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We consider proton-nucleus collisions at high energy in the color glass condensate framework, and
extract from the gluon production cross section the probabilities of having a definite number of multiple
scatterings in the nucleus. Various properties of the distribution of the number of multiple scatterings are
studied, and we conclude that events in which the momentum of a hard jet is compensated by many much
softer particles on the opposite side are very unlikely except for extreme values of the saturation
momentum. In the same framework, we also investigate the possibility to estimate the impact parameter
of a proton-nucleus collision, from the measure of the multiplicity of its final state.
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I. INTRODUCTION

Hadronic collisions at high energy involve the interac-
tion of partons that carry a very small fraction x of the
longitudinal momentum of the incoming projectile. Since
the occupation number for such states in the nucleon wave
function can become quite large, one expects that the
physics of parton saturation [1–3] plays an important
role in such studies. This saturation generally has the effect
of reducing the number of produced particles compared to
what one would have predicted on the basis of a pQCD
calculation with parton densities that depend on x accord-
ing to the linear Balitsky-Fadin-Kuraev-Lipatov (BFKL)
[4,5] evolution equation.

The counterpart of such a large occupation number is
that one can treat the small-x partons by classical color
fields instead of particles. To that effect, the McLerran-
Venugopalan (MV) model [6–8] is a hybrid description, in
which the small-x partons are described by classical fields,
and where the large-x partons—fast and therefore frozen
by time dilation—are described as static color sources at
the origin of the classical fields, in agreement with the fact
that small-x partons are radiated by bremsstrahlung from
the large-x ones. Originally, the MV model dealt with large
nuclei, with a large number of high-x partons (the number
of valence quarks is 3A if A is the atomic number of the
nucleus). In the MV model, the large-x color sources are
described by a statistical distribution, which they argued
could be taken to be a Gaussian for a large nucleus at
moderately small x (see also [9] for a recent discussion of
this point).

Since these early days, this model has become an effec-
tive theory, the so-called ‘‘color glass condensate’’ (CGC)
[10–12]. Since the separation between large x and small x
is arbitrary, no physical quantity should depend on it. This
arbitrariness leads to a renormalization group equation, the
so-called Jalilian-Marian-Iancu-McLerran-Weigert-
Leonidov-Kovner (JIMWLK) equation [10–19], that de-
scribes how the statistical distribution of color sources
changes as one moves the separation between large and

small x. This functional evolution equation can also be
expressed as an infinite hierarchy of evolution equations
for correlators [20], and has a quite useful—and much
simpler—large Nc mean-field approximation [21], known
as the Balitsky-Kovchegov equation.

In the collision of two nuclei at high energy, gluon
production is dominated by the classical field approxima-
tion, and calculating it requires to solve the classical Yang-
Mills equations for two color sources—one for each pro-
jectile—moving at the speed of light in opposite direc-
tions. This problem has been studied numerically in [22–
26] for the boost-invariant case, with extensions to include
the rapidity dependence [27,28]. But in fact, for collisions
involving one small projectile—like proton-nucleus
collisions—one can assume that the color sources that
describe this small projectile are weak and compute the
relevant amplitude only at lowest order in this source.
When this is allowed, it is possible to obtain analytical
expressions for amplitudes and cross sections. This was
done in a number of approaches for single quark or gluon
production [29–38], as well as for quark-antiquark pro-
duction [39–48] (see [49] for a review). In this paper, we
are going to limit our discussion to the case of single gluon
production.

One of the main features of the gluon production cross
section in proton-nucleus obtained in the CGC framework
is that it includes all the multiple scatterings on the sources
contained in the nucleus. In this paper, we discuss the
distribution in the number of these scatterings. In particu-
lar, we study how the momentum of a high-p? final gluon
is balanced by the recoiling momenta of the struck nuclear
color sources. This question has practical applications in
discussing whether one could observe a loss of back-to-
back correlations at high p?—for instance events with a
single high-momentum jet in the final state—in collisions
between a proton and a saturated nucleus. Another appli-
cation of our study occurs when one tries to relate the
multiplicity and the impact parameter of the collision.
And of course, one may also try to characterize the nuclear
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partonic content at low x from the distribution of ‘‘debris’’
that are produced in the collision with the proton.

Note that the manifestations of the color glass conden-
sate on the back-to-back correlations have already been
investigated in various approaches [47,50], by looking at
the angular correlations between pairs of hard particles.
This azimuthal correlation has been measured for
deuteron-gold collisions by the STAR Collaboration at
RHIC [51], which observed that the pattern of azimuthal
correlations in d-Au collisions is very similar to that found
in pp collisions. In particular, it has a marked peak in the
correlation function at 180 degrees—indicating that jets
come in pairs. In the present paper, we address a different
question, which involves most of the same physics: we do
not consider the angle of emission of the particles, but
instead we keep track of the number of recoils above a
certain threshold kmin

? given a ‘‘trigger’’ particle with mo-
mentum k?, and we calculate the probability for having a
given number of such recoils.

