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the commutators here, we closely follow Okubo, Ref. 26.
%8An added complexity occurs when considering non-

conserved currents since the 7-ordered product of a

current and a current divergence is not covariant.

(1969); R. F. Dashen and S. Y. Lee, Phys. Rev. 187,
2017 (1969); S. Okubo, Phys. Rev. D 3, 409 (1971).
These articles contain additional references.

’Since we are only interested in the g-number part of
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We assume that the subthreshold zeros of Weinberg’s 7 scattering amplitude smoothly continue into
the physical region to become the Legendre zero of the p resonance. We show that this hypothesis of
smooth zero contours is justified in the channel 7w+@%—m*#° This enables us to give a new derivation
of the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation and to predict the I =2 s wave correctly.

I. INTRODUCTION

Recent studies of the Veneziano model have
served to emphasize that it is the zeros as well
as the poles of the scattering amplitude that large-
ly determine its structure. Wanders! has shown
that Regge asymptotics with linear-trajectory func-
tions follows from the distribution of zeros of cer-
tain meromorphic amplitudes. Phenomenologically
Odorico® has traced, in both the high- and low-
energy data, the zeros that must occur when poles
in different channels cross.

This work is concerned with the role played by
lines of zeros in low-energy nr scattering. Since
the current-algebra model of Weinberg® seems to
be a good approximation to reality? in the neighbor-
hood of the Mandelstam triangle, it is natural that
several attempts have been made to unitarize
Weinberg or other current-algebra models and so
obtain an extrapolation of these models into the
physical regions. Thereby one might hope to pre-
dict the phase shifts and in particular the mass
and width of the p resonance. Attempts in this di-
rection have been made for example by Kang and
Lee.5:8

In contrast we want to show that it may be more
useful and more reliable not to try to extrapolate
the whole amplitude but just its zeros from one
energy region to another. In Weinberg’s linear
model the on-mass-shell zeros of the invariant
amplitudes, which are implied by the Adler self-
consistency condition,” describe straight lines in

the Mandelstam plane. We shall work with a quad-
ratic model which preserves these Weinberg zeros
for subthreshold energies, but whose zero contours
are curved as unitarity requires.

What we mean by “zero contours” is unambiguous
for an amplitude inside the Mandelstam triangle,
where it is purely real. However, when an ampli-
tude is complex we must define what we mean by
its zero contours. In general, for real energies ¢,
the complex amplitude

Alt,z,=14+2s/(t-4)]

will vanish at complex z,=z,(¢). We shall refer to
the lines z =Rez,(?) as the zero contours of this
amplitude. Such contours correspond to the lines
of minima of the differential cross section, |A|2.
We shall see that another definition (zeros of the
real part of the amplitude) is not a useful concept.

We shall show under what circumstances zero
contours can be useful. We recall that Barrelet?
has shown that zero contours in 7*p scattering are
amazingly smooth. Odorico? has looked at minima
of the differential cross sections in reactions like
KN charge exchange and found them also to be
smooth.

In Sec. I we construct a simple model based on
current algebra for zo(t) inside the Mandelstam
triangle. In Sec. III we determine the curvature of
the zero contour through the Froissart-Gribov in-
tegral for the d-wave scattering length. In Sec. IV
we discuss, in general, the smoothness of zero
contours near resonances, and in Sec. V we give
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the connection between the zero contour in 7*7°

- 7*1° scattering and the p mass as well as the
magnitude of the exotic s wave. Using the hypoth-
esis of a smooth zero contour we give a new deriv-
atien of the KSRF (Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin) relation® (Sec. VI), and we predict
the exotic s wave in Sec. VII. In Sec. VIII we ex-
plain why unitarity does not determine the abso-
lute scale of our amplitude. In Sec. IX we show
that the exotic d wave can be neglected in our ex-
ample, but not in other cases. Section X contains
oeur conclusions.

