COMMENTS

Comments are short papers which criticize or correct papers of other authors previously published in the **Physical Review.** Each Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Comment on "Prolate-oblate band mixing and new bands in ¹⁸²Hg"

J. Wauters, N. Bijnens, and M. Huyse LISOL, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium

> P. Van Duppen CERN, CH-1211 Genève 23, Switzerland (Received 6 April 1995)

We comment on a recent paper by Bindra et al. [Phys. Rev. C 51, 401 (1995)]. [S0556-2813(96)04405-6]

PACS number(s): 27.70.+q, 29.30.Kv, 23.20.Lv

Bindra *et al.* [1] have recently reported on in-beam γ -ray spectroscopic studies of ¹⁸²Hg and on the observation of different band structures in this nucleus. In particular, they discuss the position of the well-known prolate band relative to the oblate ground-state band. They identified the 2^+ member of the prolate band and developed on this basis a discussion of the minimum in the prolate-oblate energy difference as a function of neutron number. They point out that when the 0^+ and 2^+ members of the oblate and prolate band interact, the prolate band member energies will alter significantly from the values calculated by using the rotational formula and high-spin members of the band. They state that "Any conclusion about the prolate-oblate energy difference based on the high-spin members may be questioned." Indeed, extrapolation of the prolate band using the rotational formula and the high-spin members results in the unperturbed excitation energy of the prolate 0^+ bandhead *relative* to the experimental 0^+ ground state and not to the unperturbed oblate 0^+ bandhead. The unperturbed excitation energy equals the energy difference between the unperturbed oblate and prolate bandhead (ΔE_{P-Q}) plus the energy shift (Δ_0) due to mixing $E_{\text{unpert}}(0^+_2) = \Delta E_{P-Q} + \Delta_0$. A crucial test is then to compare the unperturbed energy with the experimental position on the 0_2^+ . Here the authors are not taking into account our measurement of the 0_2^+ bandhead position through the observation of fine structure in the α decay of ¹⁸⁶Pb [2].

In Fig. 1 all the information is brought together on the oblate ground-state band (up to spin 4) and the prolate band (up to spin 8) for ^{180–190}Hg. Also given is the position of the 0⁺, 2⁺ and 4⁺ prolate band members extrapolated from the high-spin members (6⁺-12⁺) with the rotational formula $[E_0+AI(I+1)+BI^2(I+1)^2]$. A nice agreement with the experimental values is obtained for the 0⁺ and 4⁺ states. Only the 2⁺₂ states in ¹⁸²Hg and ¹⁸⁴Hg are significantly deviating. This means that the 0⁺ bandhead of the prolate band is essentially not mixing with the oblate ground state when reaching its minimum at N=102. From α -decay studies of ^{186,188}Pb it has been shown that the high hindrance of the α

decay towards the excited 0^+ state can be understood only if one assumes very weak mixing between the 0^+ excited and ground state in ^{182,184}Hg [2,3]. The extrapolations in Fig. 1 are in fairly good agreement with similar calculations by Dracoulis [4]. With an interaction matrix element of 90 keV, it is possible to extract now both the unperturbed oblate and prolate 2^+ states [5]. Such a calculation reproduces the constancy of the unperturbed excitation energy of the oblate 2^+ state as a function of neutron number, as observed in the heavier even Hg isotopes. Furthermore, the unperturbed 2^+ prolate band member follows now the same parabolic behav-

FIG. 1. Low-level energy systematics of the even-even ^{180–190}Hg isotopes showing the experimental prolate band (\triangle), 2⁺ and 4⁺ oblate band members (\square), together with the calculated unperturbed prolate 0⁺, 2⁺, and 4⁺ band members from extrapolation of the high-spin members (\times). References to the experimental data can be found in [1–3].

3163

© 1996 The American Physical Society

ior as a function of neutron number as the other band members. With decreasing neutron number, the prolate band decreases and when the 2^+ band members of both bands come closer, they start to interact: Their mixing varies from a few percent in ¹⁸⁸Hg to 35% for ^{182,184}Hg. Extrapolation of the high-spin members of the prolate band in ¹⁸⁰Hg to low spins gives an unperturbed excitation energy for the 2^+ prolate band of 525 keV and 438 keV for the 0^+ bandhead. As can be seen from Fig. 1, the first excited 2^+ state in ¹⁸⁰Hg has been restored to its near-constant value from the heavier iso-

- K. S. Bindra, P. F. Hua, B. R. S. Babu, C. Baktash, J. Barreto, D. M. Cullen, C. N. Davids, J. K. Deng, J. D. Garrett, M. L. Halbert, J. H. Hamilton, N. R. Johnson, A. Kirov, J. Kormicki, I. Y. Lee, W. C. Ma, F. K. McGowan, A. V. Ramayya, D. G. Sarantites, F. Soramel, and D. Winchell, Phys. Rev C 51, 401 (1995).
- [2] J. Wauters, N. Bijnens, P. Dendooven, M. Huyse, H. Y. Hwang, G. Reusen, J. von Schwarzenberg, P. Van Duppen, R.

topes (A > 186), indicating essentially no mixing between the 2^+ members in 180 Hg.

In conclusion, given the experimental excitation energies for $^{182-190}$ Hg, one can indeed draw reliable conclusions concerning this prolate-oblate energy difference and its degree of mixing. Taking into account this mixing, the energy position of all band members indicate that the prolate-oblate energy difference is minimal for N=102, in agreement with the earlier results of Dracoulis [4]. Finally, we wonder whether the experimental data of Bindra *et al.* [1] contain an indication for the 2^+_2 - 0^+_2 γ transition at 220(12) keV.

Kirchner, and E. Roeckl, Phys. Rev. Lett. 72, 1329 (1994).

- [3] J. Wauters, N. Bijnens, H. Folger, M. Huyse, H. Y. Hwang, R. Kirchner, J. von Schwarzenberg, and P. Van Duppen, Phys. Rev. C 50, 2768 (1994).
- [4] G. D. Dracoulis, Phys. Rev. C 49, 3324 (1994).
- [5] P. Van Duppen, M. Huyse, and J. L. Wood, J. Phys. G 16, 441 (1990).