Our paper is organized as follows. In Sec. II, we recall
the CGC formula for gluon production in proton-nucleus
collisions, and we also discuss the Glauber interpretation
of this formula. In Sec. III, we show how to calculate the
probability Pn of having n scatterings in which the recoil
momentum is larger than a certain threshold kmin

? , when the
produced gluon has acquired the momentum k? in the
nucleus. This is done by constructing a generating function
for these probabilities. In Sec. IV, we present numerical
results for this distribution in the MV model, as well as
simple analytical calculations that explain the most salient
features; and in Sec. V we compare them with what hap-
pens in a model that has shadowing and geometrical scal-
ing. Finally, in Sec. VI, we discuss the possibility of
estimating the impact parameter of the collision from the
multiplicity in the final state.

II. GLUON PRODUCTION IN PROTON-NUCLEUS
COLLISIONS

Here, we use without rederiving it the formula for the
gluon yield obtained in [36] [Eq. (107)]. According to this
formula, the number of gluons produced per unit of trans-
verse momentum and per unit of rapidity reads:

 

d �Ng

d2q?dy
�

1

16�3q2
?

Z d2k?
�2��2

k2
?C�k?�’p�q? � k?�;

(1)

where ’p is the proton nonintegrated gluon distribution,
that we will not need to specify further in the following.
The function C�k?�, introduced in [52], is the Fourier

transform of a correlator of Wilson lines:1

 C�k?� �
Z
d2x?e

ik?�x?
1

N2
c � 1

TrhUy�0�U�x?�i: (2)

U�x?� is a Wilson line in the adjoint representation of
SU�Nc�, evaluated in the color field produced by the
sources that describe the nucleus, and the brackets h� � �i
denote an averaging over these color sources. Eq. (1) is
accurate to the lowest order in the density of color sources
contained in the proton, and to all orders in the color
density of the nucleus. Thus, a way to picture its content
is to say that a gluon of the wave function of the proton
travels through the color field of the nucleus before being
produced.

At first sight, it looks like the process taken into account
by Eq. (1) is a 2! 1 process, in which one gluon from the
proton (with transverse momentum q? � k?) merges with
a gluon from the nucleus (with transverse momentum k?)
in order to produce the final gluon of transverse momentum
q?. One might therefore be tempted to conclude that the
color glass condensate predicts the production of monojets
in proton-nucleus collisions. However, this conclusion is
too simplistic. The first reason is of course that transverse
momentum is conserved in the CGC framework. This
means that if the final gluon has acquired a large momen-
tum k? while going through the nucleus, this momentum
must come from the color sources present in the nucleus. In
other words, if one sums the recoil transverse momenta of
the sources struck by the propagating gluon, they must add
up to �k?.

Therefore, the real issue in order to conclude about the
possible existence of monojets is whether the recoil mo-
mentum is shared among many sources (each of them
acquiring only a small momentum), or on the contrary
absorbed mostly by a single source (see Fig. 1 for a cartoon
illustrating the two situations). If the first scenario holds,
then indeed one would have a high-q? jet whose momen-
tum is balanced by many soft recoiling particles—an event
topology that would be close to one’s idea of a ‘‘monojet.’’
In the second scenario, one would have a pair of high-q?
particles, with almost opposite transverse momenta, in
agreement to what perturbative QCD would predict.

This interpretation in terms of multiple scatterings is
particularly transparent in the case where the distribution

FIG. 1 (color online). Two possible scenarios for the recoiling
scattering centers in the production of a high-p? particle. Left:
the large p? of the produced particle is compensated by many
semihard recoils. Right: one recoil absorbs almost all the p?.

1The function C�k?� is thus related to the Fourier transform of
the cross section between a color dipole and the nucleus. Hence,
in the case of a quark-antiquark dipole, one can use this con-
nection in order to relate proton-nucleus collisions and deep
inelastic scattering on nuclei [35].
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of color sources in the nucleus has only Gaussian correla-
tions. This is the case of the McLerran-Venugopalan model
(in which case the Gaussian distribution is local), and also
of the asymptotic regime believed to be reached after
evolution to large rapidities with the JIMWLK evolution
equation (in which case it is a nonlocal Gaussian distribu-
tion) [53]. Indeed, for a Gaussian distribution of nuclear
color sources, it is possible to rewrite the function C�k?� in
a form that has an obvious Glauber interpretation. Let us
reproduce here the main result of the Appendix C of [36].
Following Eqs. (C.5–6) of this reference, we can rewrite
the function C�k?� as follows
 

C�k?� � e��
2
0�tot

X�1
n�0

�n
Z L

0
dz1

Z L

z1

dz2 � � �
Z L

zn�1

dzn

�
Z d2k1?

�2��2
� � �

d2kn?
�2��2

�2��2

� ��k1? � � � � � kn?� k?���k1?� � � ���kn?�:

(3)

In this formula, � is the number of scattering centers per
unit of volume of the nucleus (assumed to be uniform), L is
the longitudinal size of the nucleus, ��k?� is the differen-
tial cross section of a gluon with a scattering center of the
nucleus, and �tot is the integral of the latter over k?.
Finally, �2

0 � �L is the density of scattering centers per
unit of transverse area.

