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ABSTRACT

The three contributions
to the S channel discontinuity (called "diffrac-
tive'", "absorbed multiperipheral' and 'polyperiphe-
ral') are evaluated in the limit s—-® in two con-
trasting models, a simple dual resonance model for
the cut, and the Mandelstam graph. The models differ
in the relative importance of the three contributions,
contrary to prevailing belief. The analysis present-
ed here providesa link between general investigations
of the asymptotic singularity structure of Regge-
behaved amplitudes and the s channel structure of

Reggeon diagrams.
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It is in the spirit of the Reggeon calculus that there exists a
perturbation expansion for scattering amplitudes in which the elementary
propagators correspond to factorizable Regge poles (Reggeons) and the element-
ary vertices to scattering amplitudes for Reggeons and particles which are
irreducible with respect to Reggeons. The motivation for the existence of
such an expansion is most directly found in traditional perturbation
theofy 1)’2) in which the Reggeons are defined as the family of bound states
and resonances in a particular channel composed of two elementary fields.
Thus the simplest graph in x¢3 perturbation theory generating the two-
Reggeon cut is the Mandelstam graph, Fig. 1, in which the Reggeons are
produced by the summation over all numbers of rungs in the ladders. It is
reasonable to think of the Reggeon calculus as a technique for summing all
possible graphs in perturbation theory in a particular order, in which the

2)

Reggeons are first identified .

The validity of the Reggeon calculus should, however, transcend
the particular field theory that is chosen as its basis. This belief is
supported by the work of Gribov, Pomeranchuk, and Ter Martirosyan and
White 3), who, starting from S matrix principles, i.e., without reference
to a perturbation theory, derived crossed-channel j plane unitarity
formulae for discontinuities across Reggeon cuts. White found solutions
to these analogous to the effective range expansion. His solutions can be

thought of as a rudimentary Reggeon calculus.

Although the Reggeon calculus is now usually formulated as a
field theory for the J plane representaticn of scattering amplitudes,
it is particularly useful to keep in mind the energy plane representation
of the Reggeon calculus, as, for example, provided by perturbation theory,
since it then becomes possible to discuss the s channel structure of the
various terms in the series. Thus there are three classes of contributions
to the s channel discontinuity of the Mandelstam graph, corresponding to
the Cutkosky slicings illustrated in Fig. 2 which slice two Reggeons, one,
or none. These have been studied by Abramovskii, Gribov and Kancheli 4
and Halliday and Sachrajda 5>. The Mandelstam graph provides a good illus-
tration of a general approach to the analysis of the simplest two-Reggeon
cut diagram in the Reggeon calculus. In general the two-particle, two-Reggeon
amplitude can be found from the helicity asymptotic limit 6) of a six-particle

scattering amplitude which is irreducible with respect to Reggeon cuts. The
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two-Reggeon cut diagram is in turn constructed by piecing together two such
amplitudes. The three classes of Cutkosky slicings correspond to three
discontinuities of the same six-particle scattering amplitude as illustrated
for the Mandelstam graph in Fig. 2 and for general diagrams in Fig. 3.

Thus a knowledge of the singularity structure of the six-particle ampli-
tude and the behaviour of its discontinuities in the helicity asymptotic
limit is required in order to find the asymptotic behaviour of the three

classes of discontinuities of the two-Reggeon diagram.

The physical significance of the three classes of discontinuities
is especially evident for the case that the Reggeons are Pomerons 4 « It is
popular to think of the intermediate states which collectively define the
absorptive part of the Pomeron as having a multiperipheral distribution
in momentum 7). Thus, the discontinuity slicing no Pomerons (a) would cor-
respond to diffractive excitation, that slicing one Pomeron (b) would cor-
respond to a multiperipheral event (with absorption) and that slicing both
Pomerons (c) to a polyperipheral event, i.e., with twice the multiplicity
of particles as in an ordinary multiperipheral event, such as might be
expected to occur in the collision of two deuterons if the constituent
nucleons should each scatter independently in a multiperipheral fashion.

The various production amplitudes corresponding to the slicings of the
Mandelstam graph are shown in Fig. 4. Thus, in principle, an understanding
of the s channel structure of the two-Reggeon cut provides a second
contact with phenomenology, the first being the usual prediction of the

behaviour of the elastic two-body scattering amplitude.