II. MODEL FOR THE ZERO CONTOUR

Our aim is to make the simplest reasonable
ansatz for the zero contour in low-energy nr scat-
tering. We do this by constructing a model for the
scattering amplitude inside the Mandelstam trian-
gle which has essentially the features of Weinberg’s
current-algebra model. However, the zero con-
teurs in Weinberg’s linear model are straight
lines, while we shall see below that extrapolating
into the p region requires zero contours to be
curved. We make the simplicity hypothesis that it
is sufficient to add terms quadratic in the Mandel-
stam variables to Weinberg’s linear model in or-
der to give such curvature. In doing so we shall
require that certain aspects of Weinberg’s sub-
threshold model be preserved.

For the larger part of this paper we concentrate
on one particular zero contour, the one in the
Chew-Mandelstam invariant amplitude A(s, ¢, u).!°
This amplitude represents n*7° elastic scattering
in the ¢ and » channels and the reaction 7°%7%—n*7"
in the s channel. It has the following isospin de-
composition:

A(S, t) u)E %(F SO_FSZ)

=3(F ¢+ Ft2), (2.1)

For this particular contour it is a good approxima-
tion to set the exotic (1=2) d wave to zero (see Sec.
IX). This approximation simplifies our illustration
of the technique of smooth zero extrapolation.

The most general on-shell quadratic form for A
(which is even under interchange of ¢ and u) is

(2.2)

which has just s, p, and 4 waves in the s, ¢, and
u channels. Setting the exotic d wave to zero im-
plies

c=0.

A(s, t,u)=a+bs+cs®+dtu,

(2.3)

We recall that the invariant amplitude in the
Weinberg model® is given by!!

A(S, t: u)=%L(S-1), (2-4)
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where

L= ai? ) (2.5)
with f,=pion decay constant. We see that in Wein-
berg’s model the amplitude A vanishes on the line
s=1; this is just the on-shell appearance of the
Adler zero.

We now ask which features of Weinberg’s model,
Eq. (2.4), we wish to preserve in our general ex-
pansion, Egs, (2.2), (2.3). We recall that for the
Weinberg amplitude the /=0 and 2 s-wave ampli-
tudes have zeros at s=3 and s =2, respectively.
These zeros are a general feature of models of 77
scattering.® However, the position of these s-wave
zeros in the individual isospin amplitudes varies
greatly from one model to another. In contrast the
position of the zero in the s wave of the Chew-
Mandelstam invariant amplitude, Eq. (2.1), is less
model-dependent and generally appears fairly
close to Weinberg’s position of s=1, Eq. (2.4).
Because of this we shall require that our ampli-
tude also have an s-wave zero at s=1 and that the
slope of the s-wave amplitude at this zero also be
given by Weinberg. This reduces our amplitude,
Eqgs. (2.2), (2.3), to the following form:

A(s, bu)=3L(s=1)+d(tu+s-3), (2.6)

where d is an as yet unknown parameter, which
will be determined in Sec. IOI. It should be
stressed that if instead of taking Weinberg’s
model to be exact close to the s-wave zero in

the amplitude A we had assumed, for example,
that the s-wave scattering lengths were given ex-
actly by Weinberg, our results would be insignifi-
cantly changed in the physical regions (see end of
Sec. VI).

III. CURVATURE OF THE ZERO CONTOUR AND
FROISSART-GRIBOV CALCULATION OF THE
d-WAVE SCATTERING LENGTH

The free parameter d in our model for the zero
contour, Eq. (2.6), is proportional to the d-wave
scattering length, «,, in the s channel:

g = é (ag -a 2)
-=d, (3.1)
where the scattering lengths are defined by

Ry fi(s)
R EY PR} LR

The partial-wave amplitudes, f{(s), are related to
the full isospin amplitudes by

Fl(s, t)=z (21 +1)f{(s)P,< 1 +s2_t4),
=0

(3.2)

