2(D)1/2, and

A =
(

ZD1/2ZT
)(

ZD1/2ZT
)

, (28)

we can write the square root of a matrix A as

A1/2 = ZD1/2ZT . (29)

For a complex matrix A the procedure based on eigen-
vector decomposition is generally numerically unstable.
An approach suitable for complex matrices is based on
properties of the matrix sign function. It can be shown
that the square root of the matrix is related to the matrix

sign function, see Ref. [32] for more details. In the case of
A being complex and having all eigenvalues in the open
right half complex plane, iterations based on the matrix
sign function are generally more stable

sign

([

0 A

I 0

])

=

[

0 A1/2

A−1/2 0

]

. (30)

One stable iteration scheme for the matrix sign was de-
rived by Denman and Beavers [33], as a special case of a
method for solving the algebraic Riccati equation

Y0 = A, Z0 = I, (31)

Yk+1 =
1

2
(Yk + Z−1

k ), (32)

Zk+1 =
1

2
(Zk + Y −1

k ), k = 0, 1, 2, ..., (33)

and provided A has no non-positive eigenvalues this iter-
ation scheme exhibits a quadratic convergence rate with

Yk → A1/2, Zk → A−1/2 as k → ∞. (34)

In our calculations, convergence is typically obtained af-
ter a few iterations.

B. Gamow Shell-Model Studies of 7He with the

Similarity Transformation Method

Here we apply the Lee-Suzuki similarity transforma-
tion method to the Gamow shell-model calculation of the
ground state of 7He. The first problem is to define an
optimal single-particle model space, which subsequently
defines the two-particle model space, where the effective
interaction is constructed. In Sec. II it was shown that
the Jπ = 3/2− ground state of 7He has the 2+ reso-
nance in 6He as an important two-body configuration, see
Eq. (12). Based on this result, a viable starting point is
to study the single-particle strengths in the 2+ resonance
wave function. To understand the nature of two-particle
resonances and how they are formed in a shell-model
framework, it is natural to study and analyze the single-
particle strengths in the two-particle wave function, and
how they are distributed among the single-particle reso-
nances and the various complex continuum orbits, given
on a specific contour in the complex k-plane. The single-
particle density operator is given by

n̂i =

N
∑

j

|ψi(j)〉〈ψ̃i(j)|, N =
∑

i

n̂i, (35)

where N is the total number of particles, i = {li, ji}
labels the single-particle quantum numbers and i repre-
sents the single-particle orbit. In the case of 6He with
an inert 4He core, N = 2. Finding the probability, ni,
that either particle 1 or particle 2 is in the single-particle
orbit i = {li, ji}, we calculate the matrix element of n̂i

with the two-particle resonance wave function
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ni = 〈Ψ̃J
α(1, 2)|n̂i|ΨJ

α(1, 2)〉 =
∑

a≤b

∑

c≤d

Cα
a,bC

α
c,d

(

1

(1 + δa,b)(1 + δc,d)

)1/2

×

{δd,i δc,i δb,d + (−1)jc+ji−J+1δa,iδd,iδb,c + δb,iδd,iδa,c + (−1)ja+ji−J+1δb,iδc,iδa,d}. (36)

Fig. 7 gives the real, imaginary and absolute values of
the single-particle strengths among the complex contin-
uum orbits, in the 2+ resonance in 6He. The strengths
are plotted as a function of the absolute value of the
complex continuum energy. Observe that the continuum
states near the 2+ resonance in 6He have the largest
strengths. This may be understood as an interference
effect between the single-particle resonances and the con-
tinuum orbits located closest in energy (momentum) to
the single-particle resonance. When defining a single-
particle model space, we choose the single-particle reso-
nant and complex continuum orbits with the largest abso-
lute value of the single-particle strength. With this recipe
we have a consistent way of defining a single-particle
model space, which forms the basis for constructing an
effective interaction in the two-particle model space.

