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A theoretical calculation of the anomalous magnetic moments of the nucleons is presented, based on
Bincer’s sidewise dispersion relations. Each of the relevant amplitudes is consistently derived in the approxi-
mation of keeping only intermediate =V states. The result is obtained in terms of the elastic Si; and Py
phase shifts. The isoscalar and isovector anomalous magnetic moments are calculated for three alternative

models of the phase shifts involved.

1. INTRODUCTION

HE electromagnetic structure of the nucleon has
been studied for many years, using dispersion
relations in the photon mass.! Although some particular
features are reasonably well understood, there are
others, like the anomalous magnetic moments (a.m.m.),
that are still puzzling us. A difficulty in the mentioned
approach lies in evaluating the isoscalar form factors,
since even the lowest mass intermediate state is a 3«
state. Such a state is presumably dominated at low
energy by the w, whereas the p dominates the 27
(isovector) contribution. Experimentally, the isoscalar
a.m.m. is very small as compared to the isovector one.
A different approach was developed by Bincer? using
dispersion relations in the mass of one of the external
nucleons. Here it is relatively easy to account for the
lowest contribution, i.e., the #N state with I=J=13
(Fig. 2). However, there is no indication about the
asymptotic behavior of the amplitudes, so that the use
of unsubtracted dispersion relations remains at the
moment an assumption.

A rough evaluation of the nucleon a.m.m. within this
approach has been made by Drell and Pagels?® in a paper
mainly devoted to the magnetic moment of the electron.
For evaluating the a.m.m. of the nucleon, they used the
following approximations: (a) a point #NN vertex; (b)
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only Born terms for the pion photoproduction ampli-
tude; where, however, (c) the nucleon, in the zeroth-
order approximation, has no a.m.m.; (d) the introduc-
tion of an external cutoff. Point (c) expresses the
philosophy that the a.m.m. can be constructed as an
expansion in the low-energy terms, starting from a pure
v, coupling, in analogy to the purely electromagnetic
problem of the electron’s a.m.m. We will come back
later to this point.

An important (but not unexpected) feature of Drell
and Pagels’s result is that the required cutoff turns out
to be relatively small, corresponding to about 1.5
nucleon masses. Now the fact that the relevant struc-
ture is confined in the low-energy region gives, a
posteriori, a justification for using approximations (a)
and (b) above, as well as the saturation of unitarity
with NV states only. At the same time, it gives a simple
explanation for the dominance of the isovector part of
the a.m.m., since the corresponding photoproduction
amplitude is the one which dominates near the =NV
threshold.

In a more realistic calculation the cutoff should be
replaced by a natural damping of the amplitudes at high
energies. We can easily see that the unitarization of the
wNN and photoproduction amplitudes, where we again
retain the 7V contribution and use the crude scattering-
length approximation, is enough to make the dispersion
integral of the magnetic moment convergent and
provides an effective cutoff of the same magnitude of
the one used by Drell and Pagels.

In this paper, we present a theoretical calculation of
the a.m.m. of the nucleons, based on the Bincer sidewise
dispersion relations and where each of the involved
amplitudes is consistently obtained by saturating
unitarity up to the =NV intermediate state. In Sec. 2 we
write down the dispersion relation for the a.m.m. and
we express the absorptive part in terms of the 7NN
vertex form factor and the pion photoproduction ampli-
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F1c. 1. Electromagnetic vertex
of the nucleon.
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tudes. The 7NN vertex is treated in detail in Sec. 3,
while Sec. 4 is devoted to photoproduction. At the end
of this treatment, everything is expressed in terms of
the wV elastic Sy and Pi; phase shifts. These phase
shifts are obtained in three different models valid at
low energy. In the first model we use the scattering-
length approximation for both .S and P waves, while in
the second model we use the scattering-length approxi-
mation for the S wave and a one-resonance formula for
the P wave. These are very simple models which, how-
ever, enable us to obtain simple analytic expressions for
the 7NN vertex form factors. The third model is a best
fit obtained from the experimental data on =V scatter-
ing up to 350-MeV pion lab kinetic energy. Finally, in
Sec. 5 we report the numerical results. These are not
very different for the three models, and give u'$~—0.17
and u'V~1.0 for the isoscalar and isovector a.m.m.,
respectively.

