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Fradkin’s formulation of statistical field theory is applied to the Coulomb interacting electron gas in a
magnetic field. The electrons are confined to a plane in normal three-dimensional space and also interact
with the physical three-dimensional electromagnetic field. The magnetic-translation-group Ward identi-
ties are derived. By using them, it is shown that the exact electron propagator is diagonalized in the
basis of the wave functions of the free electron in a magnetic field whenever the magnetic-translation-
group symmetry is unbroken. The general tensor structure of the polarization operator is obtained and
used to show that the Chern-Simons action always describes the Hall-effect properties of the system. A
general proof of the Stréda formula for the Hall conductivity is presented. It follows that the coefficient
of the Chern-Simons terms in the long-wavelength approximation is exactly given by this relation. Such
a formula, expressing the Hall conductivity as a simple derivative, in combination with a diagonal form
of the full propagator, allows us to obtain a simple expression for the filling factor and the Hall conduc-
tivity. Indeed, these results, after assuming that the chemical potential lies in a gap of the density of
states, lead to the conclusion that the Hall conductivity is given without corrections by crxy=ve2/h,
where v is the filling factor. In addition, it follows that the filling factor is independent of the magnetic
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field if the value of the chemical potential remains in the gap.

I. INTRODUCTION

The integer quantum-Hall effect (IQHE) and the frac-
tional one (FQHE) have been a subject of very active
research in the field of condensed matter physics in this
decade.! This interest is also shared by quantum-field-
theory (QFT) theorists.> In this connection it has been
stressed that many advances of this research can be fur-
ther stimulated by a closer collaboration between field-
theory and condensed-matter theorists.! Most of the
theoretical activity in this field was developed in the
framework of the many-particle quantum mechanics
(QM).>* Relatively few works have been devoted to de-
veloping an interacting-field-theory treatment.>$

The present work intends to apply Fradkin’s functional
approach to quantum statistics to the study of these
effects.” The general aim is to exploit the generality of
those methods to investigate some exact properties of the
nonrelativistic Coulomb interacting electron gas confined
to a plane in the physical three-dimensional (3D) space.®

The main conclusions of the work are organized in or-
der to show that the Hall conductivity is exactly given by
the product of the filling factor and e2/h whenever the
Fermi level lies in a gap of the density of states. The
effects of impurities are completely disregarded in the
present approach.

The diagonalization property of the exact one-particle
propagator, shown in a recent paper,’ and rederived here,
helps in simplifying the discussion. The Stréda formula
for the Hall conductivity and its equivalence with the

4

coefficient of the Chern-Simons action is obtained in the
context of the statistical QFT for the interacting electron
gas.!®!1 As the Hall conductivity is given by that rela-
tion as a simple derivative of the density with respect to
the magnetic field, and the density is also expressed in a
simple way thanks to the diagonalization property, closed
expressions for the filling factor and Hall conductivity are
obtained. Finally, it is argued that when the Fermi level
lies in a gap of the density of states, the Hall-conductivity
formula

where v is the filling factor, is an exact one. In addition,
the filling ratio v is independent of the magnetic field if
the Fermi level remains inside the gap.

In the second section the functional approach is
presented. Section III is devoted to giving a sketched
derivation of the diagonalization property of the propa-
gator in the functional formalism. The tensor structure
of the polarization operator is obtained in Sec. IV. It
serves for the derivation of the Stréda formula from the
finite-temperature QFT in Sec. V. The filling factor and
Hall-conductivity expression are obtained in Sec. VI
The proof of the proportionality with the filling factor of
the Hall conductivity is given in Sec. VII, and the in-
dependence of the filling factor on B when the Fermi en-
ergy lies in a gap is shown.
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II. FUNCTIONAL APPROACH

As mentioned in the Introduction, in this paper the
analysis of the QHE is performed by using Fradkin’s
functional formulation for statistics as restricted to non-
relativistic systems.” We take the quantum 2D-electron
plasma embedded in a real 3D plane as described by the

|
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following temperature Green’s-function generating func-
tional

z= [Dy*Dye', (1)

where the action S is given by

Yd*x

—%f[tb*(x)lli*(x')U(x—x')l/)(x’)1[1(x)]d2x dzx’+kf¢*(x)¢(x)U(x—x')n0d2x d?x’