In Figs. 8 and 9 we show the convergence of the real
and imaginary part of the Jπ = 3/2− resonance in 7He,
as function of an increasing single-particle model space.
For comparison we plot the results for a diagonalization
within the model space using the “bare” interaction. It
is seen that results with the effective interaction con-
structed with the similarity transformation method con-
verges much faster than results obtained with the “bare”
interaction. We see that a satisfactory convergence is ob-
tained with 10− 11 single-particle Berggren states in the
single-particle model space p from 5He, corresponding to
≈ 700 − 800 three-particle states NP . Compared with
the full dimension of the three-particle problem, 9224,
we have effectively reduced the dimension to about 8%
of the full space. This is a considerable benefit which may
allow us to extend the Gamow shell model with a com-

plex scaled single-particle basis to heavier systems and
realistic effective interactions. However, we can further
improve upon this approach by considering perturbative
techniques as well. That is the topic of the next Section.

IV. THE MULTI-REFERENCE

PERTURBATION METHOD

The Möller-Plesset multi-reference perturbation
method has recently been revived in quantum chemistry,
see for example Refs. [24, 25, 26], with an emphasis
on scattering theory and electron decays in many-body
systems. Here we only give a brief outline of the method,
and refer the reader to Refs. [24, 25, 26] for further
details.

The basic idea of the multi-reference perturbation
method is to first diagonalize within a small space (refer-
ence space), and then add a perturbation to the reference
states by taking into account excitations from the refer-
ence space to the complement space.

First we define a suitable N -particle reference (model)
space P which describes most of the many-body correla-
tions of the system, and hopefully gives a weak coupling
with the complement spaceQ. The N -body problem may
then be written as a block structure

(

HPP HPQ

HQP HQQ

)(

Pψn

Qψn

)

= En

(

Pψn

Qψn

)

. (37)

Thereafter we divide the full Hamiltonian in two parts

(

HPP HPQ

HQP HQQ

)

=

(

HPP 0

0 DQQ

)

+

(

0 HPQ

HQP H̃QQ

)

= H0 +H1. (38)

Here DQQ is the diagonal part and H̃QQ the off-diagonal
part of HQQ. In this form, we see that H0 defines the
unperturbed part while H1 gives the perturbations to
H0. In the first step we construct the complex orthogonal
matrix φ which diagonalizes HPP . Here the columns of
the matrix φ span the reference space P , and is a more
convenient basis for perturbation expansions.

Secondly, we perform a standard perturbation expan-

sion in energy, and define M = φTHPQ which gives the
orthogonal transformation of the coupling block with re-
spect to the reference states φ. Using intermediate nor-
malization, the energy corrections up to third order for a
given state φi in the reference space, may then be shown
to be,

E0
i = φT

i H
PPφi, E

1
i = 0, (39)
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FIG. 7: Plot of the p3/2 single-particle complex continuum strength ni in the two-particle resonance wave function 2+

1 in 6He.
The solid line gives the real part, the dotted line the imaginary and the dash-dotted line the absolute value of the strengths.
The filled circles give the actual location of the complex continuum states in absolute value of energy.
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FIG. 8: Convergence of the real part of the Jπ = 3/2− reso-
nance in 7He for a space defined by the p3/2 single-particle or-
bits only. The abscissa represents the number of three-particle
model space configurations NP while nsp represents the to-
tal number of single-particle momenta for the p3/2 single-
particle quantum numbers lj. The solid line represents the
effective interaction generated by the Lee-Suzuki similarity
transformation method, and the dashed line is obtained us-
ing the the bare interaction and the same number of three-
body configurations. The 3/2− resonance is located at E
= −(0.120731 + 0.122211i) MeV. The horizontal line is the
real energy obtained in the full space of three-body configu-
rations.