III. DISTRIBUTION OF STRUCK SCATTERING
CENTERS

A. Definition

In Eq. (3), the index n is the number of collisions of the
gluon coming from the proton while it travels through the
nucleus, and the exponential in the prefactor serves to
unitarize the overall sum. Note that the integral over k?
of the functionC�k?� is equal to one, which means that this
function should be interpreted as the probability for the
gluon to acquire the momentum k? while going through
the nucleus. The term of order n in this formula is therefore

the probability that the gluon be deflected by a transverse
momentum k? and undergo exactly n scatterings. By
dividing this term by C�k?�, we obtain the conditional
probability that a gluon that comes out with a momentum
k? has scattered n times:

 

Pn�k?� �
e��

2
0�tot

C�k?�
�n
Z L

0
dz1

Z L

z1

dz2 � � �
Z L

zn�1

dzn

�
Z d2k1?

�2��2
� � �

d2kn?
�2��2

�2��2

���k1?� �� ��kn? �k?���k1?� � � ���kn?�:

(4)

So far, we have been a bit sloppy regarding the infrared
behavior of the integrals over the transverse momenta that
appear in Eqs. (3) and (4). However, in the MV model for
instance, ��k?� behaves as k�4

? at small k? and it is
necessary to introduce an infrared cutoff � in order for
the integrals to be finite. It is well known that, although
each integral behave as ��2, a partial cancellation occurs
with the prefactor exp���2

0�tot� so that C�k?� is only
logarithmically sensitive to this cutoff.2 Physically, this
cutoff emerges from color neutralization that occurs on
distance scales of the order of the nucleon size. Therefore,
one should take � 	 �QCD.

This cutoff is of course also necessary in order to define
the probabilities Pn, so that they should in fact be inter-
preted as probabilities to have n scatterings with a momen-
tum transfer larger than �. In the case of the Pn’s, we can
even push this logic further by defining the probabilities to
have n scatterings with a momentum transfer larger than a
certain kmin

? which is not necessarily related to �, and an
arbitrary number of scatterings with a momentum transfer
between � and kmin

? . By doing so, we can explore how the
distribution of the number of scatterings evolves with their
‘‘hardness.’’ Let us denote Pn�k?jkmin

? � this probability. It
is very easy to extract the relevant piece from Glauber
formula, Eq. (3):

 

Pn�k?jkmin
? � �

e��
2
0�tot

C�k?�

X�1
p�0

�p�n
Z L

0
dz1

Z L

z1

dz2 � � �
Z L

zp�n�1

dzp�n
Z kmin

?

�

d2k1?

�2��2
� � �

d2kp?

�2��2

�
Z
kmin
?

d2kp�1?

�2��2
� � �

d2kp�n?

�2��2
�2��2��k1? � � � � � kp�n? � k?���k1?� � � ���kp�n?�: (5)

In this formula, n is the number of scatterings with momentum transfer larger than kmin
? and p the number of scatterings

with momentum transfer between � and kmin
? .

B. Generating function

Although a direct numerical evaluation of Eq. (5) is in principle feasible, it turns out to be easier to compute the
following generating function instead:

2In the individual probabilities Pn however, this cancellation does not occur and one has a quadratic sensitivity to the cutoff �.
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 F�z; k?jk
min
? � �

X�1
n�0

Pn�k?jk
min
? �z

n: (6)

From this function, it is straightforward to go back to the
probabilities Pn by the following formula:3

 Pn�k?jkmin
? � �

Z 2�

0

d�
2�

e�in�F�ei�; k?jkmin
? �: (7)

Therefore, it will be sufficient to calculate the generating
function for complex z’s on the unit circle. In practice, one
should evaluate the generating function for a finite number
(usually a power of 2) of values z � ei�, with the angles �
equally spaced on the circle, and then evaluate the Fourier
sum by the fast Fourier-transform algorithm.

It is easy to replace Pn by its expression in Eq. (6), and to
perform the sum explicitly. In order to disentangle the
various variables ki?, one must replace the delta function
by its Fourier representation. This leads to

 

F�z; k?jkmin
? � �

1

C�k?�

Z
d2x?e�ik?�x?

� exp
�
�2

0

�Z kmin
?

�

d2l?
�2��2

�eil?�x? � 1���l?�

�
Z
kmin
?

d2l?
�2��2

�zeil?�x? � 1���l?�
��
: (8)

Note that, for z � 1, the numerator of this formula is
identical to C�k?�. This was of course expected, since
F�1; k?jkmin

? � � 1 (because this is the sum of all the prob-
abilities Pn). As one can see, the only difference between
the calculation of C�k?� and of the numerator in Eq. (8) is
that the exponential exp�il? � x?� is weighted by a factor z
for the values of l? above kmin

? . Therefore, calculating the
generating function can be done via a fairly minor modi-
fication4 of the numerical methods used in order to calcu-
late C�k?�.

