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Electroweak Baryogenesis in a Two-Higgs Doublet Model
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Electroweak baryogenesis fails in the SM because of too small CP violation and the lack of a

strong first-order phase transition. It has been shown that supersymmetric models allow for

successful baryogenesis, where the Higgsinos play an important role in the transport processes

that generate the asymmetry. I will demonstrate that also non-supersymmetric models can

provide the observed baryon asymmetry. The top quark takes the role of the Higgsinos.

Focusing on the two-Higgs doublet model, I will discuss details of the phase transition and

consequences for Higgs physics and EDM searches.

1 Introduction

The baryon asymmetry may have been generated at temperatures much higher than the elec-
troweak scale, e.g. through the decay of superheavy right-handed neutrinos 1 or even squarks 2.
While these proposals seem to be perfectly viable, they are now, and may remain for some time,
very difficult to test. Electroweak baryogenesis, on the other hand, relies on physics which will
be probed at future colliders, at the first place the LHC.

In recent years, electroweak baryogenesis has mostly been studied in the context of super-
symmetric models, such as the MSSM 3,4 or the NMSSM 5. The CP-violating interactions of
the Higgsinos with the expanding bubble walls generate source terms in the Boltzmann equa-
tions which drive the baryogenesis process. It is an interesting question if non-supersymmetric
models can also generate the observed baryon asymmetry. It was the result of refs. 6,7 that this
is possible in a general effective field theory approach, where the SM Higgs sector is augmented
by dimension-six operators to induce a first-order phase transition and to provide additional CP
violation. Here we show that a simple two-Higgs doublet model (2HDM) can explain the baryon
asymmetry, without being in conflict with collider bounds on the Higgs mass or electric dipole
moment (EDM) searches 8.
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Figure 1: Lines of constant ξ and Lw in the mh–mH plane for µ2

3 = 10000 GeV2 and φ = 0.2. In addition, the

line of the relative size of the one-loop corrections ∆ = max |δλi/λi| = 0.5 is shown. The Higgs masses are given

in units of GeV.

2 The phase transition

We consider a 2HDM of type II, where the discrete symmetry, introduced to eliminate flavor
violation at the tree-level, is softly broken. The most general potential takes the form
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The model allows us to introduce a single CP-violating phase, which can be attributed to the
soft mass parameter µ2

3e
iφ. In addition to the SM Higgs, the 2HDM contains two extra neutral

and charged Higgs particles. In the presence of CP violation, the 3 neutral Higgs states are
mixtures, with a scalar and pseudoscalar content, and masses m2

Hi
.

To reduce the number of parameters, we focus on the case where the extra Higgs states are
heavy and degenerate in mass, i.e. mH = mH2

= mH3
= mH± . These states will obtain their

large masses from order unity self couplings λi. There is also a lighter SM-like Higgs, with a
mass mh = mH1

that has to fulfill the standard LEP bound of 114 GeV. With this choice large
oblique corrections are avoided. We also fix the Higgs vev ratio at tan β = 1. There is also a
lower limit on the charged Higgs mass from b → sγ 9 which will be automatically satisfied in our
parameter region of interest. To V0 we add the one-loop Coleman–Weinberg corrections of the
heavy Higgs states and the top quark. The Higgs masses are computed from the full one-loop
potential.

To study the electroweak phase transition, we have to compute the finite-temperature effec-
tive potential. We include the one-loop corrections of the heavy Higgs states, the top quark and
the gauge bosons. Since the high-temperature approximation is not valid for the heavy Higgses,
we rather use an interpolation to the full one-loop results.

The strength of the resulting electroweak phase transition is shown in fig. 18 for a particular
parameter set. Here ξ =

√

v2
1c + v2

2c/Tc should be larger than 1, so that the phase transition is



strong enough to avoid baryon number washout. As mH increases, the phase transition becomes
stronger. This somewhat counter-intuitive result is due to the fact that the larger Higgs masses
come from larger quartic couplings. So this limit actually does not lead to the decoupling of
the heavy states. At some point perturbation theory will finally break down. We find that
in our example the phase transition becomes sufficiently strong for mH & 300 GeV, where
the size of the zero-temperature one-loop corrections relative to the tree-level terms is about
15%, so that perturbation theory is well under control. Fig. 1 also shows the line where the
corrections become 50%. Even for light Higgs masses of mh ∼ 200 GeV the phase transition
can be sufficiently strong 8. So there is a wide parameter range, where the phase transition is
consistent with electroweak baryogenesis. These results agree with the findings of ref. 11.

The CP-violating phase φ has only a minor impact on the phase transition. We also show
the thickness of the expanding bubble walls, Lw. As the phase transition gets stronger, the walls
become thinner. In the largest part of the parameter space the walls are thick, i.e. LwTc ≫ 1.

Along the bubble wall also the relative complex phase between the two Higgs vevs, θ, changes.
In principle one has to numerically solve the field equations of the Higgs fields, using an algorithm
such as the one recently proposed in ref. 10. In an approximation, we compute the θ-profile by
minimizing the thermal potential at Tc with respect to v2 and θ, at fixed values of v1, between
the symmetric and broken phase. For example, we find that for mh = 150 GeV, mH = 350 GeV,
µ2

3 = 10000 GeV2 and φ = 0.2 the phase changes from θsym = −0.29 to θbrk = −0.068. Later on
we will approximate the profiles of vi and θ by a kink ansatz with common wall thickness Lw.