1

1 3
+_
#ic J &’ dx, 167

In (2) the fermion fields ¥ and ¥* are functions of the
coordinates x; and x, of the points in the electron-gas-
confinement plane x;=0. The electromagnetic fields 4,
are functions of all the three-space coordinates x. The x,
arguments for all the fields are real numbers correspond-
ing to the Matsubara theory. The external fermion
sources 7,m* are Grassmannian functions of the same
kind as their corresponding fields.” The parameters e, m,
and u are the electron charge, mass, and the chemical po-
tential, respectively. The Gaussian units are used
throughout the work. Other definitions that are needed
in (2) and will be required are the following:

d?x =dxdx, ,

d3x=dx]dedX3, x4E(0,B) ’

— .y 0 _ .
Pp= tﬁax“ i#3, , (3)

P,=(p1,P»,0,0),
Al=(A4!,45,0,0), n=(0,0,1),

where B=c#/(kT) (k is the Boltzmann constant and T is
the temperature). The total electromagnetic field A; is
defined by

t —

A,=A;(x)+ 4,(x), 4
in which A4 is the vector potential of the homogeneous
magnetic field in the symmetrical gauge

A°=1BnXx, A5=0. (5)

The A4,(x) field in (4) is the mean value of the quantum
electromagnetic field. It needs to be stated that in (1) the
electromagnetic field functional integral is absent because
it was exactly performed after the static approximation
was assumed. This approximation results in the
Coulomb interaction four-fermion term in (2). However,
the mean field 4 » Temains as a dynamical quantity, hav-
ing its own equations of motion.” This field will play an
important role in the following discussion. Finally, the

(8,4, —3,4,7+ (3,4,

+ [ [9*om) +*(0wix) 1d x dx, 2)

[
term in (2) containing the arbitrary parameter a corre-
sponds to the fixing of the Lorentz-gauge condition in the
quantization procedure.” Here the value a=1 will be
selected that simplifies the photon propagator to be the
inverse of the d’Alembertian operator. The parameter A
is the coupling constant of the Coulomb interaction.

In (2) the factor n, represents the homogeneous back-
ground of charges (jellium) that compensates the electron
charge density at equilibrium. As usual, the Coulomb in-
teraction potential is damped at large distances in the
way

U(r)='—gexp(—plr|) ,

in order to have convergence in the calculations. At the
end, the limit ©#—0 must be taken. The coupling con-
stant value A=e? must be fixed for concrete calculations.
It is worthwhile to remark that some of the conclusions
in this paper correspond only to the zero-temperature
limit. In each case the validity conditions will be stated
explicitly.

III. MAGNETIC TRANSLATION GROUP
AND DIAGONALIZATION OF THE MASS OPERATOR

It is well known that the translational-invariance prop-
erties of electron in a homogeneous magnetic field are
mathematically described by the so-called magnetic
translation group (MTG).!? In Ref. 9 it was also argued
that the generators of this group, when represented in the
space of states, commute with the Coulombic interaction
Hamiltonian. Then it follows that the theory described
by the generating functional (1) should retain this symme-
try if the ground state does not break it. In this section
the Ward identities stemming from the magnetic transla-
tion group will be obtained in their functional formula-
tion. By using these relations the exact diagonalization of
the mass operator will also be shown. This property
occurs in the representation determined by a complete set
of solutions of the free-electron problem in the magnetic
field. Such a result was also derived in Ref. 9. It should
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be stated here that the diagonality of the mass operator in
QED was proven by Ritus.!> Then our result constitutes
the extension of this conclusion to the nonrelativistic con-
text. It should be mentioned that the study of the Ward
identities associated with charge conservation [U(1) sym-
metry] had been presented in Refs. 14—-16. As stressed
above, the Ward identities we have presented here are the
ones corresponding to the magnetic translational symme-
try.