2. DISPERSION RELATION FOR THE
ANOMALOUS MAGNETIC MOMENT

Let us consider the electromagnetic vertex of the
nucleon represented in Fig. 1, where the outgoing
nucleon of momentum p and photon of momentum / are
on the mass shell (p?=m? and ?=0), and the ingoing
nucleon of momentum w= p-+4I has the variable mass
W?2=w? Here W will be our dispersion variable. This
vertex is described by six form factors? according to*

e(p,5)T u(p,w) = e (p){ [y uF1(W)
—(i/2m) o Wl Fo(W)+1,F (W) ]
X (W+W)/2W+[v,F1(—W)
—(1/2m)o WP Fo(— W)+ 1,F5(—W)]
X(—w+w)/2w. (1)

The normalization is such that Fi(m) is the nucleon
charge, in units of e, and Fy(m)=y' is the anomalous
magnetic moment, a.m.m., in units of e/2m. Conserva-
tion of the electromagnetic current implies the general-
ized Ward identity?

(mFW)F(W, 1) —PF3(£W,10)=mFW)e, (2)

but no conditions are implied for Fo(£W). In the
following we shall split the form factors in the usual
way, i.e., F;=F;84+73F;¥, where the superscripts S
and V denote the isoscalar and isovector parts,
respectively.

4 Our notations are those of J. D. Bjorken and S. D. Drell,
Relativistic Quantum Fields (McGraw-Hill Book Co., New York,
1965).

ADEMOLLO, GATTO, AND LONGHI

179

The form factors F25:V(=W) can be obtained from
(1), using the formula.

2 ei(p,s,T)Tu(pywlva SV (EW)u(pys,)
=—(e/2m)F,5 Y (W), (3)

where the sum is over the spin and isospin components
of the nucleon, and the projectors »e*S:V(4=W) are
given by

mW  xw+W
(W2 —m?)?

v S(EW)=7F (—io®l,),

2W 4)
Vg"V(:!:I/V) =%7'3V2"S(:i:W) .

In his paper,? Bincer proved that the form factors F;
satisfy dispersion relations in . Here we assume that
F, satisfies a dispersion relation without subtractions,
that is,

1 ImFo(W') ImFa(—W)
Fo(W)=— / dW’[ + :I ®)
) min W'FW WW

This also shows that Fo(=W) can be considered as a
unique function of W, for either positive or negative
values of W.

In the one-pion approximation, the absorptive part
of Fy corresponds to the graph of Fig. 2 and can be
evaluated in terms of the wNN vertex, where one
nucleon is offshell, and of the usual photoproduction
amplitude. For the wNN vertex we use the repre-
sentation

d(st) V«"‘(Pﬂw = gﬂ(?as)i'YETa
X (W) (w+Ww)/ 2w
+FA—=W)(—w+W)/2W], (6)

where a refers to the isospin of the pion, g is the standard
pseudoscalar coupling constant (g=~13.6), and F, is
normalized such that F,(m)=1.

For the photoproduction, we use the standard Chew-
Goldberger-Low-Nambu (CGLN)? notation. Since the
quantum numbers of the 7V channel are JZ=3*, only
the multipole My will contribute to the process.

F1cG. 2. Pion-nucleon intermediate-state contribution
to the absorptive part of the nucleon current.