In addition to the phenomenological interest in the study of
discontinuities of Reggeon diagrams, it is useful theoretically to establish
general techniques for evaluating such discontinuities 4 , since they are
a prerequisite to understanding the s channel properties of the Reggeon
calculus, in particular in understanding how it satisfies s channel
unitarity. A general understanding of the procedure for evaluating dis-
continuities of Reggeon diagrams is useful also in the study of the rble
of Reggeon cuts in inclusive reactions 4),8) and in the study of multiple
production in nuclei 9). The analysis which we present here is also of
interest, because it provides a link between the general investigation of

the asymptotic singularities of Regge-behaved amplitudes 6) and the study

of the s channel structure of the Reggeon calculus.



The organization of the paper is as follows. In Section 2 we
discuss the asymptotic behaviour of the two-Reggeon graph and its various
discontinuities. In Section 3, we apply these results to two contrasting
models for the two-Reggeon - two-particle vértex, one provided by the
Mandelstam graph and the other by the dual resonance model in the tree
approximation. We present results of an investigation of the effect of
the various Cutkosky slicings upon the arrangement of singularities in
the two-Reggeon - two-particle vertex, the detailed analysis of which is
described elsewhere 10). In particular we find that the various slicings
have a profound effect upon the arrangement of poles and normal thresholds
in the vertex, which leads to model-dependent results for the relative
importance of their asymptotic contributions to the total cross-section.
In Section 4 we speculate on the implications of these results for the

general two-Reggeon - two-particle vertex.

2., - THE ASYMPTOTIC BEHAVIOUR OF THE TWO-REGGEON DIAGRAM

The general asymptotic expression for the two-Reggeon diagram

of the four-particle amplitude,

; t) +x (T,)
A, (5 t) ~ == [ahBM3E £, 1) s%7"

S*® (297) (1)

x & 8 (-2 (W] M- a(t)]B(M,E %)

is obtained from a Feynman loop momentum integration over the product of
two Reggeon-particle elastic scattering ‘amplitudes B and two Reggeon
propagators sagf(—a), where a(t) is the Reggeon trajectory function
26(t) = [exp[-ima(t)]+ 1] is the signature factor for signature 7 = %1,
and the I function gives the poles for the Reggeon recurrences. The
Reggeon-particle elastic scattering amplitude is in turn found from the

helicity asymptotic behaviour of the six-particle amplitude (Fig. 3)
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2 d.(‘) d(tw)
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+ other terms,

where B(t) is the two-particle-one-Reggeon vertex function and the "other
terms" lack singularities in Mf and so do not enter into the determination

of the asymptotic behaviour of A4 2).

A convenient general technique for evaluating the asymptotic
behaviour of the expression (2) and its discontinuities is due to Rothe 11),
which we review here. It consists in making the change of variables over

the internal Reggeon loop
Wtk o~ AMIAM At At O(-X)
KX X -
218l [-a(t,t, t)]™

(3)

where

Ala,bc) = a?+r b +c*-2ab-2bc-2ac.

It is assumed that the limit s—® can be taken inside the

integration ; i.e., that the M? and Mg integrations are sufficiently
convergent that the dominant contribution to the integral comes from the

region Mf, Mg << s. If this is not the case, the asymptotic behaviour

is more readily found using a Mellin transform technique 2). Since our
major conclusions also follow from the Mellin analysis, we prefer to use

the more transparent Rothe technique here, despite its limitations.

The limits of integration over Mf and Mg can be set at

+®» due to the assumed convergence. Thus the integration can be carried
out separately over Mf and Mg. The integrand inherits the usual right-

and left-hand cuts in Mf from B1,

the channels Mf and u1 of the six-point function. These are shown

in Fig. 5. The integral can be carried out by closing the contour in

corresponding to singularities in

the lower half plane, making use of the assumed convergence. Thus the

asymptotic behaviour is given by
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where

N(t/ w, 1) = "" f&M A"""N’- B(M1) "‘)tl),
(5)

is often called the "residue of the fixed pole" in B. For the Pomeron

o™ 1, £~ i, the asymptotic behaviour is therefore approximately

- 1 e Ay £ -5
A‘f re'd ¢ S and 2e 4 J (6)

thereby yielding a negative contribution to the total cross-section.

The foregoing is, of course, a well-known result. We would
like to proceed to the question of how the total discontinuity (6) is
divided asymptotically among the three separate contributions, designated

by the corresponding labels in Fig. 3

2 Mfofo.‘ A"’ = 2'..' d‘“‘ A+ + —L Mb A;‘. 4‘-—- AA;C;A*"
‘ 7

We consider them in order.