The infinitesimal magnetic-translation-group transfor-
mation, leaving the action S in (2) invariant when all the
sources vanish, is given as’

1 e .
¢(x)-—>¢(x)+7ﬁ—bj pj+;Aj P(x), (6)
* * g, € el
P*(x)—>¢p*(x)+ iﬁbj P~ A€ |P*(x), (7
A,(x)—4,(x), (8)

with b;, j =1,2 being infinitesimal parameters.
After performing the change of variables (6)—(8) in (1),
the desired Ward indentities may be obtained as

8Z
81, (x)

e

Pi— 4

e

fdzx dx, 7,(x)

1
ifi

8Z
dn¥(x)

1 e
+1];"(x)g pj+:A]f"

8Z

— =0. (9)
54,(x)

— [d*x dx, 3;A,(x)

In order to arrive at (9) the translational invariance of the
free electromagnetic action term in (2) was employed.
The Grassmann functional derivatives over 1 and %* in
(9) are of the “right” and “left” types, respectively.!” In
terms of the generating functional of the connected
Green functions

W=InZ , (10)
the relation (9) is transformed into
2 R N P SW
Jd’xdx, | —— |G )5 ey |1
1 SW
+-—=n* Gy —0—
in (x) 15 sm*(x) I
_ 3 SW _
[ d* dx, ————SA“(x)ajA“(x) 0, A

where the following notation for the generators of the
MTG has been introduced:

G)(x)=p;+ 45, Grx)=—p;+< 45 . (12)

Let us now apply the Ward identities (11) to the proof of

the diagonalization of the mass operator in the basis of

the free-electron eigenfunctions in the magnetic field.’
After taking the derivatives of (11) with respect to two
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functional arguments 7*(x),n(x’) and making all the
sources and the field 4, vanish, the Ward identity for the
one-particle propagator is obtained in the form

G;(x)G5(x,x") =G, (x,x")G ¥(x') (13)

where the arrow means that the derivative is acting on
the left.

Relation (13) expresses that the generator of the mag-
netic translation group commutes with the exact Green’s
function. It may be also shown by acting with G;(x) on
(13) that the following relation is valid:

GHx)G,,(x,x")=G,(x,x")[G Xx")]*, (14)
where it has been defined as
G%x)=G;(x)G;(x) . (15)

Let us introduce the operator

H= , (16)

Pi_fAie Pi‘%Aie
which is proportional to the one-particle Hamiltonian
and also defines the expression for the free-electron
Green propagator. By using the definition of G; in (12)
and the explicit expression (5) for the vector potential 4/,
the following equation can be obtained:

H=GZ——2ﬁL3 , (17)
Cc

in which L; is the third component of the angular
momentum operator for a free particle
Ly=ePxp; . (18)

Among the three operators H, G2, and L ;, the following
commutation relations can be obtained:

[G*H]=0, (19)
[G%L,]=0, (20)
[H,L;]=0. 21

It also follows that the rotational invariance of system
allows us to show, through the use of its corresponding
Ward identities, the additional relation®

L;y(x)Gy(x,x")=G,s(x,x")L,(x") . (22)

Therefore, after using (19)—(22) and (14), the following re-
lation is obtained:

H(x)G,(x,x")=G,(x,x" ) H(x") . (23)

The identities (22) and (23) imply that the eigenfunc-
tions of the Green’s-function kernel can be selected as the
common set of eigenfunctions of the free Hamiltonian
and the angular momentum operators. More details
about this result can be found in Ref. 9. This property of
the exact one-particle Green’s function, as mentioned be-
fore, becomes the extension to the nonrelativistic (and
statistical) framework of the analogous result derived by
Ritus for QED.!? It should be mentioned that this con-
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clusion is in no way restricted to the 2D-electron gas.
The argumentation works equally well for the 3D-
electron system.

From the commutativity of the inverse of the free
propagator of the system with H and L, and (23), the di-
agonalization of the exact mass operator in the basis of
common eigenfunctions of H and L; immediately fol-
lows. The explicit form for the propagator in the tem-
poral Fourier representation takes the form®

Gop(X,X',ky)=8,5 3 G,(ky)gl(0)p5*(x'—x)
n=0

ie A%(x)
pl——-(x

Xex
fic

—-x)|, (24)

where @)'(x) are the normalized eigenfunctions of the
free-electron problem. In arriving at (24) the sum over
the angular momentum eigenvalues was explicitly calcu-
lated by means of the formula'®

S e (x) =g, (0)g)* (x' —x)

m=—o

Xexp

b

e yo o,
‘hCA(X)(X x')

(25)

where the sum runs down to — « because we have con-
sidered the magnetic field in the positive x; axis direction
and the electric charge e <0.