3 The baryon asymmetry

The CP-violating interactions of particles in the plasma with the bubble wall create an excess of
left-handed quarks over the corresponding antiquarks. This excess diffuses into the symmetric
phase, where the left-handed quark density biases the sphaleron transitions to generate a net
baryon asymmetry. Since the bubble walls are thick, we can apply the WKB formalism 12,3,7,
and obtain different dispersion relations for particles and antiparticles in the space-time depen-
dent background of the Higgs expectation values. The dispersion relations then lead to force
terms in the transport equations.

In the 2HDM, baryogenesis is driven by top transport. The top quark dispersion relation to
first order in gradients is given by 7,13

E = E0 ± ∆E = E0 ±
θ′tm

2
t

2E0E0z

, (2)

where E0 =
√

p2 + m2
t and E0z =

√

p2
z + m2

t , in terms of the kinetic momentum, and θt is
the phase of the top quark mass. The prime denotes the derivative with respect to z, the
coordinate perpendicular to the bubble wall. The upper and the lower sign corresponds to
particles and antiparticles, respectively. In ref. 7 this dispersion relation was derived from the
one-particle Dirac equation, and shown to match the result of the more rigorous Schwinger–
Keldysh formalism13. The change in θt along the bubble wall is given by ∆θt = ∆θ/(1+tan2 β),

assuming that tan β is constant along the wall 14. So there is an additional suppression of ∆θt

for large tan β.
The transport processes in the hot plasma are described by Boltzmann equations. Top and

bottom quarks, and the Higgs bosons are the most important particle species. The other quark
flavors and the leptons can be neglected thanks to their small Yukawa couplings.We use a fluid
ansatz for the particle distribution functions. The CP-violating top dispersion relations enter
as force terms that source the transport equations. We take into account W -scatterings, the
top Yukawa interaction, the strong sphalerons, the top helicity flips and Higgs number violation
with rates ΓW , Γy, Γss, Γm and Γh, respectively, where the latter two are only present in the



 300

 320

 340

 360

 380

 400

 120  130  140  150  160  170  180  190

ηB=5

ηB=10

ηB=20

ηB=40

ηB=60

mH

mh

ξ=1

Figure 2: Contours of constant ηB in the mh–mH plane for µ2

3 = 10000 GeV2 and φ = 0.2. The Higgs masses are

given in units of GeV and ηB in units of 10−11.

broken phase. The explicit expressions of the transport equations are given in ref. 8 and follow
ref. 7.

In fig. 2 we show the baryon asymmetry ηB = nB/s in the mh–mH plane, fixing again

µ2
3 = 10000 GeV2 and φ = 0.2. The observational value is 15 ηB = (8.7 ± 0.3) × 10−11. For

each mass combination we determine all relevant properties of the phase transition, such as ξ,
Lw, θsym and θbrk to put them into the transport equations. There is only a mild dependence
of the baryon asymmetry on the wall velocity, so we consider only a single value, vw = 0.1. In
addition, the (ξ=1)-contour of fig. 1 is also shown for orientation. As we increase mH , leaving
mh fixed, the asymmetry becomes larger. This behavior results from the m2

t ∼ ξ2 dependence
of the top source term. Accordingly the baryon asymmetry becomes larger for a stronger phase
transition. If we increase mh, leaving the heavy Higgs mass fixed, ηB becomes smaller and
reaches a minimum at mh ≈ 150–160 GeV, similar to the behavior of Lw. But in general there
is only a minor dependence on the light Higgs mass. In this parameter setting it is possible to
generate the observed baryon asymmetry for a heavy Higgs mass between 320 and 330 GeV and
a light Higgs mass up to 160 GeV. Since ηB is more or less proportional to the CP-violating
phase φ, the measured value can also be explained for other values of the parameters if we adjust
φ.

One can also compute the EDMs of the electron and neutron, induced by scalar–pseudoscalar
mixing in the neutral Higgs sector. The dominant contributions are arise from two-loop Barr–Zee
type diagrams. Since there is only a single complex phase in the model, we can predict |de| and
|dn| in terms of the baryon asymmetry and the Higgs masses. We find that |dn| & 10−27e cm.
For the smallest allowed values of mh and mH , |dn| can slightly exceed the experimental bound
of 3× 10−26e cm. Improving the neutron EDM sensitivity by an order of magnitude would test
a substantial part of the parameter space of the model. The electron EDM is typically one to
two orders of magnitude below the bound of 1.6 × 10−27e cm. These values are for tan β = 1.
Extrapolating our results suggests that for tan β & 10, the 2HDM cannot produce the observed
baryon asymmetry without being in conflict with the EDM constraints. In any case, the 2HDM
can explain the baryon asymmetry for a considerable range of the model parameters.



4 Summary

We have studied electroweak baryogenesis in the 2HDM, focusing on the case of tan β = 1 and
degenerate extra Higgs states. The phase transition is strengthened by the loop contributions
of the extra Higgs states, provided these are sufficiently strongly coupled. Taking µ2

3 = 10000
GeV2, this happens for a common heavy Higgs mass mH & 300 GeV. The mass of the light,
SM-like Higgs, mh, can be up to 200 GeV, or even larger. The Higgs potential allows us to
introduce of a single CP-violating phase, which induces a varying phase between the two Higgs
vevs along the bubble wall. We compute the CP-violating source term of the top quark in
the WKB approximation and solve the resulting transport equations, using the formalism of
ref. 7. We find that for typical parameter values the baryon asymmetry is in the range of the
observed value. Since there is only a single complex phase in the model, we can predict the
electric dipole moments in terms of the baryon asymmetry and the Higgs masses. We find that
|dn| & 10−27e cm. Improving the neutron EDM sensitivity by an order of magnitude would test
a substantial part of the parameter space of the model. The electron EDM is typically one to
two orders of magnitude below the bound. Large values of tanβ suppress the baryon asymmetry.
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