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1. Introduction

There are robust observational evidences that a tiny excess of matter over antimatter

was produced in our Universe [1], but its origin is still a mystery. Baryogenesis through

Leptogenesis [2] is a simple mechanism to explain this baryon asymmetry of the Universe.

A lepton asymmetry is dynamically generated and then converted into a baryon asymmetry

due to (B+L)-violating sphaleron interactions [3] which exist in the Standard Model (SM).

A simple model in which this mechanism can be implemented is “Seesaw”(type I) [4],

consisting of the Standard Model (SM) plus two or three right-handed (RH) Majorana

neutrinos. In this simple extension of the SM, the usual scenario that is explored (referred
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to as “thermal leptogenesis”) consists of a hierarchical spectrum for the RH neutrinos, such

that the lightest of the RH neutrinos is produced by thermal scattering after inflation, and

subsequently decays out-of-equilibrium in a lepton number and CP-violating way, thus

satisfying Sakharov’s constraints.

In recent years, a lot of work [5 – 7], has been devoted to a thorough analysis of this

model, giving limited attention to the issue of lepton flavour [8]. The dynamics of leptogene-

sis is usually addressed within the ‘one-flavour’ approximation, where Boltzmann equations

are written for the abundance of the lightest RH neutrino, responsible for the out of equi-

librium and CP asymmetric decays, and for the total lepton asymmetry. However, this

‘one-flavour’ approximation is rigorously correct only when the interactions mediated by

charged lepton Yukawa couplings are out of equilibrium.

In ref. [8], flavoured Boltzmann Equations were written down. Flavour effects in “res-

onant leptogenesis” were studied in [9], discussed for thermal leptogenesis in the two-right-

handed neutrino model in [10], and used in [11] to protect an asymmetry made in the

decay of the middle right-handed neutrino. In the four generation models of [12], flavour

was used to enhance the asymmetry, foreshadowing the results we obtain here. The impact

of flavour in thermal leptogenesis has been recently studied in some detail [13, 14], including

the quantum oscillations/correlations of the asymmetries in lepton flavour space [13]. It

was shown that the Boltzmann equations describing the asymmetries in flavour space have

additional terms which can significantly affect the result for the final baryon asymmetry.

In [13], we focused on how flavour effects can enlarge the area of parameter space where

leptogenesis can work: the lower bound on the reheat temperature is mildly decreased, and

the upper bound on the light neutrino mass scale no longer holds.1

Flavour effects have not usually been included in leptogenesis calculations. This is

perhaps because perturbatively, they seem to be a small correction. For instance, if the

asymmetry is a consequence of the very-out-of-equilibrium decay of an initial population

of right-handed neutrinos, then the total lepton asymmetry is of order ε/g∗, where ε is the

total CP asymmetry in the decay, and g∗ counts for the entropy dilution factor. Clearly

the small charged lepton Yukawa couplings have no effect on ε. However, realistic lep-

togenesis is a drawn-out dynamical process, involving the production and destruction of

right-handed neutrinos, and of a lepton asymmetry that is distributed among distinguish-

able flavours. The processes which wash out lepton number are flavour dependent, e.g the

inverse decays from electrons can destroy the lepton asymmetry carried by, and only by,

the electrons. The asymmetries in each flavour are therefore washed out differently, and

will appear with different weights in the final formula for the baryon asymmetry. This

is physically inequivalent to the treatment of washout in the one-flavour approximation,

where indistinguishable leptons propagate between decays and inverse decays, so inverse

decays from all flavours are taken to wash out asymmetries in any flavour.2

1The bound is removed when flavour effects are relevant, which is the case for leptogenesis at tempera-

tures . 1012 GeV.
2The “one-flavour” formulae describe leptogenesis that takes place at temperatures larger than 1012 GeV,

before the charged lepton Yukawas come into equilibrium. They are also appropriate for right-handed

neutrinos who decay only to one flavour. (But note from eqns (4.16), (4.17), that flavour effects can be
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In this paper we provide the necessary analytical expressions for the computation of

the baryon asymmetry including flavour that the interested reader may apply to their

preferred model. By comparing to the usually adopted ‘one-flavour’ approximation, we

will show that the commonly used expressions for the lepton asymmetry, which depend

on the total CP asymmetry and one single efficiency factor, fail to reproduce the correct

lepton asymmetry in a large number of cases. As an application, we also present in this

paper a detailed analysis of flavour effects on lepton asymmetries for a two right-handed

neutrino model. Explicit examples in which sizeable enhancements can be obtained are

also given.