(3.3)
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FIG. 1. The curve of Rezy(¢) in the Mandelstam plane,
where Alt,zy(t)]=0. A is the *n°— 7* 7" amplitude in the
t andu channels. The zero contour in the Weinberg
model is the straight line s=1.

and the phase shifts below inelastic threshold are
defined by

1/2
f{(s)=<si4) ¢t%18ind! . (3.4)

We shall now determine the parameter d by cal-
culating the d-wave scattering length a,. This
scattering length is given by the Froissart-Gribov
representation

16 (~dt ,

%15, ) i ImF G 9+ 4] (.5)

Positivity of the {~channel absorptive parts im-
plies that a; must be positive. Therefore d is neg-
ative [see Eq. (3.1)] and the zero contour of the
amplitude, Eq. (2.6), curves downwards into the
physical-region ¢ and 4 channels (see Fig. 1).
Because of the ¢% denominator in Eq. (3.5) the
major contribution to this integral will come from
the low-energy region, where we have just s and
p waves. The s-wave contribution comes from the
imaginary part of the exotic /=2 channel and is
small compared to the dominant p-wave contribu-
tion from the p peak.!? Evaluating the p contribu-
tion analytically in the “narrow-resonance approx-
imation” (n.r.a.) we obtain

8 T, m,+4

(3.6)
This determines the parameter d, Eq. (3.1), in
terms of the mass, m,, and width, r,, of thep
resonance.

IV. ZERO CONTOURS NEAR RESONANCES:
THE SMOOTHNESS HYPOTHESIS

We now define more precisely what we mean by
zero contours when the amplitude is complex, and
we discuss the hypothesis that zero contours are
smooth near resonances.
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We work with the real part of the zeros of A and
not with the zeros of the real part of A. More ex-
plicitly, for real values of the energy ¢ we con-
sider the complex zero z,(¢) of the amplitude A,
i.e., A(t,2,)=0, and then we take the real part of
this zero, Rez,(?).

The basic hypothesis is that the real part of the
zeros of A describe smooth lines even in the pres-
ence of resonances. In order to show when this
hypothesis is reasonable, we consider a few typi-
cal examples:

(1) If A(s,?) is the sum of two poles, one in s
and the other in ¢ with unequal strengths (g2) and/
or unequal widths (I"), then the real part of the
zero of A is a smooth line, while the zero of ReA
gives a complicated pattern.

(2) If A(¢, z) in the scattering region of the ¢
channel is built from a narrow p-wave resonance
and a slowly varying s wave, then the real part of
the zero of A is again a smooth line in the Mandel-
stam plane, while the zero of ReA gives a com-
plicated pattern.

(3) On the other hand, with a narrow s-wave
resonance and a constant p wave, both the real
part of the zero of A and the zero of ReA show a
violent variation.!?

Barrelet® has shown that the real and imaginary
parts of the zeros of the transversity amplitudes
in 7*p elastic scattering follow amazingly smooth
lines. Odorico® has looked at minima (i.e., Rez,)
of high- and low-energy differential cross sections.
He has found that they follow smooth, often
straight, lines, and associates them with the zeros
which must occur when poles in different channels
cross in the unphysical region.

Although there is no a priori reason why zeros
should follow smooth paths, they are in fact
smooth in many cases in nature and in simple
Veneziano models.'* In the amplitude we consider
in this paper, 7*7°~7*7° we have the p reso-
nance in the p wave and a smooth exotic s-wave
background. Therefore the zero contour is nec-
essarily smooth in the p region.

V. ZERO CONTOUR IN THE p REGION

In the region of the p resonance the amplitude A
is given by just the s and p waves:

m,LC,

A(t,?.‘)=%52+%z‘m Z_f—im. L.’ (5.1)
p plp

where S, = f{Z2(¢) and where we have replaced
[t/(t-9)]V2 by 1.