In fact, as one can readily see, in order to calculate the
argument of the exponential in Eq. (8), it is sufficient to
compute the following two integrals,

 

A�x?� �
Z

�

d2l?
�2��2

�eil?�x? � 1���l?�;

B�x?jkmin
? � �

Z
kmin
?

d2l?
�2��2

eil?�x?��l?�;
(9)

as a function of x? and kmin
? .

In actual numerical calculations, the lower limits, at
l? � � in A and at l? � kmin

? in B, are implemented by
multiplying the integrand, respectively, by #�l?=�� and
#�l?=kmin

? �. The function #�x� interpolates between 0 at
small x and 1 at large x, the transition between the two
regimes being located around x � 1. One could in princi-
ple take for #�x� the ordinary step function ��x�, which
corresponds to sharp lower limits—as written in
Eqs. (9)—but such a choice generally leads to an oscil-
latory behavior of the functions A�x?� and B�x?jkmin

? � as a
function of x?. Choosing a function #�x� that has a smooth
transition between 0 and 1 is helpful in order to tame these
oscillations.

Once the integrals A andB have been calculated, one can
write

 C�k?� �
Z
d2x?e

�ik?�x?e�
2
0A�x?�; (10)

and then

 F�z; k?jkmin
? � �

1

C�k?�

�
Z
d2x?e

�ik?�x?e�
2
0
A�x?���z�1�B�x?jkmin

?
��:

(11)

C. Models for ��k?�

In the rest of this paper, we consider two different
models for the differential cross section ��l?�.

The first of these two models is the McLerran-
Venugopalan model [6–8], which assumes a local
Gaussian distribution of color charges in the transverse
plane for the nucleus. It is well known that this leads to5

 ��l?� �
1

2

g4Nc
l4?

: (12)

In the MV model, one can have important rescattering
effects (tuned via the density parameter �2

0), but there is
no leading-twist shadowing. Note that the saturation mo-
mentum Qs is given by

3Another approach to obtain the probabilities from the gen-
erating function is to compute the successive derivatives of the
generating function at z � 0. However, this would require to
evaluate derivatives of high order, which is very difficult to do
numerically.

4This observation also indicates how to construct the generat-
ing function for probabilities that are more general than the ones
considered here: in order to compute the probabilities Pn��� to
produce n particles in some region � of the single particle
phase-space, one must weight the exponential exp�il? � x?� by a
factor z when l? 2 �. This approach could be used in order to
study the recoils in a specific angular sector for instance.

5Here, the formula has been written in the adjoint representa-
tion, since it is a gluon that propagates through the nucleus. For a
quark, one would simply have to replace the color factor Nc by
Cf � �N

2
c � 1�=2Nc.
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 Q2
s �

g4Cf

4�
�2

0 ln
�
�2

0

�2
QCD

�
: (13)

Here, we have written the saturation momentum in the
fundamental representation, in order to facilitate the com-
parison with the values of Qs extracted from deep inelastic
scattering at HERA.

The second model we will consider is based on a
Gaussian effective theory that describes the gluonic con-
tent of a nucleus evolved to very small values of x, dis-
cussed in [53]. It corresponds to the choice

 �2
0��l?� �

2�
�c

Q2
s

l2?
ln
�
1�

�
Q2
s

l2?

�
�
�
: (14)

In this model, hereafter referred to as the ‘‘asymptotic
model,’’ c 	 4:84 and � is an anomalous dimension whose
value is � 	 0:64. One of the peculiarities of this model is
that it has the property of ‘‘geometrical scaling,’’ since it
depends on the momentum l? and on Qs only via the ratio
l?=Qs. Contrary to the MV model, this nonlocal Gaussian
model has significant leading-twist shadowing, whose
strength is controlled by the anomalous dimension �
(more precisely by the departure of � from 1).

IV. RESULTS IN THE MV MODEL

A. Multiplicity distribution

Let us first start by displaying some results in the MV
model. In Fig. 2, we first show the distribution of the
probabilities Pn as a function of n, for Q2

s � 2 GeV2 and
various values of the threshold momentum kmin

? .

One can see that the width of the multiplicity distribu-
tion decreases with an increasing kmin

? . This is of course
quite natural, since by increasing kmin

? it becomes less and
less likely to have events in which there are a large number
of recoils. Note also that for all kmin

? such thatQs � kmin
? &

k?, the most likely number of recoils is n � 1, while for
k? < kmin

? the most likely situation is n � 0.
We can in fact understand analytically this distribution

Pn in the situation where the momentum exchange k?
between the incoming gluon and the nucleus is much larger
than the other scales, Qs, kmin

? � k?. This means that we
need only to estimate the functions A and B defined in
Eq. (9) for values of x? that are much smaller than the
inverse saturation momentum, x? � Q�1

s , and much
smaller than �kmin

? �
�1. This allows us to expand the expo-

nential exp�il? � x?� in order to evaluate the integral over
l?, leading to the following approximations:
 

A�x?� 	 �
g4Nc
16�

x2
? ln

�
1

�x?

�
;

B�x?jkmin
? � 	

g4Nc
8�

�
1

kmin2
?