The diagonal form (24) is a greatly simplifying result.
It expresses the fact that the spatial dependence of the
propagator is kinematically fixed. That is, similar to the
way in which the translational invariance in the absence
of magnetic field allows the Fourier decomposition of the
propagator, the MTG, when the field is present, deter-
mines the spatial dependence of the propagator in terms
of the Laguerre functions. Formula (24) is also a general-
ization of the results of Girvin and McDonald for one-
particle density matrices.!?® The generalization of (24)
to the case of crossed electric and magnetic fields has
been presented in Ref. 21.

IV. LINEAR RESPONSE
AND THE CHERN-SIMONS TERM

In Ref. 8 the general tensor structure of the polariza-
tion operator characterizing the linear-response proper-
ties of the electromagnetic field was calculated. This re-
sult allowed the authors to point out the relevance of the
Chern-Simons action for the description of QHE. The
argumentation was performed in the one-loop approxi-
mation. It may be considered that one of the central
aims of the present work is to present the generalization
of the above conclusions of Ref. 8 to all orders in pertur-
bation theory for IQHE and FQHE.

In this section the expression of the polarization tensor
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IT in the functional approach is presented. After passing
to the Fourier representations and using the transversali-
ty property, the general tensor structure is obtained in
terms of the characteristic vectors of the problem. Then
when the long-wavelength approximation is considered, it
is shown that the Chern-Simons (CS) action always de-
scribes the Hall-effect properties of the system. A formula
for the Hall conductivity (or what is the same as the
coefficient of the Chern-Simons terms) is also obtained.
It serves in the next section to obtain a derivation of the
Stréda formula for the Chern-Simons term coefficient in
the context of statistical QFT.!! The equation of motion
for the mean electromagnetic field 4,(x) is given in
Fradkin’s approach by’

SW[n*,m,A]
84,(x)

ieng
=—u
*_ ch L
=0 26)
W=InZ, u#=(0,0,0,1) ,

where the fermion external sources vanish. The relation
(26) is a highly nonlinear one. The corresponding equa-
tions for the small perturbations of the background mag-
netic field are obtained by performing a functional expan-
sion in A, and retaining the linear terms. Then for the
expansion of W up to quadratic terms we have

w10,0, 41=W[0,0,0]+ [ %(Z_OA
M

A, (x)d*x
A4=0
4

1 U LA S—
+7fA“(X)8A“(x)8AV(x)

4=0
X A,(y)d*xd%y+0(43) . 27)
After substituting into (26) it follows that

82W[0,0, 4]
54,008 4.0

8W[0,0, A]
54 ,(x)

A=0

ien
X A,(p)dYy+0(42)=—2
ch

u, . (28)
Thus under the assumption of no spontaneous breaking
of the symmetry of the external magnetic field it follows
that

ieng

SW u
chi H*°

54,,(x)

(29)

nn*, 4=0

In physical words, this condition expresses the assump-
tion that the system does not develop any internal elec-
tromagnetic field in addition to the constant magnetic
field. That is, the zero field A4 » =0 must be a solution of
the quantum equation of motion (26).

The linear Maxwell equations coming from (28) after
performing the functional derivatives of W take the form

1
4rfic
In arriving at (30) the value a=1 was substituted for the

gauge parameter. The polarization tensor II,, in (30)
takes the explicit form

3%4,(x)+ [1,(x,x")4,(x)d*x'=0. (30)
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2 82z
I, (x,x" )= ——8(x3)8(x3)8(x —x')—H—
pl XX Fimed o 3O (x —x Zdn(x T)dn*(x) |nn* 4=0
ieu, eP,, 8z
—8(x3) + «(X)—p( +)— Ae( ,  (31)
(XB #ic 25m Pa\Xx PalX ]]Z 87]: +)8’7]:(X)8A (x') 7”7 4=0

where the electron-gas four-velocity’ [as given in (26)],
u,=(0,0,0,1)=§,, , (32)

has been introduced in addition, with the projection on
the gas plane Lorentz tensor