A) - Diffractive contribution

The Cutkosky rule together with the unitarity ie prescription

9(.»_[“4 AM} o‘Mb *3(”1, ht-s)

b

gives directly .
é&chBQJAw(ﬂt)£:q>§% §%i* S ADVi
x (s )a(("u)s*a(( te) *F[—x(f)]/'[‘((tu»d"“ !-B(Mg) ;‘5 t*))(e)
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where the extra factor of 2 on the right comes from the fact that cuts in

s are generated by a combination of right-hand cuts in Mf and Mg as
well as left-hand cuts in Mf and Mg, the integral over the latter dis-

continuity being exactly equal to the former

[, duscpy2 BIM, 1 By ) = [, dhic, Blu, 6t t)

because of the assumed convergence at large Mf.
between the present integrand and that of Eq. (4) is that the signature

The only difference

factor §u is now complex-conjugated, because of the unitarity ie pres-

cription. Thus in the notation of Eq. (6) for the Pomeron

L duee, A‘F < +5,
i (10)

corresponding to a positive contribution to the total cross-section.

B) - Absorbed multiperipheral contribution

For this contribution we must consider a contour rotation

analogous to that of the undiscontinued amplitude. The Cutkosky prescrip-

x(Ce)ta(ts)

tion yields

t
Aq(-s/ )_,_”. it

X §'x [ dact,] F[-q’(t,)]f'[-x(t..)}ﬁb (M6t ty), (1)

jd’fk B, (M5t tu,G) (s s

where the discontinued two-Reggeon, two-particle vertex Bb is obtained
from the appropriate discontinuity of the six-point function in the heli-

city asymptotic limit
¢ x (¢
N A, ~B, (M2, t) (5p) d') (5. §.,, [deac é,]
x I [-alt] Cl-atta)] flb)p(ts) + other terms, )

as illustrated in Fig. 3.
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Our main observation is that this discontinuity profoundly alters
the singularity structure of the two-Reggeon, two-particle amplitude. In
particular, the amplitude Bb cannot have*garticle poles or normal threshold
branch points in the channels overlapping the one in which the discontinuity
is taken. In the present case (Fig. 6) the amplitude cannot have poles and
normal threshold branch points in the u channel, though they are permitted

1
in the M2 channel. One might well expect that such an effect would profoundly

1
alter the asymptotic behaviour. Thus we would have (assuming the contours
could be closed as before)
t,0(-2) \s%
L diie, Ag(st) ~ 1%L [l dB 0 Nt e, 8,)
sse0 2 ST (_)0'/;

. q,/(tu)v"d(t )-1
x [dusc ] Tmbu 5 A7, (13)

where

. 3
N, (& tety) = b0 [ disepya By (ML 6 60 Y ),

may well differ from N(t,tu,tﬂ), so we keep the subscript b. In (13),
the factors 4 and 1Im §  are due to the four possible slicings of one

Reggeon, shown in Fig. 7.

¢) - Polyperipheral contribution

In the present case, both the Mf and u, channels overlap
the channel in which the discontinuity is taken (Pig. 3). In general, we

have, in analogy with (13),

: ] t, dty G(-)
Z',,,L%A,,L( 5t ;zb 3‘,, %_)%__ N* (¢ tu te)

y [Mcé_ ][Mos,xjsdéfu)fc((tg)‘i (14)

*) If one draws lines through a diagram in such a way that the incoming
lines for each of two channels in question are separated from the out-
going lines, then the channels are said to overlap, if the lines must
intersect (cf. Fig. 6b). Otherwise they are non-overlapping (cf.

Fig. 6a).
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In conclusion, we find that because the contribution A) is given
directly in terms of discontinuities in Mf and Mg, it is unaffected by
the problems which plague contributions B) and C), and is related to the
total discontinuity in a model-independent way. However, without resorting
to specific models, we can say no more about the contributions B) and C)
except that the arithmetic of Eq. (7) requires that the last two terms must

make up the difference between the total and the contribution A).

3, - CALCULATIONS IN SPECIFIC MODELS

To investigate further the relative weights of the contributions
to the total discontinuity, we consider two models for the six-point function,
one taken from the dual resonance model in the tree approximation 12 , and
one taken from the Mandelstam graph in xﬁB perturbation theory (Figs. 1 and

2).

