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Resolvent approach to the Volterra equation as a tool for EAS modeling
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Transport equations for cascading particles in extensive air shower of cosmic rays can be transformed to
Volterra equations of the second kind. The numerical resolvent for equation is constructed on the two-
dimensional lattice in the case of longitudinal development of shower. The method can be used as an efficient
alternative to Monte Carlo technique becoming cumbersome at the highest energies.

1. Introduction

Energy spectrum of primary cosmic radiation (PCR) extends beyond 102° eV where the only observational
method is detection of extensive air showers (EAS) produced by cosmic rays (CRs) in atmosphere. Due to faint
primary CR intensity the giant arrays are needed to detect PCR of the highest energy. The properties of primary
CRs have to be deduced from the measured (at the ground level) parameters of secondary components of EAS.
Quantitative results rely on the shower simulation based on model assumptions about particle interactions. At
present the most commonly used method of the shower modeling is Monte Carlo simulation technique which
traces individual particles [1, 2]. However, at the highest energies computational burden limits the applicability
of the method. The thinning algorithm [3] is destined to solve this problem, but above Ey = 10'° eV it is also
powerless. An alternative is the numerical solution of cascade equations which is considerably faster than
Monte Carlo approach [4, 5]. In this paper the common method is revisited - the solution of integral Volterra
equation which results in powerful algorithms of numerical shower modeling.

The first application of the Volterra equation resolvent to the problem of cosmic ray cascades was attempted
50 years ago in the form of ’successive generations method’ [6]. At that time the solution of hadron transport
equation was possible only in the case of the delta function approximation of the production spectrum of
secondaries in nuclear interactions.

Today, the numerical resolvent constructed on a lattice gives the solution for any production spectrum of
hadrons using personal computer or notebook [7].

2. Particle transport equations

The primary particle generates secondary hadrons in inelastic nuclear collision in air, which in turn produce
the next generation and so on, forming hadronic cascade. Integro-differential equation for the density of the
given kind of hadrons f(z, E) is
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where F(x, E) is a source function, the depth z is in free path length units, w(E,u) is production spectrum
and B is a decay constant of hadrons. For the simplicity, free path length (and some other parameters here-
inafter) is supposed constant, otherwise, the energy interval can be chosen where it is approximately constant.
Substituting f(z, E) — e~ %2~ B/F f(z, E) one can transform it to Volterra equation
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To model longitudinal development of the cascade we have a system of Volterra equations for every kind of
hadrons, chained step by step due to derivative shower components. The solution of Volterra’s equation may
be obtained with the aid of resolvent in the form of contraction operator [8]. If R denotes the linear integral
operator in equation (2), then one has successive terms
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A sum of all these terms is the solution of equation (2). The physical meaning of n-th term is a successive
generation of hadrons born in nuclear interaction of (n — 1)-th generation.

3. Numerical resolvent on the lattice

In order to approximate the resolvent it is convenient to choose rectangular lattice {h;,yx}, where h; =
idh,i = 0, .., N is atmospheric altitude in hg = 6.9 km units; y, = kdy, k = 0, .., M is the rapidity. The lon-
gitudinal rapidity y = 0.5log((1 +v))/(1 — v))) is preferable value rather than energy in quadrature formula
due to its logarithmic increase with energy E = /m? + (p1 )2cosh(y) and rather simple Lorentz transform
of rapidity distributions - a shift along y.

Quadrature approximation of integrals in equation (2) gives an iteration procedure to calculate the lattice rep-
resentation of a solution as a partial sum limit
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where «j, §; are quadrature coefficients ensuring the accuracy of the integral approximation. The convergence
to the exact solution of equation (2) is provided by a theorem of which the necessary and sufficient conditions
are: 1) quadrature coefficients are bounded above; ii) quadrature errors are uniformly convergent to zero; iii)
the lattice scaling down forces calculation errors to zero uniformly in N, M [8].