The zero contour near the p is approximately a
straight line
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m2-t
r

Rez,(¢) = —%[Resz(t) +ImSz(t)] (5.2)

p
myl,

In the narrow-resonance approximation [i.e., I in
the resonance denominator, Eq. (5.1), is set equal
to zero, while I' in the numerator is kept at its
normal value] the zero contour intersects the line
z=0at t=m 2 For a finite p width it is still true
that the intersection {=¢ of the zero contour with
the line z, =0 gives the p mass to a good approxi-
mation,

ty=mz2<m,T,, (5.3)

because the exotic background has ImS, < ReS,.
The angle between the zero contour and the line
z,=0 gives the ratio between the strength of the
s wave and the p width, thus:
d ReS,(m ,?)

[d—t Rezo(l):l‘=mpz—m;L. (5.4)
To summarize: If the zero contour is given, we
can predict two quantities, m, and ReS,/T',, from
the intersection point and the angle of intersection
of the zero contour with the line z,=0.

VI. THE KSRF RELATION REDERIVED

We now make the hypothesis that the zero con-
tour of the s, p, d-wave model of Sec. II can be ex-
trapolated to the p region, where it must be identi-
fied with the physical zero contour discussed in
Sec. V (see Fig. 1).

The curvature of the contour in our modified
Weinberg model is proportional to a, /L. As dis-
cussed in Sec. V, this zero contour must cross the
line z, =0 close to the p mass. This determines
ay/L; using Eqgs. (2.6) and (3.1) we obtain, in the
n.r.a.,

a; 9 my2 =2

LT my—om 1 €.1)

On the other hand, a, is proportional to the p width
according to the Froissart-Gribov calculation of
Eq. (3.6). Comparing the two expressions for a4,
Eq. (6.1) and Eq. (3.6), which were both obtained
in the n.r.a., and using the definition [Eq. (2.5)],
we find

1 961:1"p
f "2 - mpa

with

K, (6.2)

_1+4/mp? 1-3/m,%+1/m,*
1-2/m,2 (1 -4/m 2)?

=1.35. (6.3)

This relation is of the KSRF type® and relates the
p width to the pion decay constant, giving

K
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f»=95 MeV (experimental value):
r,=122 MeV,

fr=83 MeV (Goldberger-Treiman value):
I, =161 MeV .

(6.4)

The fact that our relation, Eqgs. (6.2), (6.3), is
empirically well satisfied gives support to our
smooth-zero extrapolation hypothesis.!s

The kinematic factor K reduces to unity in the
limit (m ,/m ,)*~0, and Eq. (6.2) then takes ex-
actly the form of the KSRF result.® In the simple
B, model of Ref. 14, one obtains a KSRF-type re-
lation with K=371=1.57. We see that our factor &
is about half way between the value in the old KSRF
result and in the B, relation.

The explicit form of the kinematic factor, Eq.
(6.3), depends on our assumption (discussed in
Sec. II) that the s-channel s wave of our s, p, d-
wave model and of Weinberg’s linear model should
agree exactly at the zero of this s wave. We now
indicate how little the factor K in Eq. (6.3) is al-
tered if we make different assumptions, for ex-
ample, if we take instead (1) the s-wave scattering
lengths, and (2) the whole amplitude near the point
s=1, t=u, to be exactly as given by Weinberg.
Writing the modified kinematic factor K, = K¢;, we
obtain in case (1) £,=0.96 and in case (2) &,=1.02.
Therefore our KSRF relation is changed by only
+4% if we modify our assumptions in Sec. II.

VII. PREDICTION OF THE /=25 WAVE

The angle of intersection of the zero contour
with the line z =0 determines ReS,(m,?)/T,. Using
Eqgs. (2.6) and (3.1) we obtain the angle of intersec-
tion

d 2t-3 -2L /1504
[E:Re“(‘)],: W [(4 —hG-1+2L /15a,,)],: .