A) - Dual resonance model

The only tree graph with a non-vanishing fixed pole residue is the
one with poles in both Mf and u, (Fig. 8c). Since the only allowed sin-
gularities are poles, it follows from the reasoning of Section 2C that the
discontinuity associated with the polyperipheral contribution (Fig. 3) can

2

have no singularities in M1 or u, whatsoever., In other words, in the

dual resonance model,

Bc. (Miz, t/ t“/ tl) =0
N, (t t., ) = o0 (15)

[In the language of Eq. (2) the discontinuity in question is contained
entirely in the "other terms", which are not associated with the two-Reggeon
cut diagrmn;] Consequently, one expects that, in this model, the cross-
section for the polyperipheral production process does not have the asymptotic

behaviour associated with the two-Reggeon cut.
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In calculating the absorbed multiperipheral contribution
following the prescription of Section 2B, the discontinuity of Fig. 3
results in a function Bb with poles in the M2 channel but none in
the u channel. Since the residues of the M poles in Bb are

1 1
exactly the same as in B, the full amplitude, it follows that

N, (4 tu, te) = Nty &) < L. / M dicpyr BOS, B L)
(16)

However,

t tu, 1)
B (Mt t) ~ NG Y
22T BT M M> )

since it lacks poles in u . The asymptotic behaviour of Bb(Mg’t’tu’tz)

is the same. The integrand in (13) is therefore insufficiently damped at

large M? and Mg to permit the contour rotation or the approximation
Mf, Mg << s which led to the Jacobian (3). A careful treatmentrio) shows

that the effect of this slow convergence is simply to introduce an extra

factor of + in Eq. (13), yielding in this model

'L d"‘"‘ A'l»(s/t) ~ "'!': 3:— dtz&u 9(’»N1(t/ t“/t&) |
2i b sve 2 3T ) TR g

- a(tu) +aclty) -1 (18)
X [Mfljj,nf*s c ]

so as to satisfy the arithmetic of Eq. (7). Thus, for the Pomeron in the

approximation of Egs. (6) and (10), we have

L daaey, Ay« - 25
2. (19)

and the terms of Eq. (7) are proportional to

-1 = {i -2 + O
(20)
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B) - Mandelstam graph

The model of Pig. 2b represents, in a sense, the opposite
extreme, since the six-point function contains no poles in Mf, only
branch points. If we first examine the discontinuity Bc associated with
the polyperipheral contribution, we find, as expected from the reasoning
of Section 2C, that the normal thresholds in Mf and u, havegbeen
removed. In fact there remain no real axis singularities in M10 This
result is consistent with the Steinmann relations 15), which forbid real
axis singularities from occurring simultaneously in overlapping channels
in the physical region. However, there are complex M? branch points
associated with various higher order Landau singularities 14) located
symmetrically about the real axis *). One type is the anomalous triangle
singularity in which the poles for the three propagators indicated in
Fig. 9a trap the contour of integration over the internal loop of the six-
point function. (There are four pairs of these singularities.) These
singularities are ordinarily present in the full amplitude, but are on
the second sheet of the M? normal threshold. However, they are exposed
when the normal threshold is removed. Another type of triangle singular-
ity, also in the complex plane, involves two of the same poles and a
normsl threshold in the absorptive part of the Reggeon (Fig. 9b). (There
are two pairs for each normal threshold.) As a consequence of the
presence of these singularities, the integral over Bc(Mf,t,tu,tz) is
convergent, yielding a non-vanishing fixed pole residue N . What is

4),5),18),

remarkable is that when it is evaluated explicitly it is found

that

N, (t/ t., t,t) = N( ¢, Cu, b)), 1)
21

i.e., the slicing has no effect upon the fixed pole residue in this model,
despite the drastically altered singularity structure of the two-Reggeon -
two-particle vertex itself. Actually, the result can be seen to be less

surprising if one exploits the special structure of the six-point function

in this model, and does the integration over Mf before completing the

integration over the internal loop of the six-point function 4)’5).