�
x2
?

2
ln
�

1

kmin
? x?

��
:

(15)

Then, in order to evaluate the generating function via
Eqs. (10) and (11), one can use the following result, valid
at large k?,

 

Z
d2x?e

�ik?�x?e�Cx
2
?

ln�x0
?
=x?� 	

8�C

k4
?

: (16)

(The value of the constant x0
? has no influence on this result

in the limit of large k?.)Thanks to this formula, we obtain
immediately

 F�z; k?jkmin
? � 	 ze�g

4Nc�2
0=8��kmin

?
�2��z�1�: (17)

One can see that in this limit, the generating function is
universal in the sense that it does not depend on the
momentum k? acquired by the incoming gluon.
Moreover, the probability of having zero scatterings with
a recoil above kmin

? , P0 � F�z � 0; k?jk
min
? �, is zero. In

other words, when kmin
? � k?, there must be at least one

scattering above kmin
? in order to give such a large k? to the

incoming gluon.
We can go a bit further, since it is easy to recognize that

the generating function obtained in Eq. (17) corresponds to
the following distribution of probabilities:

 P0 � 0; Pn �
�nn�1

�n� 1�!
e� �n with �n �

g4Nc�2
0

8��kmin
? �

2
:

(18)

In other words, the distribution of multiplicities is a
Poisson distribution shifted by one unit. The physical
meaning of this shift will become transparent later in the
discussion. In Fig. 2, we have compared for kmin

? �

0:4 GeV the numerically evaluated Pn’s with such a shifted

 1e-10

 1e-08

 1e-06
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 0.01

 1

 100

 0  2  4  6  8  10  12  14  16

P n

n

MV model - Qs
2 = 2 GeV2 ,  Kt = 10 GeV

see text

Kt
min = 0.4 GeV

1 GeV

6 GeV

16 GeV

FIG. 2 (color online). Distribution of the probabilities Pn in
the MV model. The produced particle has acquired a transverse
momentum k? � 10 GeV and the saturation momentum is set to
the value Q2

s � 2 GeV2. The threshold kmin
? for counting the

recoiling particles takes values between 0.4 and 16 GeV. The
black solid line represents the result of an approximate calcu-
lation (see text).
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Poisson distribution, and as one can see the two agree
extremely well (except for P0, which is very small but
not exactly zero).

Note however that the value of �n we had to use in this fit
differs by about 25% from the predicted value given in
Eq. (18). This kind of deviation is expected, because this
formula for �n is only valid for kmin

?  �, a condition which
is at best marginally satisfied for kmin

? � 0:4 GeV (we have
taken the infrared cutoff to be � � 0:2 GeV). Moreover,
from the approximations that have been used in order to
obtain Eq. (15), a generating function of the form
F�z� � z exp� �n�z� 1��—that leads to a shifted Poisson
distribution—is obtained as long as k?  Qs, kmin

? . It is
only the accurate prediction of the value of �n that requires
in addition kmin

?  �. This explains why, despite the fact
that �n was not very accurately predicted at kmin

? �

0:4 GeV, the obtained distribution was nevertheless of
the form given in Eq. (18) with a very good accuracy,
because k? � 10 GeV.

B. Number of recoils

Next, we display in Fig. 3 the average number of recoils
above the threshold kmin

? , defined as

 N�k?jk
min
? � �

X1
n�1

nPn�k?jk
min
? �; (19)

as a function of kmin
? , for various momenta k? and a fixed

Q2
s � 2 GeV2. We see that the number of recoils grows

significantly at small kmin
? , and tends in this region to

become universal and independent of k?. Moreover, a
striking feature of this number of recoils is that it is very
close to unity for any value of kmin

? such that Qs � kmin
? &

k?. This means that when the gluon acquires a large
momentum k? from the nucleus, there is always one

hard recoil—and only one—that provides most of this
large momentum.

Again, it is possible to have an analytic understanding of
these properties of the average number of recoils from
Eq. (17). Indeed, the average number of recoils is given
by the derivative of the generating function at z � 1, and
we obtain

 N�k?jkmin
? � 	 1�

g4Nc�
2
0

8��kmin
? �

2
: (20)

This analytic expression is also displayed in Fig. 3, and it
reproduces well the numerical calculation for kmin

? & k?. It
deviates from it at very small kmin

? due to a nontrivial
interplay between kmin

? and the infrared cutoff �, which
is not correctly captured by our simple analytic calculation.
And of course this analytical result does not work for
kmin
? � k? because this is outside the range of validity of

our approximations.