E2
i =

N
∑

j=NP +1

M2
i,j

E0
i −H0

j,j

, (40)

E3
i =

N
∑

j,k=NP +1

Mi,jH
QQ
j,k M

T
k,i

(E0
i −H0

j,j)(E
0
i −H0

k,k)
j 6= k, (41)
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FIG. 9: Convergence of imaginary part of Jπ = 3/2−

resonance in 7He number of three-particle model space
configurationsNP while nsp represents the total number of
single-particle momenta for the p3/2 single-particle quantum
numbers lj. The solid line represents the effective inter-
action generated by the Lee-Suzuki similarity transforma-
tion method, and the dashed line is obtained using the the
bare interaction and the same number of three-body con-
figurations. The Jπ = 3/2− resonance is located at E
= −(0.120731 + 0.122211i) MeV. The horizontal line is the
imaginary energy obtained in the full space of three-body con-
figurations.

hereMi,j is the dot product of the vector φT
i with column

j of the coupling block HPQ. Observe that there is no
first order correction in the energy, meaning that it has
been accounted for by the reference states and energies.

In the application of the multi-reference perturbation
method to the calculation of multi-particle resonances
in Gamow shell-model calculations, we have to define
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a multi-particle model space which describes most of
the many-body correlations. Based on our knowledge
from the two-particle system, we assume a good choice
for the complement space to consist of configurations
where all particles move in complex continuum states.
One would expect that the most important configura-
tions of the multi-particle resonance, are configurations
which include single-particle resonances. In our calcu-
lation of 7He, the three-particle model space is chosen
by studying the squared amplitudes of the three-particle
configurations given in Table XII. There we see that the
amplitudes of configurations where all particles move in
continuum states are small. In Refs. [6] and [7], where the
Helium isotopes 6−9He were studied within the Gamow
shell-model formulation, the authors reached similar con-
clusions. Note also that we use the bare two-body inter-
action of Eq. (8). This is to be contrasted to the method
outlined in the next section where we use the Lee-Suzuki
transformation in order to define an effective interaction.

The three-particle model space, and corresponding
complement space, used in our calculations is defined by

P ≡











|RRR〉, |RRC〉, |RCC〉,
Re(ea + eb + ec) < Ecut,

Im(ea + eb + ec) > −Ecut











Q = 1 − P, (42)

where at most two particles move in continuum states.
We have also introduced a rectangular cutoff in the com-
plex energy plane, since we assume that three-particle
configurations high in the energy play a minor role on
the formation of low-lying resonances. Fig. 10 gives a
plot of the unperturbed three-particle spectrum where
at most two particles move in complex continuum states,
and three different cut-offs in energies and corresponding
model spaces are shown.
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FIG. 10: Three choices of the model space used in the multi-
configuration perturbation method. The three-particle model
space states are constructed such that at most two particles
move in the non-resonant continuum.
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FIG. 11: Convergence of the real part of the Jπ = 3/2−

resonance in 7He, as the dimension of three-particle model
space increases with increasing cutoff in energy. The cutoff in
energy is increased in steps of 5 MeV, i.e. Ecut = 0, 5, ..., 30,
and given by the filled circles. The horizontal line is the real
part of the Jπ = 3/2− resonance located at E = −(0.120731+
0.122211i) MeV. The dashed-dotted line is the zeroth order
energy, the dashed line represents the second-order energy
and the solid line is the third-order energy.

Figs. 11 and 12 show the convergence of the real and
imaginary part of the three-particle resonance energy in
the multi-reference perturbation method up to third or-
der. The model space used here is given in Eq. 42,
and the calculations were done for the increasing cut-
offs in energy, Ecut = 0, 5, ..., 30 MeV. Here the conver-
gence is plotted with respect to the number of three-
particle model-space states NP for each energy cutoff.
We see that a satisfactory convergence is obtained with
NP ≈ 400, corresponding to the energy cutoff Ecut = 20
MeV. As expected, we see that excitations of model space
configurations located above Ecut ≈ 5 MeV yield small
contributions to the second- and third-order corrections
to the resonance energy. Observe that the second- and
third-order terms converge at the same number of model
space states, which indicates that second-order correc-
tions in energy are seemingly sufficient for our applica-
tions. This is also an advantage from a numerical point
of view. In second order one has to store only the di-
agonal part of the block HQQ, while in third order the
complete block HQQ has be stored, which may be ex-
tremely large in many cases. The zeroth order energy,
which corresponds to diagonalization within P , does not
saturate at the exact resonance energy with increasing
NP , which again shows that possible couplings with the
Q− space have to be accounted for, if one aims at accu-
rate calculations.

