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INTRODUCTION

The old idea 1) that undiscovered "heavy leptons" may
exist has recently attracted renewed interest because they are required
in a large class of renormalizable models of weak interactions 2 . The
most auspicious reaction for producing charged heavy leptons is
ete oM™~ but if sufficiently energetic ete”™ colliding beams are not
available the reaction \4,4—A—+M+'+ ... (first considered by Gerstein
and Folomeshkin 3 ) may provide the best hope of detecting heavy leptons
" of the type required in renormalizable models (which are the only ones

considered in this paper).

In Ref. 2) was estimated o (v +A-MT...) using a simple
model. While this estimate may be useful for planning experiments, model
independent calculations are obviously desirable for interpreting negative
experimental results. In principle the hadronic vertex which describes
the process \)V-»M+(i5V-AM-) can be completely determined from
{)-V - ’J+ (\)P—> '/-) experiments ). 1 practice, however, the smallness
of the muon's mass makes it almost impossible to measure all the relevant
structure functions in "ordinary" neutrino experiments. In this note we
record a lower bound for heavy lepton production in terms of the structure
functions which can be measured (relatively) easily in conventional

neutrino reactions.

Before stating the bound, we recall the well-known
argument which shows why heavy leptons are needed in many models and why
(at lezst in simple cases) it is the heavy Mt which has the same lepton
number as \)r; and })_, as we assume below (it is this property which
gives M events such a good signature in neutrino reactions). In all
quels in which the weak interactioas are mediated by vector bosons Fig. 1
must exist. On its own this diagram has a "bad" high energy behaviour which
renders the corresponding fourth order amplitude for \)i; —»\JTS unrenormal -
iz ably infinite; in renormalizable models this "pad" behaviour is cancelled by
introdacing new particle exchanges in the s channel (neutral current) or
u channel (heavy 1epton) - or both. Note that cancellation can only be
achieved using a heavy lepton alone if it is in the u channel (the
lepton mass can be neglected to leading order at high energy and two t
channel contributions obviously make additive contributions); i.e., we
need Fig. 2 and \)V’ rl- and M+ therefore have the same lepton
number. Furthermore, in simple models in which the complete amplitude

for \}T; SWHWT is given by r) ~ and M exchange alone in lowest order,
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cancellation requires

THE BOUND

We are interested in the processes in Fig. 3. The
hadronic vertex for a virtual W+ (W-) meson of four-momentum q incident

on an unpolarized nucleon is described by the tensor:
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where E denotes an average over nucleon spins Ljhe metric is such that
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spacelike q is negative; the normalization etc., is the saune as in
Ref. 62]. The differential neutrino cross-section is given by contracting

Wr\) with the spin averaged lepton tensor and is:

Ao = G [ (weg?)(14 2 +92-m?
L= = ) (mg2)( 14 i’nz +Wo {4EE+9>-m
dig}1dv 8M"17E[ (1+ ) 4L
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where

= mr(m*-q*) Wy _ QEm*Ws (2)
Y LEm W
oE M

E{B') = lab. energy of neutrino (outgoing lepton).
Y
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for M production: G?. - gzvnw
2 (9*-Mw)

The physical region for the reaction is most easily stated in terms of the

variables W=./ 2V +q +1VI2 (the "missing mass'") and q2:
M ¢ WZs-m
2
(5= (kv+p)'= AME+M?)

Mmox
(CV)M.—._L [QM"M" (s-M*)(s- - W)
8
+ (5= M) (s - (Wrm)?)(s- (w-m))J

(3)
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Note the factor m2 multiplying W4’5 in Eq. (2), because
of which W4,5 may maxe important contributions to M production but not
to production (W4’5 can in fact only be separated from W1’2 by
measuring the outgoing lepton's polarization as well as dzc‘/dqzdv ).
However, the Wi satisfy certain inequalities 7> from which it is straight-

forward to find a lower bound for the differential cross-section.

To see the origin of the bound it is more convenient to use
a slightly different notation. We introduce four independent vectors which
form a basis for the current (w meson) helicity states: three of the
vectors having spin one, which satisfy q" e{i’L’S=O and are ''right
handed" (R), "left handed" (L) and "longitudinal" (s) with respect to 3
in the lab. (and frames connected by Lorentz transforming along E), and
one spin zero ("divergence") vector GAD = q) /qu. We can then form the

"W nucleon cross-sections'":
+ | % ¢ x
07" = C(»g?) Ep by W SO

03 ¥ = Clv)E2 ES W,
Ops= Osp = L(V,)4*)Ep Cv Wpv
where C is a "flux faétor" which is rather arbitrary and need not be

specified for our purposes. The interference terms satisfy the Schwartz

inequality & :