C. Momentum distribution of the recoils

In Fig. 4, we have taken the derivative of the average
number of recoils with respect to kmin

? , in order to obtain the
momentum distribution of these recoils. At large k?, one
can clearly see that this distribution consists of two com-
ponents: a universal (almost independent of k?) semihard
component made of recoils with momenta of the order of
Qs or smaller, and a component peaked around kmin

? � k?.
The latter peak has an area unity, and it is simply translated
when k? is changed. By taking the derivative of Eq. (20),
one can readily obtain a contribution that reproduces well
the numerical result in the semihard region
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 �
dN

d ln�kmin
? �
	

g4Nc�2
0

4��kmin
? �

2
: (21)

In fact, it turns out that it is also possible to estimate this
derivative in the region where kmin

? is comparable to or
larger than k? (both of them being very large compared to
Qs). When both kmin

? and k? are large compared to Qs (i.e.
to �2

0), it is enough to expand the exponentials of A and B
in Eq. (11) to first order, and write6

 

F�z; k?jkmin
? �

	

R
d2x?e

�ik?�x?
A�x?� � �z� 1�B�x?jk
min
? ��R

d2x?e
�ik?�x?A�x?�

: (22)

The multiplicity being the derivative of F at z � 1, we
have

 N�k?jkmin
? � 	

R
d2x?e

�ik?�x?B�x?jk
min
? �R

d2x?e
�ik?�x?A�x?�

: (23)

Going back to the form (9) of A and B, we see that the
integration over x? simply produces a ��k? � l?�, making
the integral over l? trivial as well. In this kinematical
region, we obtain an extremely simple result:

 N�k?jkmin
? � 	

��k?�#�k?=k
min
? �

��k?�
� #�k?=kmin

? �: (24)

We see that this component of the multiplicity is nothing
but the cutoff function that we are using in order to separate
the momenta that are below kmin

? from those that are above.
Therefore, the precise shape of the average number of
scatterings for kmin

? above k? is not a property of QCD,
but merely reflects the fact that we have an extended rather
than a sharp cutoff. Nevertheless, the interpretation of this
contribution is quite straightforward: when kmin

? is smaller
than k? there is one recoil (that absorbs most of the
momentum k?), but it is unlikely that there is a recoil
with a momentum bigger than the momentum k?. Taking
a derivative with respect to kmin

? , we obtain the correspond-
ing contribution to the momentum distribution of the re-
coils:

 �
dN

d ln�kmin
? �
	

k?
kmin
?

#0�k?=kmin
? �: (25)

In Fig. 4, we have represented for k? � 50 GeV the sum of
the contributions given in Eqs. (21) and (25) (taking for the
latter the same ‘‘step function’’ #�x� as the one used in the
numerical calculation of the integral B). The sum of these
two components reproduces with a fairly good accuracy
the numerical results for all kmin

? down to kmin
? � 500 MeV.

The small discrepancy between our analytical estimate of

the peaked contribution and its numerical value is due to
rescattering corrections—indeed, our derivation of
Eq. (25) retains only the leading-twist contribution. As
one can see, the numerically obtained peak is slightly
shifted to the left of the analytical result. This is easy to
understand: since there are a few semihard scatterings in
addition to the hard one, the hard scattering needs to
provide a little less than the momentum k? acquired by
the gluon. This shift is a form of collisional energy loss (for
a cold nuclear medium).

Note that, when the ‘‘step function’’ #�x� becomes a real
step function ��x�, Eq. (25) would imply a peak propor-
tional to ��kmin

? � k?�. However, we expect that higher-
twist corrections to Eq. (22) would be important in this
limit, and they are likely to smear out slightly the delta
peak.

Before considering theQs dependence, let us come back
to the Poisson distribution shifted by one unit found in
Eq. (18), when kmin

? � k?. The shift by one unit is due to
the fact that, when the threshold kmin

? is so low compared to
k?, there is always at least one scattering (moreover, we
know now that this scattering has a recoil momentum
which is close to k?). The meaning of Eq. (18) is therefore
that the remaining n� 1 semi-hard scatterings that come
along with this hard scattering have a Poissonian distribu-
tion, which merely reflects the fact that they are indepen-
dent from one another.

D. Dependence on Qs
Finally, let us have a look at the dependence on the

saturation momentum. For this, we set the momentum k?
acquired by the gluon to 10 GeV, and we study the mo-
mentum distribution of the recoils for various values ofQ2

s .
The results of this analysis are displayed in Fig. 5.

As long as the saturation scale Qs remains small com-
pared to k?, only the semihard part of the distribution is
affected by changes of Qs, while the peak around kmin

? �

k? remains unchanged. The latter result is due to the fact
that, since this peak is well approximated by a leading-
twist calculation, it must be independent of saturation
physics with the same accuracy. It is only when Qs be-
comes very large that one cannot neglect higher-twist
corrections at large kmin

? , and that the peak at kmin
? � k?

eventually disappears. Since the distribution of semihard
recoils is quite sensitive to the value of Qs (it is propor-
tional to g4�2

0, which is proportional to Q2
s up to a loga-

rithm), it could perhaps be used as a way to estimate Qs.
The disappearance of the peak also provides a qualita-

tive answer to our initial question regarding the possible
existence of monojets: any parton produced with a k?
which is much larger than the saturation momentum in
the nucleus must have its momentum balanced by another
parton on the opposite side (the latter comes from the
scattering center that has undergone the hard collision).
But all the partons with a transverse momentum compa-

6Note that the 1 in the Taylor expansion of the exponential
does not contribute at large k? since it only gives a term
proportional to ��k?�.