1 000
0100
P,,= 0000 =8M18v1+8#26v2. (33)
00O00O0
In (31) the three-dimensional Dirac § function is defined
by
8 x —x")=8(x; —x1)8(x,—x5)8(x,—x}) . (34)

The special 8 functions in the x; coordinates reflect the
loss of translational invariance implied by the
confinement of the gas to the plane x;=0. Finally, the
x T four-vector is defined as

x: =x#+5u“, 6>0, (35)
where the limit §—0 is implicitly understood in (31).
This variable takes care of the correct ordering of the
operators to which the functional derivatives are associ-
ated. It may be useful to remember that the spatial
dependence of the fermion variables is always on the vari-
ables x, x,, and x4, with x; excluded.

The tensor IT,,, obeys the so-called transversality condi-
tion.” It can be dlrectly deduced from the Ward identity
associated with the gauge invariance and has a close rela-
tion with charge conservation. In the coordinate repre-
sentation it reads as

3,IL,,(x,x")=0 . (36)

Relation (36) will play an important role in fixing a close
form for the tensor structure of IT,,,,

Let us now introduce the momentum representation in
the variables of the (x;,x,) plane and the Matsubara
variable x, in the following way:

—ik g (x, —x

I, (k,x5,x%)= [ d% dx,e “I,(x,x") ,

(37

u I,,(k,x3,x3) , (38)

II,(x,x')= —————e‘ o
I =

where the four-momentum k is defined as k,

=(k,,k,,0,k,), and the translational invariance in the

plane of the gas has been considered in (37) by assuming

that II only depends on the difference of the variables

f
X4a—Xg a=1, 2, and 4. In the x; variable there is no
such invariance.

The explicit dependence of II,, on the x; variable may
be exactly obtained. For this purpose it should be noted
that performing the functional derivative over 4 in (31)
gives rise to x' and v dependences, which are symmetri-
cal with respect to the x and u ones. Thus a global factor
8(x3)8(x3) appears that completely defines the depen-
dence of Il on x; and x’. Furthermore, it also follows
that

I, (x,x" )=l 5(x,x")=0, a=1,2,3,4. (39)

Thus the polarization tensor takes the form

I, (K, x5, 5)=TL,,(k)8(x3)8(x}) , (40)

with

noIly (K)=I1,,(k)n,=0 (41)

po a

expressing the vanishing of all the components with an
index equal to 3 in terms of the four-vector normal to the
gas plane

n,=(0,0,1,0) . (42)
The transversality property (36) takes the form
g, (k)=11,,(k)k,=0 . (43)

The conclusion arises that the linear-response properties
of this problem are described by a special tensor In,,(k).
It has the same basic properties as the one correspondmg
to a purely two-dimensional electron gas interacting with
an also 2D electromagnetic field.?>?3

The remaining part of tensor structure of I1,,(k) may
be expressed in terms of three scalar functions by using
the transversality property (43). After performing some
algebraic operations, the following result may be derived:

l(l)l(l)
ladd k421

n v
+m(RIPTP + ——— kg, (44)

where the newly defined four-vectors are given in the rest
frame of the gas by the expressions

k,.k
1= |T4I’ k||, 45)
2 — |nXk
—_—F,01, 46
1= (46)
where
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n=(0,0,1), (47)
k=(k,,k,,0) . (48)
The scalar functions in (44) satisfy the following relations:
m(k)=m(—k), (49)
my(k)=my(—k), (50)
my(k)=—my(—k) . (51)

The main information in (44) is that the last contribution
in the sum that breaks the space-time inversion as im-
plied by (51) is exactly the Chern-Simons term when
m3/k, is taken in the zero-momenta limit. Therefore, the
conclusion arises that for 2D electron system the Chern-
Simons action describes the Hall-effect properties, no
matter whether at the quantized or normal regimes. It is
also interesting that the Chern-Simons appearance of the
parity breaking term in (44) is a direct consequence of the
gauge invariance as expressed by the transversality rela-
tions (43). The connection of the Chern-Simons action
with the QHE was argued for the first time in Refs.
22-24. Here it is also argued that the Hall conductivity
is always described by the Chern-Simons terms as a sim-
ple consequence of gauge invariance and two dimen-
sionality. In addition, it follows that the embedding of
the 2D electron gas into the real three-dimensional space
does not destroy this result.