(7.1)

Using the value of o,/L, Eq. (6.1), determined by
the condition that the contour must intersect the
line z=0 at the p mass in the n.r.a., we obtain

d [ t2-4#5
I:dt ReZo(t)] 2“_ 2[(t—4)(t2 -3t+%)]t=mp2

t=mp

1.11
==5—7, (7.2)
2m ,?

with m , =765 MeV. Using Eq. (5.4) this gives

3 r
ReSz(mp2)=—§ #1.11. (7.3)
o

With I', =135 MeV we predict



| =3

6{:5("‘ p2)= -18°) (7-4)

evaluated using the n.r.a. for the p resonance.
This is in reasonable agreement with the experi-
mental results of, e.g., Baton ef al. and Cohen
et al.,'® who give

52(750 MeV) = —12°+ 6°,

62(790 MeV) = -15°+3.5°, (7.5)

respectively.

We now abandon the n.r.a. and use a nontrivial
parametrization for the p wave from threshold up
to the p resonance. This allows us to predict the
I=2 s wave from threshold up to the p region, us-
ing the zero contour of Eq. (2.6). For the p-wave
Breit-Wigner resonance tails we make the simplest
ansatz which allows us to fix the p-wave scattering
length at its Weinberg value, i.e.,

. fo\M2 m,T'(¢)
=iy L £
fl=1(t)'<t_4> mpz—t—im,,l",,(l)’
with

(7.6)

r(¢)= FP< : ; : >”2<mtp;f 4) 1+A(¢ -14;/)27” pz_ 4)°

(7.7)

The constant A in the “barrier factor” is deter-
mined by the p-wave scattering length of the Wein-
berg model:
gie 4m,T,
L (m pz -4y
Using the definition (2.5) and our KSRF-type rela-
tion, Eqgs. (6.2), (6.3), we obtain

(1+A)=3L. (7.8)

2
1+A=K<1 -;4—2> -1.018. (7.9)

P
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Knowing the p wave and the zero contour we com-
pute the I=2 s-wave phase shift; the result is
shown in Fig. 2.7 As can be seen, the resultant
phase shift is in very reasonable agreement with
all the recent data of Ref, 16. Near threshold the
result agrees with the Weinberg model by construc-
tion. It is also in very good agreement with the
values computed by Pennington and Protopopescu*
using Roy’s equations. This is the second piece
of evidence in favor of our smooth zero extrapola-
tion hypothesis.

We see that starting from a real amplitude, Eq.
(2.6), which contains none of the correct analytic
structure at threshold and pseudothreshold and
which is therefore valid only inside the Mandel-
stam triangle, we have been able to compute both
the real and imaginary parts of the /=2 s wave in
the low-energy region. This has been achieved
without recourse to a complicated unitarization
technique but by assuming that zero contours ex-
trapolate simply.

VIII. UNITARITY AND THE ABSOLUTE SCALE
OF THE AMPLITUDES

One might have hoped that unitarity would de-
termine the absolute scale of the amplitudes. This
is not the case. Keeping the zero contour fixed
and therefore the p mass fixed, we can multiply
all scattering lengths and the exotic s wave by a
factor A while we keep the magnitude of the p wave
at the resonance at its unitarity value and multiply
the p width by A. This scaling property is consis-
tent with nonlinear unitarity, since with (ReS,)?
> (ImS,)? the role played by unitarity is just to de-
fine the imaginary part of the partial-wave ampli-
tude, S,, from its real part, and not to determine
the absolute scale of the amplitude.

»w -|OF
[
e
o
a
-20l « Baton et al.
e Colton et al.
a Colton etal
L“ Katz et al.
-30F ¢ Cohenet al.

1 1 1

03 0.4 05

|
0.7 0.8 0.9

V1 (GeV)

FIG. 2. The solid line shows the predicted values of éﬁ(t). The data points are those of Ref. 16.
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IX. THE EXOTIC d WAVE

We first show that it is a reasonable approxima-
tion to neglect the influence of the exotic d wave
on that particular zero contour we have studied up
to now. Afterwards we shall give an example
where the influence of the exotic d wave is large.