5 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).
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The unitarity relation, using Eq. (3) for projecting
out ImFy, reads

e 1
—— ImF,S V(W) =— > | d*q 8(g>—m*)6(g0)

2m 8w 5,7
X[ (w—q)*—u?10(wo—qo)ii(p,s,7)
X AW (@+m) Vo (g, W )wetSV (EW)u(p,s,r), (7)

where A,* is the photoproduction amplitude.® Ex-
plicitly, we get

TIPS V(W)= g(W/2m)[(W — m)*— p* ]!/
XF‘K*(W)MI—S'V(W) ) (8)

ImFoS V(= W)= g(W/2m)[(W+m)*—p* ]2
XFF*(_ W)EMS'V(W) ’ (9)

where W>m-+pu and we have used the reciprocity
relation” M1 _(—W)= E.(W). Also, note the relation
of the amplitudes M1_%'V to the CGLN amplitudes:

My S=3M,_©,

10

My V=M, F2M, O, (10)

The 7NN vertex and the photoproduction amplitudes
are studied in detail in Secs. 3 and 4.

3. TREATMENT OF THE PION-NUCLEON VERTEX

In this section we want to obtain an expression for
the NN vertex form factor F,(2=W) defined in Eq. (6).
In the approximation of elastic unitarity, the absorptive
part of F, corresponds to the graph of Fig. 3 and is
given by

ImF (W) =e ieEW) sina(W)F (W), (11)
for W2 m+pu. In Eq. (11), a(+W)=6p(W) is the Pu
phase shift for =V scattering, and a(—W)=238g(W) is
the S phase shift, according to the MacDowell®
reciprocity relation §..(—W)=8qn—(W) (I=0 in our
case).

The solution of the homogeneous Hilbert problem
associated with Eq. (11) is®

F:(W)=PW) expQ(W), (12)

where Q(WW) is of the form

1 a(W  o(=W")
QW) =~ / dW’[ + ] (13)
) min W —W WA+W

6 The correspondence with the CGLN notation is the following:
e 2=Ho=HMN53+H [ 10,75]+H V70,

7J. S. Ball, Phys. Rev. 124, 2014 (1961).

8S. W. MacDowell, Phys. Rev. 116, 774 (1960).

9 See, for instance, N. I. Muskhelishvili, Singular Integral Equa-
tions (P. Nordhoff Ltd., Groningen, The Netherlands, 1953).
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F16. 3. Pion-nucleon intermediate-state contribution
to the absorptive part of the =V vertex.
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and P(W¥) is an arbitrary polynomial. This expression
of F, is valid, provided

(14)

/ AW a(W)—a(—W)]| <.
mtp

The structure of the S- and P-wave phase shifts is
rather complicated by the presence of several reso-
nances. The lowest of them are!® S11(1548) (probable);
S11(1709), P1:1(1466) (Roper resonances); P1.(1751)
(not confirmed). In order to treat the 7V scattering in
the low-energy region, we use the following three models.

Model I. We use the scattering-length approximation
for both S and P waves. We take the following numerical
values!!: @¢¢=0.171p~! and @1=—0.101y~3. Here the
approximation for P wave breaks down at very low
energy, much below the 1466 resonance.

Model 11. Here we use the scattering-length approxi-
mation for S wave, which gives a reasonable agreement
below the 1548 resonance, and a resonant form for P
wave, corresponding to the 1466 Roper resonance.

Model I11. Here the S11 and Pi; phase shifts are taken
directly from experiment. Specifically, we use the fit by
Roper et al.’? for elastic scattering, obtained from data
up to 350-MeV pion lab kinetic energy (corresponding
to 1350-MeV total c.m. energy).

In each of these models the phase shifts seem to tend
to a constant value, so that the condition (14) is not
satisfied. Therefore, we have to take, for Q(W), a sub-
tracted form and we get for F, the following expression:

F(W)=expQ(W), (15)

—_ /w dW/[ a(W’)
7 Juiw LGV =W —m)

a(—=W")
(W'+W><W'+m)}’ 16)

0 C, Lovelace, Proceedings of the Heidelberg International Con-
ference on Elementary Particles (North-Holland Publishing Co.,
Amsterdam, 1968), p. 79; CERN Report No. Th837 (unpublished) ;
A. Donnachie, R. G. Kirsopp, and C. Lovelace, CERN Report
No. Th838 and Addendum (unpublished).

( 1 J, Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
1963).