Computer program is composed of hook modules which calculate the particular component parameters. Quadra-
ture is implemented using cubic spline approximation. All integral equation kernels, desired solution etc are
given as matrices at the lattice node locus {h;, yx}. Boundary conditions are given at the top of atmosphere
and at ¥4, as the attenuation curve for the primary particle.

The integral over atmospheric height becomes insurmountable at £ < B due to strong variation of the inte-
grand multiplied by 2B/F. The way out was found using additional virtual h; layers inserted on the lattice at
low energies where the spline interpolation is applied to slowly varying part of the integrand.

In-situ error checking of the program is performed using energy balance of the shower components. On every
height layer the fraction of the primary energy is calculated carried by electromagnetic, muonic+neutrino
and hadronic components. The accuracy of energy calculation was checked changing the rapidity interval dy
twice. Energy imbalance is possible where the production spectrum has the width in rapidity comparable to
that allowed kinematically. In this case the control of kernel matrix is needed on the lattice. The identity

Ymaz Ymaz Ymaz
/ f(z,y)m coshydy = / my coshy/ [z, v)w(y, u)dudy
0 0 Y



Resolvent approach to the Volterra equation... 225

that is the corollary of sum rules suits the purpose.

4. Algorithm validation

Correctness of the program and the accuracy achievable were established using simple cascade models with
analytically tractable solutions [9]. The first one (’delta model’) is convenient to check the height integrals and
the meson decay tracking.

Let the cascade consisting of charged pions only be initiated by the primary nucleon of energy Ey. All free
path lengths are assumed equal 1, as the inelasticity coefficients, too; production spectrum of pions is delta
function: w(E,U) = né(E — U/n), where n(U) is the multiplicity of secondaries. The nucleon density
N(z,E) = exp(—z)d(E — Eyp) is a source function for charged pions. A solution for pions is given as a sum
of successive generations of energy F; 11 = E;/n(E;),i=0,...,00

f(a:E>0—e*zZ Hg-i—B/E (5)

Comparison of the numerical solution and formula (5) is given in Figure 1.

The second (’scaling”) model is characterized by scaling behavior in the form of w(y, u) = w(u — y) rapidity
distribution; the simplest version is assumed here - the kernel w(u —y) = 1iny € (0,w). This leads to the
multiplicity of secondaries n ~ log E. The decay constant is 0 in this model while other parameters are the
same as in delta model. Resultant solution is

f(z,y) = e "2 Jo(V2(Ymaz — ¥)), (6)

where Jy is Bessel function of zero order; Eg = v/m? + (p1 )2c0sh(ymaz)- Series expansion of the Bessel
function gives successive generations variant of the solution
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In Figure 2 the exact solution is compared to numerical one obtained at different iterations. Equivalent number
of pion generations sufficient for the solution accuracy better than 1% is m > 15. A series of tests conducted
using both models have proved applicability of the algorithm and revealed an optimal choice of the lattice
spacing needed to achieve the solution accuracy ~ 1%: éh = 0.05, dy = 0.5.

5. Conclusions

The resolvent for Volterra equation provides a numerical solution algorithm of EAS cascade equations adapt-
able to any model of nuclear interactions. The software implementation for PC manifests the program as
effective and reliable tool for EAS modeling.

Two analytically tractable models give the test feasibility of the program in use. They are mutually complemen-
tary in checking the accuracy of quadrature approximation of integrals over x and y. Broadening the rapidity
distribution width of the production spectrum implies an increase in the number of iterations to achieve the
adequate accuracy of the solution: from single iteration for delta model up to m = 15 in the case of uniform
rapidity distribution.
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Figure 1. Pions density f(zo, E) calculated at the sea level o with ~ Figure 2. Cascade curve of pions with fixed rapidity y = 2 calcu-
different steps in height dh = 0.05,...,0.5 (marks are indicated lated with m = 4, ..., 15 iterations in the program (m is indicated
on the right) and exact solution in the delta model. on the right) and exact solution in the scaling model.
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