5:1)3’.'1'5:;; QQG—SO?D

Suppose the final lepton has a definite spin (denoted by a)
with respect to some axis. The lepton current matrix elements caa be

calculated and written in the form:

j5= 7 Cu €.
&
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do® ~ [Ck]o+ €10+ [C5)Pos + 1G5 )%
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The last four terms can be combined in the form

> |2 eS KFIT N + € €2 <rIT ] * S0,

F

A trivial lower pound can therefore be obtained by neglecting the longi-
tudinal and divergence contributions altogether. Since the coatributions

of G-R 1 do not vanish as oy >0 they can be measured in ordinary
H

epton
) reactions; this bound therefore has the desired form. Furthermore,
it obviously remains true when we sum over lepton spins; however, we can

do better in this case. The spin averaged cross-section is given by

7 (Z1C1 0w+ L (Bes+Ges) o voms))

a

There is no contribution from the T violating quantity O.SD— 0 ps
because the lepton vertex conserves T and therefore ;;(cgac%..csacg):=o
automatically. We then 1) put O——D=€ O_S’ O—SD+0_DS=2\] 0 s

2) use the minimum value of & allowed by the Schwartz inequality € >
(in the weaker and more obvious form G-SD+ OTJSEZ“/O—_SFD) and 3) mini-

mize with respect to Y] . This gives the bound:

2 (1631705 +1¢5 5 # 3 (€5.GCoce ) oo o)

2

y o (Tlese- Td6-c0)
o Lf‘%’C;P
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The bracket is positive semidefinite (this is the Schwartz inequality for
the leptonic vertex); this bound is therefore better than that odbtained by
neglecting D-S’ Cp and O—SDJ" 6 g altogether (unless G'S—_-O).

We noy restate the bounds explicitly in terus of the
9),

structure functions

A "trivial bound" is given by neglecting longitudinal and divergence

contributioans i.e., by putting W4’5 =0 and
2.

Wz(l" ———>W,
qrm°

in Eq. (2).

- A stronger bound is given by setting

V> [vlmi-g)+ 28147 (-2 ) - W,
9*m*-9+) v M'g?)

In both cases we obtain a lower bound on M production in

terms of the functions W1 2,3 which can be measured in f) production.
159

REMARKS

1) To bound O ( \Jy—»M+) [O"( \7';—>‘M_):[ we need data for

dd’(gy —»'J+) Eia' (\’p -"J-)j in general. If we neglect strangeness
changing processes and assume the charge symmetry coadition;
+ (proton target ) _ - (neutron target)

i (neutron target) = Wy (proton target )

w
o (\)P -aM+) can be bounded in terms of neutrino data aloae. However,
renormalizable models generally involve "charmed" particles and it is
likely that in many of them the charge symmetry condition may be violated.

It is therefore dangerous to assume it without further tests.



2) If we assume scale invariance

W, —— F)

X = -42 [ixed vmﬁ —> Fy3lx)

then the bound for d@" takes a simple form in the region where the limit

is reached:

dior > % F(x)(2x+ x(y*-2 +m/3-2)
dxalﬂ TT(yxs+Mw)[ (M‘ 7 j) )

; (x) [ X (13- 24) *’-“53]

t [Fz(x)—.?xF;{x)J(l‘_‘j —n}%%;S )}

where

and terms of order M/E have been dropped. The '"simple bound" is obtained
(this term is

by neglecting the last term, i.e., by putting Fz—) 2xF1
positive semidefinite in the physical region since FL==F2 -2xF1;gO).

Putting Mw—*a) and integrating over y we obtain:
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I
N > G‘ZME F, ERAL 1 1
) <z jdx{Qx /x)(/ Ey%)(]-:-';[% 4
Ml

TIXBOO()- b)) -4
| ;Z SXx SX

Trraxeu( 1 18) 25 (2]

A simpler bound may again be obtained by neglecting the
last term. If we do this and also assume the charge symmetry condition,
we obtain a bound which coincides with the result of the model calculation

in Ref. 2) 10) |Bgs. (3.8> and (3.9)], when we make the identification

,‘F,»'{x)’.—. (3 + %)
Fr () = 2(£6)- F)

with the notation used there i.e., the model of Ref. 2) gives a lower
bound in all models in which scaling and the charge symmetry condition
hold, pro?idéd it is a good approximation to put Mwu+a). However,

whenever this bound is needed it should!be recalculated using the best

data currently available and the complete formula if there is then

evidence against the charge symmetry condition or if it turns out that

Fq does not vanish .
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Together with the conditions O':( >0 this is equivalent to the
inequalities in Footnote 7)',

Given Eq. (2), it is easier in practice to obtain the stronger bound
by working directly with the Wi and the inequalities which they
satisfy (we did it with both notations as a check).

Apart from the misprint in Ref. 2) mentioned above.
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