121, D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev. 138,
B190 (1965). We use the solution 24 of these authors, obtained
from 576 data and 37 parameters for S, P, and D waves. Fits up
to 2-BeV pion kinetic energy are also available (Ref. 10), however,
they are not free at present from serious ambiguities. See, e.g.,
M. Bander, P. W. Coulter, and G. L. Shaw, Phys. Rev. Letters
14, 270 (1965).
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Fi16. 4. Pole-term contribution to the photoproduction amplitude.

satisfying the condition F.(m)=1. The arbitrary
polynomial has been dropped from Eq. (15) for
simplicity. If 6s(®)=a(+ ») and §p(»)=a(— =) are
the asymptotic values of the phase shifts, the asymp-
totic behavior of the solution is

F,,-(W) — const W—(I/ﬂ') [88(0)+5P ()] .
W -0

)

We now consider the specific expression of the form
factor in the above three models.

Model 1. In the scattering-length approximation the
relevant phase shifts are '

83(W)=arctan(aq), (18)

8p(W)=arctan(aig®) . (19)

The Omnés function of Eq. (15) takes the simple
analytic form given by??

F(W)=(1—a:")/(1—iag?) (20)
Fo(—=W)=(1+a))/(1—iaw), 1)

where W>0, ¢ is the 7V c.m. three-momentum and
qe=pl1—p?/4m* /2. (22)

Model I1. In this model, the phase shift § 5 is the same
as that of Eq. (18), while 65 is given by

dp(W)=arctan[v.¢*/ (W,—W)], (23)
where W,= 1466 MeV is the energy of the resonance and
Yr= F?‘/2q1'3 5 (24)

where ¢,=¢q(W,) and T',~211 MeV is the width of the
resonance.!® Expression (23) corresponds to the follow-
ing resonant form for the Py # N amplitude:

fl-—(W) = (1/Q)['Y'rq3/(W'r_ W_i'Yrq3)] .

Even in this case, the vertex form factor takes a
simple analytic form:

Fe(W)=W,—m—.:q®)/ W,—W—iv.g%),

while F.(—W) is still the same as in Eq. (21).

Model IT1. In this case the form factors F.(=T) have
to be numerically evaluated, starting from Egs. (15)
and (16), which can be rewritten in the more suitable

(25)

(26)

13 See, e.g., G. Barton, Dispersion Techniques in Field Theory
(W. A. Benjamin, Inc., New York, 1965).
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form
Fo(£W)=exp[Qo(£W)+ia(£W)], (15)
EW—m_* T (W)
Qo W) =— #PLH J/[(W'—W)(W'—m)
a(—=W")

. (16
(W’+W)(W’+M)] 1e?

4. TREATMENT OF THE PHOTOPRODUCTION
AMPLITUDE

The photoproduction amplitudes which are relevant
to our problem are the multipoles M1 and E,y, as it
appears from Egs. (8) and (9). These amplitudes can be
obtained from a unique analytic function M (W), such
that

MW+i0)=((potm)/(qotm))"/?
X (g M (W),

M(—W—10)=((potm)/(got+m))/2Eo (W) ,

(27)
(28)

where / is the photon momentum in the c.m. system.
M (W) satisfies the dispersion relation!

00

1
MW)=BW)+-

aw’
TS mtp
ImMW’") ImM(—W')
| + ] @
w —-w w+w

where B(W) is the contribution from the singularities
not included in the region of integration.

A. Born Terms

The term B of Eq. (29) will be approximated by the
Born terms of Fig. 4. These can be evaluated from the
perturbative current of photoproduction,

gt . [1‘ bp+1+m q—H-mF
W= —1e sTE—y 5T
%200 7 T 2

kyu
k z)] » 50)

(1)

Explicitly, the contributions to the multipoles M;_
and Eoy, separating the isoscalar and isovector parts
and the electric and magnetic (i.e., proportional to u’)

‘“i%ésaﬂfﬁ(

where

L= 3 0y 6/ 2m) b (4 S )