V. STREDA FORMULA FOR INTERACTING
ELECTRONS AS THE COEFFICIENT
OF THE CS ACTION

The main objective of this section will be the derivation
of the Stréda formula for the static value of the Hall con-
ductivity for an interacting electron gas in the framework
of statistical QFT. The formula for the conductivity ten-
sor in terms of the polarization operator is given by’

fic?

U,-j(k):k—n,-j(k) , (52)
4

in which the 8-function structure in the x; variables is
not considered as being common to all the II,, com-
ponents. Such a dependence only expresses the physical
fact that all the internal currents and charges are
confined to the plane x;=0.

The interest here is in the static value of the Hall con-
ductivity tensor, which is determined in the zero-
momenta limit (after the analytical continuation in the k,
variable’) by

my(k) . .
o= lim | lim |—5"€'%Pn kg | |#c?
k| -0 |k,—0 it
m3(k) o
= lim | lim : '3#ic?
kl—0 |k,—0 | k4
=0,,&7 . (53)

After expressing 3 in terms of the II;; components we
have
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ky klk, * Y
— 1 ilm
= k2k48 n,kml'[l-jkj
1 ilm
=Fsl nk,, I, , (54)

where relation (46) for />’ and the transversality condi-
tion have been used. After derivating the transversality
relation over the spatial momenta and taking the limit
k4—0, the following formula is obtained:

_ oIl
Il,,= '—kla—ki- ky—r0® (55)
which when substituted in (53) and using
(k)= [ d% drye ™ TLy(r) (56)
allows us to write the relation
. —ik- nlk k
0,y =—tc? “HTO fd2r dr,e 'k ‘—k’;L
X (= ir )T (r)e™™ (57)

in which, according to (31) and the translation invari-
ance,

_ e + e .
Hj4(r)~—W pi(r)—p;(r )—Z;Aj(r)
L 5z g
Z sn,(rt)om*(r)84,(0,x%)

1 8z
VA 8A4(0,X§)

—
8A;(r,x;)

Xdxydx}

(58)

79%, 4=0

Before continuing, let us note that the limit in (57) may
be taken by fixing an arbitrary direction for the vector k
in the plane. Then we may define two orthogonal unit
vectors ¢/ and ¢/?, which consequently obey

t}”t}”+t,-(2)t}2)=5 (59)

ij -
By considering the limit (57) for the k direction along
each of the unit vectors ¢!, i =1,2, and performing the
semisum of both expressions, it follows that

c” ..
o,,=——— lim

- 2 —iker( _ oy oilj
y 2 am [fd rdrye (—i)

anrinﬂ(r)] . (60)

The substitution of (58) into (60) gives
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#c? . iker il which after considering
Oy =" 5 “Hrgofdzr drye " (—i)eln,r,
8 1 8Z dAf(r)
x 1 = 1¢iliy 4. (62)
faA,-(r,x3> Z 54,00,x3) ag ="M
Xdxsdx; , (61)  takes the form
1],77*,A=0
1
dAi(r) 5 1 8Z
o,,=—%c? | d*rdr, = -
Y f dB SA,-(",X?,) VA 5A4(O,X3) 77:"7*:A=0
d |1 8Z
=—ticti [ — |5 —"— dx} . (63)
I |z 8440,x5) |, x4 o
[
But where in the zero-temperature limit
1 8Z ie 1 8°Z8(x3) dk, e *®he
T T T o Tt hm G,(—8)= lim - .
Z 5A4,(0,x%) fic Z $n,(07 )87} (0) 50" s—o+ ¥ 2m ictik,te,—p+o,(ky)
=2 n(0)8(x}) , (64) (68)

fic

where n (0) is the density of particles. Thus, the substitu-
tion of (64) into (63) gives the Stréda formula

Oy =ec dB |, 7= cons: . (65)
The relation (65) expresses the Hall conductivity as a sim-
ple derivative of the density of particles, but the density
also has a simple expression in terms of the fermion
Green’s function. Thus the obtained diagonalization
property of the exact propagator can further simplify the
discussion of the Hall conductivity. The result (65) is val-
id at T+0.