Summing up these results, we see that we obtain stable
results with approximately NP ≈ 400 three-body config-
urations within the multi-reference perturbation method,
while the similarity transformation method of Sec. III
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FIG. 12: Convergence of the imaginary part of the Jπ =
3/2− resonance in 7He, as the number of three-particle model
space increases with increasing cutoff in energy. The cutoff in
energy is increased in steps of 5 MeV, i.e. Ecut = 0, 5, ..., 30,
and given by the filled circles. The horizontal line is the the
imaginary part of the Jπ = 3/2− resonance located at E
= −(0.120731 + 0.122211i) MeV. The dashed-dotted line is
the zeroth order energy, the dashed line represents the second-
order energy while the solid line is the third-order energy.

gives stable results for NP ≈ 800 three-body configura-
tions for the same problem. The question now is whether
we can marry these two approaches in our quest for
smaller Gamow shell-model spaces. This is the topic of
the next section.

V. EFFECTIVE INTERACTION SCHEME FOR

THE GAMOW SHELL MODEL

In the previous sections it was shown that the Lee-
Suzuki similarity transformation and the multi-reference
perturbation method may be used in the Gamow shell
model in order to account for the most important cor-
relations of for example a multi-particle resonance. Al-
though the dimensionality of the problem derived either
from the similarity transformation method or the multi-
reference perturbation method was small compared to
the full problem, the dimensionality may still be a severe
problem when dealing with more than three particles in
a big valence space.

The drawback of the multi-reference perturbation
method is that one has to store extremely large matrices
HQQ if one wishes to go beyond second order in pertur-
bation theory. In the similarity transformation method
one does not have to deal with HQQ, as couplings with
the Q-space states have been dealt with, in practical cal-
culations at least at the two-body level. Going to systems
with larger degrees of freedom, the P -space may never-
theless, at the converged level, be too large for our brute
force diagonalization approach.

The aim of this section is to propose an effective inter-
action and perturbation theory scheme for the Gamow
shell model. This approach combines the similarity
transformation method and the multi-reference perturba-
tion method, so that hopefully multi-particle resonances
where several particles move in large valence spaces, may
be calculated without a diagonalization in the full space.
Our algorithm is as follows

1. Choose an optimal set of nsp single-particle orbits,
which in turn define two-body P2p and many-body
spaces. In our case these single-particle orbits are
defined by selected states in 5He.

2. Construct a two-particle effective interaction by
the Lee-Suzuki similarity transformation method
within the two-particle model space P2p. Such di-
agonalizations can be done for very large spaces,
see for example Refs. [28, 29, 30, 31].

3. The next step is to divide the multi-particle model
space P in two smaller spaces P ′ and Q′, where
P = P ′ + Q′ and NP = NP ′ + NQ′ . The choice
of P ′ should be dictated by our knowledge of the
physical system. As an example, one may con-
sider those single-particle configurations within the
P−space that play the dominant role in the forma-
tion of the multi-particle resonance. The number
NP = NP ′ + NQ′ represents the total number of
many-body configurations within the P−space.

4. Now that we have divided the P -space in two sub-
spaces P ′ and Q′, we use for example the multi-
reference perturbation method to account for ex-
citations from the P ′− space to the Q′− space
to obtain energy corrections to a specific order.
Increase the size of the P ′−space until conver-
gence is obtained. In the case NP ′ = NP and
NQ′ = NP − NP ′ = 0 the multi-reference pertur-
bation expansion terminates at zeroth order, and
corresponds to a full diagonalization within the
P−space. Another option is to use for example the
coupled cluster method as exposed in Refs. [34, 35].

5. Start from top again with a larger set of single-
particle orbits, and continue until a convergence
criterion is reached.