In the general quadratic form, Eq. (2.2), we in-
troduce the convenient parameter

e=Co_3_a; 9.1)

d "2d8-aZ’

We shall see below that a2 is expected to be neg-
ative in our model, if not more generally (i.e.,
€>0). Since a2+2aZ>0 from positivity, we have

%> €>0. (9.2)

Using Eq. (2.2) we compute the shift of the zero
contour at ¢=m,* caused by € #0:

As
AZO=1——§=%€<% . (9.3)
m

We see that it is a reasonable approximation to
neglect €.

We now study the zero contour for the s-channel
process r*r* - n*7". If we neglect the exotic d
wave, the s-channel amplitude has just an s wave
and so the zero contour is a straight line at fixed
s. In our model it is close to s=2, while in Wein-
berg’s model® and in the Lovelace-Veneziano
model' it is exactly at s=2. This is in conflict
with unitarity. The contour F*2=0 corresponds to
the vanishing of the ¢-channel amplitude

2F*° - 3F® +Fi2=0. (9.4)

In the low-energy region we can approximate this
by just the s and p waves and obtain

sind?
- 0_ 51y22%
9Rez (f)=2cos(6] 61)sin5}
sinb?
2 .5l 9
+cos(62 51)sin6{' (9.5)

Now let us look at the Rez, at t=m ,? (i.e., 6!=3m);
then

9Rez,=2sin?5) +sin?63< 3. (9.6)

We see that straightforward elastic unitarity de-
mands

0<Rez,(m ,2)< }. (9.7)

Putting in the value of 62 in Eq. (9.7) gives the
even stronger restriction

0<Rez,(m ,?)<0.23. (9.8)

However, in our model without exotic d waves we
have F*?(s=~2,¢)=0, i.e.,, Rez>1, As illustrated

FIG. 3. A simple curve of Rez,(t), where FSt,z(t)]
= 0, consistent with both Weinberg’s amplitude inside
the Mandelstam triangle and unitarity at ¢ =m,2. F? is
the *7* amplitude in the s channel and the n* 1~ —n*7~
amplitude in the ¢ and # channels. The zero contour in
the Lovelace-Veneziano model and in the Weinberg model
is the line s=2. The bound A att=m,? is the elastic
unitarity bound Rez,< 3 [Eq. (9.7)]; B is the stronger
phenomenological bound Rez,< 0.23 [Eq. (9.8)]; C is the
bound Rez;>0 [Eq. (9.7)]. The zero contour must pass
between B and C att =m,? to be consistent with unitarity.

in Fig. 3, the violation of unitarity is rather dra-
matic. We see that exotic partial waves with [ =2
are clearly important.!® The fact that unitarity in
the low-energy nm scattering does not allow this
particular zero to follow the straight line, s=2,
predicted by Lovelace and Veneziano!* is a warn-
ing against Odorico’s idea? that the zeros of the
Veneziano model are a universal feature little af-
fected by unitarization.

X. SUMMARY AND CONCLUSIONS

We have extrapolated zero contours in nr scat-
tering from the region of the Mandelstam triangle
where they coincide with the on-shell appearance
of the Adler zero, as given by Weinberg’s linear
model, to the region of the p resonance, where
they become its Legendre zero.!®* We have imple-
mented the hypothesis of smooth zero contours by
using an s, p, d-wave model for them. This hypoth-
esis has enabled us to give a new derivation of the
KSRF relation and to predict the /=2 s wave in
good agreement with experiment.

We have discussed under what assumptions the
hypothesis of smooth zero contours is justified in
low-energy scattering reactions; we have shown
that it is justified in the specific channel we have
considered and have referred to the work of both
Odorico and Barrelet for empirical evidence for
smoothness.
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(i.e., € >0) for sueh a change in curvature to result.
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