VI. THE FILLING-FACTOR FORMULA
AND OTHER RELATIONS

According to (24) we have for the fermion Green’s
function

1 8Z
Z 8my(x)8ngx")

=8aﬂ 2 Gn(X4

G plx,x")=

—x4)@2(0)pd" (x—x")

n=0
Af(x)
—x’ 66
Xexp |i ﬁc (x—x") (66)
Therefore for the density of particles it results to

-_1_ ¥z

Z $71,(0%)81*(0)
==23 G, (=8l (67)

n=0 —0

In (68) the o ,(k,) are the eigenvalues of the mass opera-
tor associated with the particular eigenfunction ¢;’. The
independence of o, of m can be shown by using the re-
sults of the Sec. ITL.°

After considering that

ormy2—_ 1 _ leB|
2(0)]“= = )
(0] 27ry ke

the density n can be written as follows:

leBI w dk, ice 4®

= 1
" anfgi f—co 27 ictk,+e,—p+o,(ky)

_ leB|
=TV (69)
in which the filling factor v is defined.

As a matter of checking, it is possible to disregard the
o0,(ky) in (69). In such a case the integral in it may be
readily calculated to give (if u lies in the gap between two
Landau levels)

2leB|

n==7" Eoem—e) (70)

in which ©(x) is the Heaviside function. The result (70)
is the expected one in the tree approximation for the
Green’s function.

In continuing, let us examine the value of the conduc-
tivity predicted by the use of the Stréda formula (65) and
the expression (69) for the density. Substituting (69) into
(65),
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and 2 are not considered. That is,
ny:eC'd_n :ec—d_ 'Ve—‘B_ ’ k — 'k
dB u, T=const dB he zaﬂ(x,x s Ky )_EaBE(X,X , 4) . (75)
- e’ d (vB)=%_|v+B av. 71) Let us consider now the generating functional (1) eval-
h dB h dB 4, T=const uated at zero electromagnetic field. In this case it gen-

Hence the Hall conductivity is exactly proportional to
the filling factor v if this magnitude does not depend on
B.

Below, a relation expressing dv/dB in terms of the
derivatives over u and A will be obtained. Note that un-
der the changes of variables

g=k, o, w=p /oy, og=1BL (72)
g c

the filling factor expresses as

2e "%
1
2051310 fwoo 2m ig+n+i—p'+o,/(foy) ’

(73)

where the mass-operator eigenvalue satisfies with in-
dependence of m (Ref. 9) the relation

erates the fermionic Green’s functions of the problem, in
particular the one-electron one. Now it is worthwhile to
introduce a new set of dimensionless integration fields
and space-time variables according to

X—ryZ , (76)
c

X4——-) w024 5 (77)

Y(x)—>P(z)/ry (78)

P (x)—>yY*(2)/ry . (79)

After that, the generating functional in the new variables
takes the form

ontk)= [ [or 02(x,x ky)ep(x)d>x d’>x' . (74) Z (&)= [ Dy*(2)D(2)eS
In (74) the trivial spinor structure of the wave function  where
J
1 2
S=[dz, lf¢* ——~5 —iV+BXZ | 2)a2
— 1 [P () —2 g (2)d %2 d %
2 |z —z'|
+ [ z)¢r(z)| lronodzz d*z "+f[§*(z)¢(z)+¢* )e(z)]d*z dz, , (80)

where, taking into account (29) and (67),

rino= |+ [ Dy*@DY(2)* (0" 1(0)eS , @81
VA &% =0
Im q
T F
iGap €9

FIG. 1. Chemical-potential increment 8u as a shift of the in-
tegration contour in (85).