4 See Ref. 7 and also N. Zagury, Phys. Rev. 145, 1112 (1966).
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parts, are the following:
3¢ 1 1 - 1 2
MS=—=- 3 + 22— lnA:' ,
4 4 23(x+1) [(x—1)2—»*] 2L x
3¢ 1 1 - 12 a?
ES=—— 3x — 22— InA:I ,
4 47 x¥(x—1) [(x+1)2—p2 20 x Q
3 g1 1 r x 2
S — 3—appt— 1nA+—(x2—1+v2):] ,
447 3 [(x—1)2—p2 102 Q ®
3 g1 1 r x 2
E,fS=-— ————— 3-—x2+v2—~lnA——(x2—1+u2):| ,
4 47 23 [(x41)2—»2]H2L Q x 32)
32
1g 1 1 [ 3 x? 2%
J = w——(1—»?)+—Ind +2u2<3+— lnB>:| ,
4 47 23 (x4+1) [(x— 1)“’—»2]1/2'_ X 0 Q
1g 1 1 r 3 x? 2%
EJ=—— #——(1—2)+— Ind —2y2<3+— 1nB>] ,
447 3@+ 1) [er1)2— el & 0 0
1¢g1 1 B x 2
n’=——— ————————— 1324 3>+ —In4d +—(x2—1+v2)j| ,
4 dr 27 [(x—1)2—p]2L 0 x
1¢ 1 1 - x 2
TV = — — ————————— 1—322+4-3»2+—In4 —~~(x2—~1+u2):| ,
4 47 23 [(x41)2—p2]' 2L Q x

where M and E refer to the multipoles M1 and Eoy,
respectively; the superscripts .S and V, to the isoscalar
and isovector parts; and the subscripts e and m, to the
electric and magnetic parts. Also,

Lkt (33)
x—e—(Q
e—Q
B= . 34
e+Q (34

In the above expressions, x=W/m, e=ko/m, Q=q/m,
and y=pu/m.

B. Estimate of the Multipoles My_ and Eo,

This is the most delicate point of our analysis since
the numerical results for the a.m.m. depend very
strongly on the photoproduction process. On the other
hand there are some general aspects to be kept present,
which pose some restrictions to our treatment. First, we
are essentially interested in the low-energy region since
we believe, with Drell and Pagels® that the a.m.m. is
mostly due to the low-energy structure. Then, according
to the Kroll and Rudermann'® theorem, the photopro-
duction amplitude near threshold is given essentially by
the Born terms in the case of charged pions. For neutral

15 N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954);
A. Klein, bid. 99, 998 (1955).

pions no such a limit exists and the Born amplitude
should be modified. In the CGLN notation the currents
involved in 7° photoproduction are J, and J,®. Our
modification, however, will only affect J,.

A second problem is the necessity of taking into
account the effect of the 3-3 resonance in the crossed
channel, as we know that this effect is important even
at low energy. Therefore, we must add at least the 3-3
contribution to the Born terms and to the rescattering
contribution.

Third, it is important for our purpose to have separate
expressions for the electric and magnetic parts of the
amplitudes. However, this is not easy when dealing with
the 3-3 resonance, unless we use a particular theory. For
this we shall use the static theory of Chew and Low.*

In the static model we have for the magnetic part of
the multipole M1, ®/» the expression®

w¥l
My 3 =— —f1+(3/2),
q

where u" is the total isovector magnetic moment of the
nucleon, f is the isovector wN coupling constant
(f2=0.082), and

F1+ @D =(1/g)e? sindss (36)

is the resonant P33 amplitude. From here we can also

(35)

16 G. F. Chew and F. E. Low, Phys. Rev. 101, 1579 (1956); see
also Ref. 5.
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F16. 5. Pion-nucleon intermediate-state contribution to the
absorptive part of the photoproduction amplitude.

obtain the contributions of the 3-3 resonance to the
other multipoles.®

For the multipoles M- and E¢“ we have the
following integral equations®:

M1 D(w) My®DB(w)

lq lq
8 *  dw’ ImM1+(3/2)(w')
o'+ rq
dow’ ImM,_ H')(co')
+ / b, @)
o' —w vy
Eo (o) EatPw) 4 0 TmbOn)
2
w w 37r,/ Iy
12 do’ 1
o[ e = ImEy @)+, (38)
) o —w o

where w=T —m and we have neglected other terms
with nonsingular integrands. Since the 3-3 resonance
cannot contribute in the direct channel, it only contri-
butes to the real part of the amplitudes, in the physical
region w> u. In the approximation of keeping only a 7V
intermediate state, the imaginary part comes only from
rescattering, corresponding to the graph of Fig. 5, and
is given by

ImM;_(w)=e"«W) sina(W)M1_(w), (39)

ImE (w)=e" =W sing(—W)Eop(w).  (40)

Equations (37) and (38), using also (35) and (36),
have the following approximate solution!’” for the
magnetic parts:

Mi_ ) (w) =€ @M cosa(IV)
2u” lq
X[+ 2t ],
3 f 2]
Fgy (@) =™ W) cosa(—I)
w”
X[Eorr,m(’L)B(w)‘f““ZSf‘w]’ (42)
f

17 G. Hohler and W. Schmidt, Ann. Phys. (N. Y.) 28, 34 (1964).
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where
4 *® Sin?633(w)
Z33 =““/ dw——~ ) (43)
TJ 93
4 r= w  sin?d33(w’)
Z 33’ (w) =—/ do’ _ (44)
3, o't ¢?

The 3-3 contribution is negligible for the electric
parts of M1 and Eo ) and is absent in the other
isospin components, so that we can assume for these
amplitudes the following expressions:

My D(w)=e*M cosa(W) M1-.DPw),  (49)
Eop, e (w)=¢?*" cosa(— W) Eoy,HB(w), (46)
M1 9 (w)= e W) cosa(W) M1_0B(w), (47)
Eop &9 (w) = e cosa(— W) Eop, &0B(w).  (48)

We next need a further assumption in order to extend
(41) and (42) away from the static limit. In fact, we see,
e.g., from Eq. (42), that the contribution of the 3-3
resonance would be linearly divergent. Now, in the
static limit, the Born terms, as from expressions (32),
are

My n®B(w)=—2fu"w, (49)
o m®B(w)=—%fu’(lg/w), (50)
so that Eqs. (41) and (42) can be written
Mi_ P (w)=e"*M cosa(IV)
XMy W B1— 733" (0)/21%], (51)
Eoy (@)= e ") cosal(— W)
X EopmB[1—Z3/2f7]. (52)

We will assume these expressions as approximately
valid at all energies.

Concerning the numerical value of the parameter Zs;
defined in (43), Hohler and Schmidt,!” probably using
an effective-range formula, give the value Z33=0.088.
The use of a resonant Pj3; amplitude analogous to
Eq. (25), with W,=1236 MeV and T',= 125 MeV, gives
Z33=0.120. Finally, using for 833 the experimental fit
by Roper et al.'? up to 700-MeV pion kinetic energy, we
have obtained Z33=0.091. Since the contribution from
higher energies is expected to be very small, the last is
probably the most reliable value.

The factor Zss" of Eq. (44) can be reduced to Z3; by
making in the integrand the approximation w/(w'+w)
~w/(w,+w), where w,=298 MeV is evaluated at the
resonance. We thus obtain

Z33/(w) = [w/(w,-—}—w)]Zgg . (53)



179

5. NUMERICAL RESULTS

We have now the ingredients to calculate the a.m.m.
From (5), (8), and (9), we have the general expression

) g 1
uY=— -~f dw
2m TS min

w
X [T[(W — )2 — 2 JV2F (W) M 15V (W)

—m

w
+m[(W+m)2~ﬂ2]”2Fr*(—W)Eo+s'V(W)] ,
(54)

where the form factors F,(£=W) are given in Sec. 3 for
three specific models of vV scattering and the photo-
production multipoles M1 and Eg are given in Sec. 4.
These expressions are such that the integral in (54) is
convergent.