*) ) . . . .
The appearance of these singularities is of interest in and of themselves,
since they suggest limitations on generalizations of the Steinmann

relations 6 o
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If we examine next the absorbed multiperipheral slicing, we
find that half of the normal threshold singularities are removed, as

expected from the reasoning of Section 2B, but complex branch points

appear, which assure the normal convergence of the Mf and Mg integrals

and, in fact, give
Ny (t,tt) = Nt ts, t) | (22)

Thus, for the Pomeron in the approximation of Egs. (6) ana (10), we find

for the relative weighting of the terms in Eq. (7)

-4 = 1 -4 +2. (23)

4, - CONCLUSION AND SPECULATION

We have calculated in two models the weighting of the various
s channel diffractive, absorbed multiperipheral, and polyperipheral con-
tributions, to the two-Reggeon cut diagram and found that although both
models agree in the relative weighting of the total discontinuity and
diffractive contribution, the relative weighting of the absorbed multi-
peripheral and polyperipheral contributions is model dependent. For the
Pomeron, the weighting in the dual resonance model, is given approximately
by Eq. (20) and in the Mandelstam graph, by Eq. (23).

4) (AGK) give general arguments

Abramovskii, Gribov and Kancheli
in favour of a counting scheme for an arbitrary Reggeon calculus diagram
similar to that found for the Mandelstam graph. What we find in our two
examples does not contradict their claim, since they consider only pertur-
bation theory models of the Reggeon-particle and Reggeon-Reggeon vertices.
The dual resonance model does not conform to their assumptions. However,

even in the context of a perturbation theory model one may still wonder
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whether a simple general rule for the weighting of the contributions exists.

4>’5) it is necessary to assume that scatter-

For example, in present analyses
ing amplitudes involving elementary fields vanish rapidly off the mass shell.
But even if such an assumption is granted, the AGK argument in its present

4)

involves using a contour rotation in a Sudakov variable to demonstrate the

formulation is unfortunately incomplete. A crucial step in the AGK proof
equivalence of a discontinuity and an integration over the real axis in that
variable., The argument does not take account of the complication that seve-
ral channels may in general produce normal threshold singularities in that
same variable, which can impede the contour rotation. Nevertheless a general

argument for perturbation theory vertices may still be possible.

Even if one is found, however, the existence of a counter-
example compels us to conclude that the result is not generally correct

in a larger class of models.

We have been concerned here only with the two-particle - two-
Reggeon vertex. One might well imagine that similar difficulties may affect
the counting scheme in more complicated vertices such as the three-Reggeon and
four-Reggeon vertex 15). This is a natural subject for future investigation.
The lack of a simple rule would be unfortunate for a number of applications.
For instance, it would render more difficult the treatment of Reggeon cut

4),8),16)_

modifications to inclusive cross-sections Some recent attempts

have been made to incorporate more complicated discontinuity rules into a

general theory 17).

It is conceivable that for the two-particle, two-Reggeon vertex,
the correct rule may depend on the particle in question. It may well be that
the Mandelstam graph could give a reasonable description of the two-deuteron -
two-Reggeon coupling, since the anomalous singularities in this case are very
close to the region of integration., On the other hand, our dual-resonance
model result may be more appropriate for other processes in which the compo-

site nature of the particle in question is not so obvious.
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FIGURE CAPTIONS

- - ———

The Mandelstam graph in xﬁg perturbation theory. The two-body
elastic scattering amplitude, obtained by summing over all lengths
of both ladders and including the possibility of a single twist in

each ladder, contains the two-Reggeon cut.

a) The three main classes of discontinuities of the Mandelstam
graph : a. diffractive, b. absorbed multiperipheral, c. poly-
peripheral.

b) The corresponding discontinuities of the internal six-point

function.

The generalization of Fig. 2 to an arbitrary amplitude containing
a two-Reggeon cut, and the corresponding six-point function that
defines the component two-Reggeon, two-particle amplitude. The
discontinuities of the six-point function are more readily vi-

sualized when the Reggeons are drawn on opposite sides.

Three classes of production amplitudes which, when multiplied
together, yield the corresponding slices of the Mandelstam

graph.

Location of normal threshold singularities of the full two-

Reggeon, two-particle amplitude.

a) Non-overlapping and b) overlapping channels in the disconti-

nuity corresponding to the absorbed multiperipheral slicing.

The four slicings of a single Reggeon after Abramovskii, Gribov,
and Kancheli, and the corresponding discontinuities of the

six-particle amplitude.

Tree graphs in the dual resonance model. Only (c) has a non-

vanishing fixed-pole residue.

The slashed lines indicate propagators whose poles conspire %o
generate anomalous triangle singularities. These are encountered

in the complex M2 plane in vertices sliced through one or both

1
Reggeons.
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