We illustrate these various choices of model spaces in the
following two figures. Fig. 13 defines our model space
for the Lee-Suzuki similarity transformation at the two-
body level. This corresponds to steps one and two in the
above algorithm. The set of single-particle orbits defines
the last single-particle orbit in the model space nsp. Note
that we could have chosen a model space defined by a cut
in energy, as done by the No-Core collaboration, see for
example Refs. [28, 29, 30, 31]. These examples serve
just to illustrate the algorithm. Fig. 14 demonstrates
again a possible division of the space into the full model
space NP and a smaller space NP ′ . Again, this figure
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✻
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nsp

P2p

Q2p = 1 − P2p

FIG. 13: Possible definition of the two-body exclusion
operator Q2p = 1 − P2p used to compute the Lee-Suzuki
similarity transformation and its effective interaction at
the two-body level. The border of the model space is
defined by the last single-particle orbit nsp.

✲

✻

NP

NP

NP ′

NP ′

FIG. 14: Possible definition of many-body space NP

and reduced space N ′

P .

serves only the purpose of illustrating the method. In
our actual calculations we define the smaller space NP ′

via an energy cut in the real and imaginary eigenvalues
and selected many-body configurations.

In summary, defining a set of single-particle orbits in
order to construct the two-body and many-body model
spaces, we obtain first an effective two-body interac-
tion in the space P2p by performing the Lee-Suzuki
[20, 21, 22, 23] transformation. This interaction and the
pertinent single-particle orbits are then used to define a
large many-body space. It is therefore of interest to see if
we can reduce this dimensionality through the definition
of smaller spaces and perturbative corrections.

We present here as a test case, the calculation of the
Jπ = 3/2− three-particle resonance within the pertur-
bation scheme outlined above. 24 single-particle orbits
for the lj configuration p3/2 are included, giving a total
dimension of d = 9224 for the J = 3/2 three-particle

basis.
We define five different model spaces P , given by the

total number of three-body configurationsNP . The num-
ber of single-particle orbits and three-body states are
listed in Table. XIII. The single-particle model space,
defining P , is constructed according to the prescription
outlined in section III. The reference space P ′ which
defines a propersubset of each model space P , is again
defined by

P ′
i ≡











|RRR〉, |RRC〉, |RCC〉
Re(ea + eb + ec) < Ecut

Im(ea + eb + ec) > −Ecut











⊂ Pi. (43)

The reader should note that for each space P1, P2 and

TABLE XIII: Five different P−spaces defined for increasing
number of single-particle model space orbits nsp consisting of
the lj configuration p3/2. The number NP gives the dimension

of the three-particle model space P for Jπ = 3/2− with a full
dimensionality with nsp = 24 of NP = 9224.

P P1 P2 P3 P4 P5

nsp 8 10 12 14 16

NP 344 670 1156 1834 2736

so forth listed in Table XIII, we can compare the results
from this perturbative analysis with those from the exact
diagonalization done in these spaces. This is shown in
Tables XIV,XV, XVI, XVII and XVIII.

TABLE XIV: Resonance energy to second (E2) and third
order (E3) in the multi-reference perturbation expansion, for
the model space P1 given in Table XIII. The subspaces P ′

1

are defined for different energy cutoffs, increased in steps of
10 MeV. In the last line we give the exact energy within P1.
Energies are given in units of MeV.

NP1
= 344 NP ′

1max
= 113

NP ′
1

NQ′

1
Ecut Re[E2] Im[E2] Re[E3] Im[E3]

1 343 0 0.066 0.322 0.606 0.088

113 231 10 0.041 -0.075 0.041 -0.076

Exact within P1: 0.042 -0.076

As the number of reference states NP ′ increases with
increasing cutoff in energy Ecut, one reaches a maximum
of reference states NP ′

max
within each P−space. From

the definition of the reference space P ′ in Eq. (43), it
will never coincide with the P−space as one exhausts the
number of configurations |RRR〉, |RRC〉, |RCC〉 within
P , since one by definition never includes the configura-
tions |CCC〉, i.e. {|P ′〉} ⊂ {|P 〉}. The perturbation
scheme for a reference space P ′ given by Eq. (43), will
therefore only yield convergent results as long as our as-
sumption that the configurations |CCC〉 play a minor
role compared to the reference states. Although the con-
figurations |CCC〉 turn out to play a minor role for the
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TABLE XV: Resonance energy to second (E2) and third
order (E3) in the multi-reference perturbation expansion, for
the model space P2 given in Table XIII. The subspaces P ′

2

are defined for different energy cutoffs, increased in steps of
10 MeV. In the last line we give the exact energy within P2.
Energies are given in units of MeV.