and new auxiliary sources £ and £* have been introduced.
The parameters ' and A’ are given by
A

l: "L A’l: 2
H fiog’ rofioy (82)

Thus, at T =0, any fermionic Green’s function with p
legs, after being multiplied by r§ is a function of the pa-
rameters B, u, and A only through the adimensional con-
stants A’ and u’. It also follows that in (73) o, /(fiw,) is
the eigenvalue of the mass operator calculated within the
transformed generating functional description. Then
o, /(#iwg) is a function of B only through ' and A’. This
fact leads to the following relation:

av —_1|,9 _k@:
dB 1, A=const B a[l, oA
#i on 1., 0n
= ~——t+t A 83
2B7|¢| 2% an (83)

Thus the B derivative of v expresses linearly in terms of
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the derivatives of n with respect to u and A. It is neces-
sary to stress that such a result assumes that the system
satisfies the equilibrium equation (29) when calculating
the derivatives. In physical terms, this means that the
background of compensating charges maintains the
system’s neutrality upon variation of the parameters. It
is apparent that this condition is strongly connected with
the plateau’s stability and the role of impurities as a heat
bath.

In this work we have discussed the consequences of the
symmetries for the clean samples. However, the generali-
zation of the results along the lines of the one presented
in Refs. 14-16 for the electric [U(1) symmetry] charge in
the presence of impurities seems feasible and is
worthwhile to investigate.

VII. THE EXACT FORMULA o =v(e2/h)
WHEN pu LIES IN A GAP

In this section it will be argued that the both deriva-
tives

on
a,u B,A=const
and

on
oA B,p=const

vanish under the condition that the Fermi level lies in a
gap of the density of states. If such is the case, then from
(71) arises the exact result

O,y =T V=—o" . (84)

Let us analyze the expression (69) for the density at
T =0,

= — |eB| 2 lim f dq o —i4®
n08-0t Y —w 2T ig—p'+n+l+to;
(85)
J
o0 _ e
o4 d lim lim |—c# — £ A
T | T, P A

A. CABO AND M. CHAICHIAN
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where o depends on g and p’ in the way
oXgu' AM)=oklig—pu',\'), (86)

as may be seen from the modified generating functional
(80).

It can be noticed that, as the Lehmann representation
implies, the singularities of the integrand in (85) must
correspond to a branch cut or a set of poles along the
imaginary axis. In statistical QFT, however, the energy
of the excitations is measured from the Fermi energy.
Therefore, the condition for a gap is that a sufficiently
small open interval of the imaginary axis including the
origin does not contain any pole or branch cut. Howev-
er, as may be seen from (85) and (86), a small change of u
(or p') is equivalent to a parallel shift (because the in-
tegrand depends on ig —u') of the integration contour.
Thus, under the validity of the above condition for a gap,
that deformation does not alter the result of the integral.
In this way it follows that

dn

dp
Figure 1 graphically shows the above description.
Now, let us consider the dn /0A derivative. For this

purpose the following expression for the density in terms
of the thermodynamical potential will be used:

=0. (87)

B,A=const

1 3Q
n=———_— R (88)
V 8 |1,v,B=const
where () is defined by
Q=—kTInZ . (89)
Thus dn /9A may be written as follows:
on 1 3 |90
— == . 90
oA Vop | X |1y B—const ©0

For the A derivative of () the following expression can be
obtained by standard methods:?°

2
/(2m)+,u, Go(x,x") . (91)

After substituting the diagonal form (24) for the exact propagator, the following expression can be obtained in the

zero-temperature limit:

on _ 3

m [

—ig+u' —n—1Le”

oA ou

——() §—>0+

where c is a constant. Relation (92) expresses dn /0A as a
derivative over p of an integration of the kind similar to
(85). Therefore, the small changes of p are again
equivalent to parallel shifts of the integration axis in the
complex g plane. Since in this process, by assumption,

—o 27 —ig+p'—n—1—on(q)

(92)

[
the axis is not passing over any singularity, the result of
the integration is unchanged, and thus dn /0A vanishes.
Then the independence of the filling factor from the mag-
netic field follows, as well as the exactness of the formula
Oy =ve 2/h.
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