In each case Eq. (54) is of the form

wh=154u'51,5, (55)
#IV= IV4p'VI.7 ’ (56)

where 1.5V and 1,5V are the integrals containing,
respectively, the electric and the magnetic part of the
multipole amplitudes. These expressions, of course, can
be immediately solved for the a.m.m.
Before giving the numerical results, we want to make
a comment on the difference between the approach of
Drell and Pagels® and the present one. The two ap-
proaches, besides the difference in the approximations
used for the amplitudes and for the evaluation of the
integral, differ for the method itself of calculating the
a.m.m. In the Drell-Pagels philosophy, in analogy with
the electron case, the a.m.m. of the nucleon is expanded
in terms of the low-energy structure. In the first order,
the a.m.m. is given by the graph of Fig. 2, with a =V
intermediate state and where the nucleon is considered
as having no anomalous moment. In our notation this
would be
WSV =57, (57)
The second-order correction is then given by the
correction to the same graph of Fig. 2 coming from the
first order a.m.m. and by the graph with a =« NV inter-
mediate state and normal moment, and so on. In other
words, to pass from a given order in the expansion to
the successive one corresponds to adding one more pion
in the intermediate state. We observe that in the electro-
dynamic case there is a strict correspondence between
this kind of expansion and the perturbative expansion
since adding a new photon corresponds to increasing by
one unit the order in «, while such a correspondence does
not exist in the case of strong interactions. However,
the Drell-Pagels philosophy is very interesting in order
to define a perturbationlike expansion in terms of
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Tasre I. Comparison am‘(_m% the thiee models described

in Sec. 3 of the text:
Model I Model IT Model ITT
T8 - 0.065 0.103 --0.568
o5 —0.441 —0.441 —().589
1.V +0.182 +0.390 +1.345
I..V +1.389 +1.389 -+1.786
InyS —0.144 —0.156 —2.622
I, 5 —1.7711 =177 —3.669
Iy —0.076 —0.094 —1.286
I —0.373 —0.373 —1.022
ws —0.173 —0.186 —0.159
744 +1.084 +1.211 +0.947

step-by-step saturation of unitarity. Our philosophy is
different and, in a sense, more conventional. Our ap-
proximation also consists of partial saturation of
unitarity, but we leave the magnetic moment as an
unknown and we look for a consistent solution at every
step.

We remark that, in order to expect good results from
Drell and Pagels’s first approximation, both the two-pion
contribution and the I,, term should be small. However,
in our analysis we find that ., is large and of the same
order as I,. Therefore, we expect that our approach
should give a better result, provided the higher inter-
mediate states are negligible. On the contrary, the fact
that our result is not very good indicates that those
contributions are not so small.

We finally report the numerical results of our analysis
for each of the three models of Sec. 3.

Model I. The expressions for F.(&=W) are given in
Egs. (20) and (21), while the multipole amplitudes are
given in Eqs. (45)-(48), (51), and (52), where

e cosa(W)=1/(1—iag®),
et (W) COSO[(— W) = 1/(1—4(10@ )

(38)
(59)

the Born amplitudes are those of Eq. (32), and
Z33=0.091.

For the isoscalar and isovector a.m.m., we get
wS8=—017, u'v=1.08. (60)

Model II. We proceed here in a quite similar way.
Now we have

w,—
e cosa(W)=———— (61)
Wo—W —iv.q>
and we obtain for the a.m.m. the following values:
wW8=-0.18, uV=121. (62)

Model III. Here the NN form factor has been
numerically evaluated from Egs. (15") and (16"), where
the phase shifts are those of Ref. 12 up to 350-MeV pion
energy and have been taken as constant beyond that
energy (they are almost constant at that energy and in
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the particular fit). The integrals of Eq. (54) have also
been numerically calculated and we get

w8=-0.16, p'V=0.95. (63)

All the above results are summarized in Table I,
where we also report the numerical values of the
quantities 1.5, IV, 1.5, and I,V of Egs. (55) and (56).