NP2
= 670 NP ′

2max
= 181

NP ′

2
NQ′

2
Ecut Re[E2] Im[E2] Re[E3] Im[E3]

1 669 0 -0.053 0.357 0.562 0.059

157 513 10 -0.078 -0.110 -0.079 -0.110

181 489 20 -0.082 -0.110 -0.083 -0.110

Exact within P2: -0.081 -0.110

TABLE XVI: Resonance energy to second (E2) and third
order (E3) in the multi-reference perturbation expansion, for
the model space P3 given in Table XIII. The subspaces P ′

3

are defined for different energy cutoffs, increased in steps of
10 MeV. In the last line we give the exact energy within P3.
Energies are given in units of MeV.

NP3
= 1156 NP ′

3max
= 265

NP ′

3
NQ′

3
Ecut Re[E2] Im[E2] Re[E3] Im[E3]

1 1155 0 -0.099 0.378 0.561 0.050

205 951 10 -0.114 -0.134 -0.114 -0.133

265 891 20 -0.117 -0.130 -0.118 -0.130

Exact within P3: -0.116 -0.130

states we have considered in this work, there is no a
priori reason for this to be the case when considering
other multi-particle resonances. If no convergence is ob-
served, one should simply choose another reference space
P ′, based for example on the single-particle model space,
see Figs. 13 and 14.

Figs. 15 and 16 gives plots of the real and imaginary
part of the resonance energy to third order in the multi-
reference perturbation expansion for the different model
spaces considered above. From the plot one concludes
that convergence is obtained for a small number of refer-
ence states NP ′ ∼ 350 − 400.

TABLE XVII: Resonance energy to second (E2) and third
order (E3) in the multi-reference perturbation expansion, for
the model space P4 given in Table XIII. The subspaces P ′

4

are defined for different energy cutoffs, increased in steps of
10 MeV. In the last line we give the exact energy within P4.
Energies are given in units of MeV.

NP4
= 1834 NP ′

4max
= 365

NP ′

4
NQ′

4
Ecut Re[E2] Im[E2] Re[E3] Im[E3]

1 1833 0 -0.134 0.397 0.532 0.026

253 1581 10 -0.155 -0.160 -0.130 -0.141

347 1487 20 -0.119 -0.127 -0.120 -0.126

365 1469 30 -0.122 -0.123 -0.123 -0.124

Exact within P4: -0.121 -0.124

TABLE XVIII: Resonance energy to second (E2) and third
order (E3) in the multi-reference perturbation expansion, for
the model space P5 given in Table XIII. The subspaces P ′

5

are defined for different energy cutoffs, increased in steps of
10 MeV. In the last line we give the exact energy within P5.
Energies are given in units of MeV.

NP5
= 2736 NP ′

5max
= 419

NP ′

5
NQ′

5
Ecut Re[E2] Im[E2] Re[E3] Im[E3]

1 2735 0 -0.137 0.399 0.530 0.024

253 2483 10 -0.159 -0.160 -0.131 -0.141

347 2389 20 -0.120 -0.129 -0.118 -0.125

409 2327 30 -0.122 -0.122 -0.122 -0.122

419 2317 40 -0.122 -0.122 -0.123 -0.122

Exact within P5: -0.121 -0.122
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FIG. 15: Convergence of the real part of the Jπ = 3/2− reso-
nance energy in 7He within the perturbative scheme outlined
in the text, for the different model spaces P given in Ta-
ble XIII. The open circles along the different solid lines gives
the calculations within each Pi. NP ′ gives the number of ref-
erence states in P ′, which is a subspace of P . The horizontal
line is the the real part of the Jπ = 3/2− resonance located
at E = −(0.120731 + 0.122211i) MeV.