DISTRIBUTION OF MULTIPLE SCATTERINGS IN . . . PHYSICAL REVIEW D 74, 054025 (2006)

054025-7



rable to or smaller than Qs need not have their momentum
balanced by a leading parton on the opposite side, since it
can be balanced by several softer particles (coming from
the semihard component of the distribution of recoils). As
long as the saturation momentum remains relatively small,
say Qs � 1–3 GeV, this conclusion is not going to alter
one’s common expectations regarding jets: all hard jets
with a momentum larger than say 10 GeV must come in
pairs. It is only for a very large Qs that one would start
seeing nonconventional event topologies where a hard jet
would have its momentum balanced by a large number of
softer particles.

V. EFFECT OF LEADING-TWIST SHADOWING

Let us now briefly compare the results previously ob-
tained using the MV model, with those one obtains by
using the model defined by Eq. (14). Basically, the two
models—at an identical Qs—differ by the nature of the
correlations among the color charges in the nucleus. In
particular, the MV model does not have any leading-twist
shadowing, while the second model has an anomalous
dimension � different from unity and thus provides some
shadowing. It is believed that the latter model is a
better description of a nucleus at very small momentum
fractions x.

In Fig. 6, we first compare the average number of recoils
for the two models (thin lines: MV model—dots: asymp-
totic model). The value of the ‘‘trigger momentum’’ k? is
held fixed at a value of 10 GeV, and the saturation momen-
tum squared is varied in the range 1–10 GeV2. One sees
that the number of semihard and soft recoils is quite
smaller in the asymptotic model than in the MV model.
At the largest of the considered Qs, the number of soft

recoils is 10 times smaller in the asymptotic model than in
the MV model. We interpret this as an effect of shadowing,
which ‘‘hides’’ the scattering centers from the passing
gluon. A similar observation was made in [36], where it
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was seen that the multiple scatterings that lead to the
Cronin effect are almost inexistent in this asymptotic
model. Also, an effect of shadowing is that the dependence
on Qs is much weaker in the asymptotic model: piling up
more and more color charges in the nucleus does not lead
to many more scatterings if the gluon cannot see them
because of shadowing. This weaker dependence on Qs is
also seen at large kmin

? , where one can hardly see any
change even at Q2

s � 10 GeV2.
Another feature of the asymptotic model is that the

‘‘plateau’’ at N � 1 for Qs � kmin
? & k? is no longer

really flat. Instead of a wide plateau between Qs and k?,
one has instead a slow but steady rise of the multiplicity as
kmin
? decreases. For this reason, we expect the two-

component structure of the momentum distribution of the
recoils to be less pronounced in the asymptotic model than
in the MV model. This is what we check by taking a
derivative with respect to kmin

? , as illustrated in Fig. 7. In
these plots, one can see that the dip between the low-
momentum component and the peak around kmin

? � k? is
not as deep as in the MV model. This means that one
should expect the distribution of momenta in the ‘‘away-
side jet’’ to be more extended towards softer momenta, as
one probes the nucleus at smaller and smaller values of x.

VI. MEASURING THE IMPACT PARAMETER
FROM THE MULTIPLICITY?

Based on the above study, one can address a related
question:7 is there a correlation between the measured
multiplicity in a pA collision (event by event) and the
impact parameter of the collision? and with what accuracy
could one determine the impact parameter based on this
correlation?

In this theoretical study, the question one can answer is
the following: if the measured multiplicity in an event is n
(in addition to the hard jet of momentum k? ), what is the
probability distribution of the various impact parameters?
In order to answer this question, we will make three
assumptions:

(i) When two bunches of nuclei and protons collide in
an accelerator, all the impact parameters b are
equally probable.

(ii) The only recorded events are those where jbj � R,
where R is the radius of the nucleus (we neglect the
radius of the proton). Assuming here for simplicity
that the trigger efficiency is the same for all b’s, the
probability of a given impact parameter (in the

absence of any other information about the colli-
sion) is a priori equal to P�b� � 1=�R2.

(iii) The density parameter �2
0 at a given impact pa-

rameter b is proportional to the thickness of the
nucleus at this impact parameter, i.e. to

�����������������
R2 � b2
p

.
Let us introduce the probability P �n; b� of having si-

multaneously the impact parameter b and the multiplicity n
(it is implicit in all this section that we mean the multi-
plicity above a certain threshold kmin

? when the passing
gluon has acquired the momentum k?—these variables
will not be written anymore in order to avoid encumbering
the notations). P �n;b� must be normalized so that one has

 

X1
n�0

Z
d2bP �n; b� � 1: (26)

The probabilities Pn defined earlier in this paper can be
obtained from this more general object by

 Pn �
P �n; b�P
n
P �n; b�

: (27)

The denominator is necessary so that the Pn’s add up to
unity. Obviously, this denominator is a function that de-
pends only on b, whose integral over b is unity. It is nothing
but the probability of having a collision with impact pa-
rameter b, when the incoming gluon has been scattered off
the nucleus with a momentum k?. It is easy to convince
oneself that this probability is given by