We note that Models I and IT give values of the
integrals and of the anomalous moments which are
rather close to each other. Model III uses an empirical
fit and the problem arises whether the MacDowell sym-
metry is satisfied at least approximately by such fits.
The prediction for 'S can be considered satisfactory in
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all three models, in view of the inaccuracies and approxi-
mations introduced. Presumably the small discrepancy
comes from errors in the high-energy tail of the photo-
production amplitudes, and it should be possible to
obtain better estimates by further refinements. Our
general impression is that a better estimate (for p’S and
especially for u'") requires a better knowledge of photo-
productxon in the intermediate-energy region (beyond
the region of the static model). On the other hand, much
work is being devoted at this time in various laboratories
to a better understanding of these amplitudes, and we
hope that it will soon be possible substantially to im-
prove the results obtained here.
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It is proved, by perturbation theory and by the method of Sudakov, that if two Reg e poles with tra-
jectories a1, a2 and signatures 71, 72 are exchanged, the resulting Regge branch point at j=a1+a2— 1 appears
only in partial-wave amplitudes of signature 174, where n=—1 if both Regge poles are fermions and
n=+1 otherwise. An example is given from the case of proton-proton scattering.

I. INTRODUCTION

IN situations where it is impossible to fit experimental

data by assuming Regge-pole dominance, it is useful
to investigate whether the discrepancy can be accounted
for by contributions from branch cuts in the complex
angular momentum plane. For this reason (as well as
simply to satisfy one’s theoretical curiosity), it is
important to know which amplitudes receive contri-
butions from particular Regge cuts.

A Regge pole has associated with it definite quantum
numbers (e.g., isospin, G parity, parity, signature) and
will affect only those amplitudes with an identical set of
quantum numbers. It can be shown!~ that the exchange
of two Regge poles with trajectories oy and a will give
rise to branch points in the complex j plane; of these
branch points, the one lying furthest to the right has a

traject .
rajectory jmartar—1, 1)

where the arguments of a1 and a, are given by definite
rules.2~ In order to discover which amplitudes possess
such a branch point, we need to know the quantum
numbers associated with a two-Reggeon system.

1D. Amati, A. Stanghellini, and S. Fubini, Nuovo Cimento 26,
896 (1962).
(1253 Mandelstam, Nuovo Cimento 30, 1127 (1963); 30, 1148

3C. Wilkin, Nuovo Cimento 31, 377 (1964).

4V. N. Gribov, I. Ya. Pomeranchuk, and K. A. Ter-Martiros-
yan, Phys. Rev. 139 B184 (1965).

5J.C. Polkmghorne J. Math. Phys. 4, 1396 (1963).

It is clear that internal quantum numbers, such as
isospin and G parity, will combine in exactly the same
way as if the Reggeons were elementary particles; for
example, the exchange of two Pomeranchukons will
give a cut in an amplitude with 7=0 and G=1, whereas
the exchange of a Pomeranchukon and a pion Regge
pole will give a cut in an amplitude with /=1 and
G=—1. Gribov® pointed out that one would expect any
particular Regge cut to appear in amplitudes of both
parities because of the arbitrary orbital angular momen-
tum associated with the two-Reggeon system. There
remains the important question of signature.

Mandelstam? proved that a partial-wave amplitude
involving a state of two elementary particles of spins o1
and o> has a singularity in the j plane at

j=”1+02-1, (2)

provided this is a wrong-signature point. For positive-
signature amplitudes, the wrong-signature points are
the odd integers (or odd integers plus one-half in the
case of boson-fermion amplitudes); for negative-
signature amplitudes, the wrong-signature points are
the even integers (or even integers plus one-half). Thus,
if we put »=1 for a boson-fermion amplitude and »=0
otherwise, we see that the singularity at j=o1+02—1

6 V. N. Gribov, Yadern. Fiz. 5, 197 (1967) [English transl.:
Soviet J. Nucl. Phys. 5, 138 (1967 )]
7 S. Mandelstam, Nuovo Cimento 30, 1113 (1963).