The paper is organized as follows. In section 2, we review the conventional flavoured-

blind computation of the baryon asymmetry, and present some analytic approximations

that will be used later. In section 3, we introduce the Boltzmann equations we will solve,

which differ by the inclusion of flavour and of CP violation in ∆L = 1 processes. The

following section provides a list of rules and expressions to apply in order to obtain an

estimate of the baryon asymmetry which includes flavour effects. Section 5 contains the

analysis in the context of two right-handed neutrino model which make manifest the dif-

ference between the results when flavours are and are not included. In section 6 different

textures for the neutrino Yukawa coupling matrix and their implications are explored. In

section 7 we discuss the special case in which there is no CP violation in the right-handed

neutrino sector, and finally in section 8 we draw our conclusions.

2. The conventional computation of the baryon asymmetry

This section introduces notation and reviews the calculation of the lepton asymmetry when

the charged lepton Yukawa couplings are neglected. As we shall see, the commonly used

formulae for the final lepton asymmetry, which we report in this section, may not be

appropriate once flavours are considered.

Our starting point is the Lagrangian of the Standard Model (SM) with the addition of

three right-handed neutrinos Ni (i = 1, 2, 3) with heavy Majorana masses M3 > M2 > M1

and Yukawa couplings λiα. Working in the basis in which the Yukawa couplings for the

charged leptons are diagonal, the Lagrangian reads

L = LSM +

(
Mi

2
N2
i + λiαNi`αH + hαH

c ēRα`α + h.c.

)
. (2.1)

Here `α and eRα indicate the lepton doublet and singlet with flavour (α = e, µ, τ) respec-

tively, and H is the Higgs doublet whose neutral component has a vacuum expectation

value equal to v = 246 GeV.

We assume that right-handed neutrinos are hierarchical, M2,3 ÀM1 so that studying

the evolution of the number density of N1 suffices. The final amount of (B−L) asymmetry

can be parametrized as YB−L = nB−L/s, where s = 2π2g∗T 3/45 is the entropy density

and g∗ counts the effective number of spin-degrees of freedom in thermal equilibrium (g∗ =

important when there are small branching ratios to other flavours.)
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217/2 in the SM with a single generation of right-handed neutrinos). After reprocessing

by sphaleron transitions, the baryon asymmetry is related to the L asymmetry by [15]

YB = −
(

8nG + 4nH
14nG + 9nH

)
YL, (2.2)

where nH is the number of Higgs doublets, and nG the number of fermion generations (in

equilibrium).

One defines the CP asymmetry generated by N1 decays as

ε1 ≡
∑

α[Γ(N1 → H`α)− Γ(N1 → H`α)]∑
α[Γ(N1 → H`α) + Γ(N1 → H`α)]

=
1

8π

∑

j 6=1

Im
[
(λλ†)2

j1

]

[λλ†]11

g

(
M2
j

M2
1

)
, (2.3)

where the wavefunction plus vertex contributions are included in [16]

g(x) =
√
x

[
1

1− x + 1− (1 + x) ln

(
1 + x

x

)]
xÀ1−→ − 3

2
√
x
. (2.4)

Notice, in particular, that ε1 denotes the CP asymmetry in the total number (the trace)

of flavours.

Besides the CP parameter ε1, the final baryon asymmetry depends on a single wash-out

parameter,

K ≡
∑

α Γ(N1 → H`α)

H(M1)
≡
(
m̃1

m̃∗

)
, (2.5)

where H(M1) denotes the value of the Hubble rate evaluated at a temperature T = M1

(m̃∗ ∼ 3× 10−3 eV) and

m̃1 ≡
(λλ†)11v

2

M1
(2.6)

is proportional to the total decay rate of the right-handed neutrino N1.

By defining the variable z = M1/T , the Boltzmann equations for the lepton asymmetry

YL, and the right-handed neutrino number density YN1 (both normalised to the entropy

s), may be written in a compact form as

d(YN1 − Y EQ
N1

)

dz
= − z

sH(M1)
(γD + γ∆L=1)

(
YN1

Y EQ
N1

− 1

)
−
dY EQ

N1

dz
, (2.7)

dYL
dz

=
z

sH(M1)

[(
YN1

Y EQ
N1

− 1

)
ε1γD −

YL
Y EQ
L

(γD + γ∆L=1 + γ∆L=2)

]
. (2.8)

The processes taken into account in these equations are decays and inverse decays with

rate γD, ∆L = 1 scatterings such as (qtc → N`), and ∆L = 2 processes mediated by heavy

neutrinos. The first three modify the abundance of the lightest right-handed neutrinos.