In the approach considered above, the dimension of the
Q′−space is considerably smaller than the dimension of
the complement space Q = 1 − P , which makes it much
less time and memory consuming to compute the matrix
elements of HQ′Q′

. We have seen from the above calcula-
tions that a termination of the perturbation expansion at
second order compares well with the rate of convergence
for the third-order expansion. This makes it numerically
feasible to treat systems where several particles move in a
large valence space, within perturbative scheme outlined
above.

We conclude this work by applying our scheme to
the calculation of the three-particle resonances in 7He,
where 24 single particle states for each of the lj single-
particle states p1/2 and p3/2 are included. The Hamil-
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FIG. 16: Convergence of the imaginary part of the Jπ = 3/2−

resonance energy in 7He within the perturbative scheme out-
lined in the text, for the different model spaces P given in
Table XIII. The open circles along the different solid lines
gives the calculations within each Pi. NP ′ gives the num-
ber of reference states in P ′, which is a subspace of P . The
horizontal line is the the imaginary part of the Jπ = 3/2−

resonance located at E = −(0.120731 + 0.122211i) MeV.

tonian for the Jπ = 1/2−, 3/2− and Jπ = 5/2−

states for 7He has dimensions NP = 29648, 38896
and NP = 27072, respectively. The main compo-
nent of the resonant wave functions turns out to be
the |RRR〉 configuration, which gives the allowed cou-
plings and corresponding unperturbed energies and wave

functions |
(

p3/2

)3
; Jπ = 3/2

−

1 〉 with energy E0 =

(2.2560− 0.9840i) MeV, |p1/2

(

p3/2

)2

0
; Jπ = 1/2

−

1 〉 with

energyE0 = (3.6581− 3.5681i) MeV, |p1/2

(

p3/2

)2

2
; Jπ =

3/2−2 , 5/2−1 〉 with energy E0 = (3.6581− 3.5681i)

MeV and |
(

p1/2

)2

0
p3/2; J

π = 3/2
−

3 〉 and energy E0 =

(5.0602− 6.1522i). We report here only the converged
results for the lowest-lying 7He resonances. They are
E(3/2−1 ) = (0.02−0.08i) MeV, E(1/2−1 ) = (0.39−3.98i)

MeV, E(3/2
−

2 ) = (2.43−1.95i) MeV, E(5/2
−

1 ) = (2.75−
0.89i)MeV, and E(3/2

−

3 ) = (3.85 − 3.06i) MeV. Using
our combination of the Lee-Suzuki similarity transfor-
mation and the multi-reference perturbation method, re-
sults close to the exact ones where obtained with approx-
imately NP ′ ∼ 1400− 2000 three-particle configurations.
This is a considerable reduction compared with the full
dimensionalities listed above.

Fig. 17 displays the calculated energy levels for the
nuclei 5−7He within our model. The unperturbed energy
levels for 6He and 7He are also shown, and serve to illus-
trate how the two- and three-particle resonances develop
when the nucleon-nucleon interaction from Eq. (8) is in-
cluded. There are several interesting features which can
be seen from Fig. 17. The 0+- and 2+-states in 6He are
formed within our model due to a strong pairing effect
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FIG. 17: Energy levels for the nuclei 5,6,7He for model space
consisting of the lj single-particle states p1/2 and p3/2. The

unperturbed energy levels for 6He and 7He are shown to the
left in each case.