 

X
n

P �n; b� �
C�k?�R
d2bC�k?�

; (28)

where the b dependence of C�k?� comes implicitly via the
parameter �2

0. If there were no trigger bias, this quantity
would simply be uniform and equal to ��R2��1. However,
because it is slightly more likely to have a large k? in
central collisions than in peripheral ones, the mere fact of
selecting a specific k? in the final state introduces a certain
bias in the distribution of impact parameters.8 Therefore,
one has

 P �n;b� �
PnC�k?�R
d2bC�k?�

; (29)

and we see that no new calculation is necessary. It will be
sufficient to calculate Pn at fixed n as a function of b (the b
dependence comes in via �2

0 �
�����������������
R2 � b2
p

).
From this object P �n; b�, it is easy to obtain the normal-

ized distribution of impact parameters conditional to hav-
ing an event with the multiplicity n, which is the solution to
the question we asked,

 pn�b� �
P �n;b�R
d2bP �n; b�

: (30)

7This question is reminiscent of the attempts to measure the
impact parameter in collisions on nuclei by counting the so-
called ‘‘gray tracks.’’ Usually, in the relatively low-energy
collisions where this has been used, the picture is that the passing
projectile would kick nucleons out of the nucleus and that by
counting these nucleons one could estimate the impact parame-
ter. The general idea of our study is the same, except that the
action takes place at the partonic level.

8One can check numerically that this bias is significant only
for very peripheral collisions.
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We have evaluated this quantity numerically in the MV
model. The only extra parameters that need to be set are the
coefficient of proportionality between the density �2

0 and
the size

�����������������
R2 � b2
p

—we set it so that the saturation scale at
the center of the nucleus (b � 0) is 2 GeV2 —and the
nuclear radius, taken to be R � 6 fm. The results are
displayed in Fig. 8, for events where the gluon acquires
the momentum k? � 10 GeV and with a threshold mo-
mentum of kmin

? � 0:4 GeV for counting the number of
recoils.

The results are fairly intuitive: events with a low multi-
plicity are dominated by large impact parameters, and
events with a high multiplicity are much more central.
But we also see that selecting a given final multiplicity
only gives a fairly vague idea of the impact parameter,
since the distributions of probability for b at a fixed n are
quite wide, with important overlaps between the curves for
different final multiplicities. And to make things even more
difficult, the two extreme values of the final multiplicity
(n � 1 and n � 16 in our example), which have the least
overlap in b, correspond to very rare events as one can
judge from the Fig. 2. Therefore, it seems realistic to make
two centrality classes, reasonably well separated in impact
parameter, based on the observed number of recoils.
Changing the value of the threshold kmin

? may help this
separation, but we have not investigated that approach
systematically here.

VII. CONCLUSIONS

In this paper, we have calculated the distribution of the
number of scatterings in proton-nucleus collisions, in the

color glass condensate framework. This has been done by
calculating the generating function for the probabilities of
having a definite number of scatterings. We observe that,
when the produced gluon has a transverse momentum
which is large compared to the saturation scale, then this
momentum is provided mostly by a single scattering center
in the nucleus, leading therefore to the familiar di-jet
configuration. This hard scattering is accompanied by a
larger number of semihard scatterings, with transferred
momenta of the order of the saturation momentum or
smaller. By comparing the McLerran-Venugopalan model
with a model that describes the regime of very small x, we
also see that the shadowing present in the latter tends to
suppress these semihard scatterings, and to blur the sepa-
ration between the hard and semihard scatterings. Finally,
we have discussed the correlation between the final multi-
plicity and the impact parameter, and shown that it is not a
very strong correlation, that can at best be used to make a
gross separation in at most 2–3 centrality bins.

As a final note, let us mention that the results discussed
in this paper are a particular case of some general results on
random walks (in two dimensions in our case) where at
each step one may have a random step size (both in
magnitude and direction), according to a certain probabil-
ity law. If this probability distribution for the step sizes is
falling very quickly, then the only way that the random
walk may end far away from the origin is to add up a very
large number of small steps. On the contrary, if this proba-
bility distribution has an extended tail at large step sizes,
such that the variance is infinite—such random walks are
known as ‘‘Lévy flights’’—then the most efficient way to
go far from the origin is to make one big step, accompanied
by smaller steps. Note that the distance from the origin
reached after a large number of steps has very different
distributions in these two situations: Gaussian in the first
case, as opposed to a power-law tail in the second case. The
interested reader may see [54], pp. 42–59, for a pedagog-
ical introduction to Lévy statistics.

In the problem of independent multiple scatterings that
we have discussed in this paper, the ‘‘step size’’ is the
transverse momentum acquired by the gluon at each scat-
tering, which has a probability distribution that falls like
��l?� � l�4

? in the MV model (even slower if there is an
anomalous dimension different from unity). The variance
of the step sizes,

R
d2l?l

2
?��l?�, is thus infinite, and our

problem falls in the category of Lévy flights. Many of our
results can be understood from this analogy.
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