between the two neutrons moving in equivalent orbits.
When the nucleon-nucleon interaction is included, we ob-
serve that the 0+ and 2+ unperturbed energies gain an
additional attraction. On the other hand, the 1+ state
in 6He exhibits weak pairing effects, the main component
of the 1+ wave function is still the configuration |RR〉,
but here the dominant contribution comes from a cou-
pling between the p1/2 and p3/2 single-particle resonances

in 5He. Adding the nucleon-nucleon interaction, does
not change the unperturbed energy level significantly, see
Fig. 17. The calculations done within our crude model of
7He, may suggest that this unbound nucleus has an even
richer continuum structure than proposed in the recent
review of Jonson, see Ref [17]. In Ref. [17] two excited

states with tentative spins Jπ = 1/2
−

and Jπ = 5/2
−

where reported to exist above the ground state in 7He.
The level spacings relative to the 7He ground state were
reported to be 0.57 MeV and 2.87 MeV for the Jπ = 1/2−

and Jπ = 5/2
−

states, respectively. The main decay

channel of the Jπ = 5/2
−

resonance at 2.87 Mev is α+3n.
From this decay channel, Jonson Ref. [17] concluded that

the configuration |p1/2

(

p3/2

)2

2
; Jπ = 5/2

−〉 is the most
probable one. In our calculations we find a rich con-
tinuum structure in the energy region Re[E] ≈ 3 MeV
above threshold. From Fig. 17 it is seen that the resonant
three-particle states Jπ = 3/2

+
2 , 5/2

+
2 and Jπ = 3/2

+
3 are

located rather close in real energy. Although the widths
vary from 2−6 MeV, this observation raises the question
of whether these structures may be observed, and which
spin assignements and the nature of the experimentally
observed structures around 2.87 MeV in 7He are. Fur-
ther it is seen that the real part of the Jπ = 1/2

−
reso-

nance changes strongly, and moves towards the threshold
when the nucleon-nucleon interaction is included. How-
ever, these results must be gauged with the fact that we
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are using a purely phenomenological nucleon-nucleon in-
teraction model. The inclusion of a realistic interaction
is the topic for a future work. The main issue here was
to demonstrate how to derive effective interactions for
the Gamow shell model, with a considerable reduction in
dimensionality.

VI. CONCLUSION AND FUTURE

PERSPECTIVES.

In this work we have applied the contour deformation
method in momentum space, with a single-particle ba-
sis in momentum space serving as a starting point for
Gamow shell-model calculations. The resonant spec-
tra of the drip-line nuclei 5−7He have been studied
and described using phenomenologically derived nucleon-
nucleon interactions. It was illustrated that the choice of
contour gives a good convergence for various resonant
states, and in addition allows for a clear distinction be-
tween all physical states and the remaining complex con-
tinuum states. The main purpose of this work was to
propose an effective interaction scheme for Gamow shell-
model calculations. One of the most severe difficulties re-
garding Gamow shell-model calculations is the dramatic
growth of the shell-model dimension when dealing with
several valence particles moving in a large shell-model
space. This dimensionality problem is even more severe
than the harmonic oscillator representation used in tradi-
tional shell-model equation studies, In the Berggren rep-
resentation a large number of complex-continuum states
has to be included as well. The clear distinction of
the unperturbed resonances from the dense distribu-
tion of complex continuum states, allows for a pertur-
bation treatment, when configuration mixing is taken

into account. For perturbation expansions to converge,
the unperturbed states have to be well separated from
the Q-space states, or else the propagators will contain
poles which make a perturbative treatment difficult. It
has been shown that the Lee-Suzuki similarity transfor-
mation combined with the multi-reference perturbation
method, reduces the full problem to about 3 − 4%.

Treating the many-particle problem in some perturba-
tion scheme, we need to define a reference (model) space
which describes most of the many-body correlations. The
method and scheme outlined here, allows for a perturba-
tive treatment of many-body states in which anti-bound
states may play an important role, such as in the drip-line
nuclei 11Li.

As has been pointed out, the location of multi-particle
resonances depends on the effective interaction used be-
tween valence nucleons. The next step is to derive a
realistic effective interaction for Gamow shell-model cal-
culations, and self-consistent Hartree-Fock single-particle
energies for loosely bound nuclei, starting from a realis-
tic nucleon-nucleon force. Using the Berggren represen-
tation may give an underlying understanding of many-
body resonances from a microscopic point of view. More-
over, in our algorithm of Sec. V we employed the multi-
reference perturbation method. Our future plans in-
volve replacing this method by the Coupled Cluster ap-
proaches, as discussed in Refs. [34, 35].
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