The ∆L = 2 scatterings mediated by N2,3 are neglected in our analysis for simplicity.3 The

3See, e.g. the appendix of [13]. We discuss later the restrictions this implies.
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various γ are thermally averaged rates, including all contributions summed over flavour

(s, t channel interference etc); explicit expressions can be found in the literature (see for

example [5, 6]). Notice that in this “usual” analysis, ∆L = 1 scattering contributes to the

creation of N1’s and not to the production of a lepton asymmetry, only to the washout.4

This is a minor point in the single flavour analysis; it is more relevant when flavour is

included, and will be discussed in the following two sections.

Approximate analytic solutions for YL and ∆N1 ≡ YN1 − Y EQ
N1

, which reproduce the

numerical plots [5, 6], can be obtained from simplified equations [8, 6]. Calculating in zero

temperature field theory for simplicity,5 one obtains

γD ' sY EQ
N1

K1(z)

K2(z)
ΓD, Y EQ

N1
' 1

4g∗
z2 K2(z) . (2.9)

The Boltzmann equations can be approximated

∆′N1
= −zKK1(z)

K2(z)
f1(z) ∆N1 − Y EQ ′

N1
, (2.10)

Y ′L = ε1Kz
K1(z)

K2(z)
∆N1 −

1

2
z3 KK1(z) f2(z) YL (2.11)

where K1 and K2 are modified Bessel functions of the second kind. The function f1(z)

accounts for the presence of ∆L = 1 scatterings [5, 6], and f2(z) accounts for scatterings in

the washout term of the asymmetry. They can be approximated [6], in interesting limits,

as

f1(z) '
{

1 for z À 1
N2
cm

2
t

4π2v2z2 for z . 1 ,
(2.12)

and

f2(z) '
{

1 for z À 1
aKN

2
cm

2
t

8π2v2z2 for z . 1 ,
(2.13)

where
N2
cm

2
t

8π2v2 ≡ Ks/K ∼ 0.1 parametrizes the strength of the ∆L = 1 scatterings and

aK = 4/3 (2) for the weak (strong) wash out case. A good approximation to the rate

Kz(K1(z)/K2(z))f1(z) is given by the function (Ks +Kz) [5, 6] while the wash out term

−(1/2)z3KK1(z)f2(z)YL is well approximated at small z by −aKKsYL.

In the strong wash-out regime, the parameter K À 1 and the right handed neutrinos

N1’s are nearly in thermal equilibrium. Under these circumstances, one can set ∆ ′N1
' 0

and ∆N1 ' (zK2/4g∗K). Exploiting a saddle-point approximation in eq. (2.11) one easily

reproduces the fit to the numerical results [5, 6]

YL ' 0.3
ε1
g∗

(
0.55 × 10−3 eV

m̃1

)1.16

. (2.14)

In the opposite weak wash-out regime, assuming that no right-handed neutrinos are

initially present in the plasma, there could be a cancellation in the final lepton asymmetry

4We thank A. Strumia, A. Pilaftsis, G. Giudice and E. Nardi for useful conversations about this point.
5Significant finite temperature corrections were found in [5], which have O(1) effects on the final asym-

metry.

– 5 –



J
H
E
P
0
9
(
2
0
0
6
)
0
1
0

between the (anti-) asymmetry generated in N1 production, and the lepton asymmetry

produced as the N1 decay. However, this cancellation does not occur, in eqs. (2.7) and (2.8),

because CP violation in the ∆L = 1 scatterings is not included. ∆L = 1 processes

contribute significantly to the production of right-handed neutrinos, without making any

associated (anti-) lepton asymmetry, and the N1 later produce a lepton asymmetry in

decay. The number of N1 produced is ∝ K, and the final lepton asymmetry can be

approximated [5, 6]

YL ' 0.3
ε1
g∗

(
m̃1

3.3× 10−3 eV

)
. (2.15)

Notice that the final baryon asymmetry in the ’one flavour approximation’ depends always

upon the trace of the CP asymmetries over flavours, ε1, times a function of the trace over

flavours of the decay rate of the right-handed neutrinos, K. This is due to the fact that

the inverse decay term in eq. (2.7) is proportional to the trace over the flavours of the

lepton asymmetry times the trace over the flavours of the decay rate of N1’s. The reader

is invited to remember this point in the following when we explain why the ‘one flavour

approximation’ fails to predict the exact baryon asymmetry.

3. Including flavours and CP violation in scattering

In this section, we introduce the Boltzmann equations for individual flavour asymme-

tries, [8]. We define Yαα to be the lepton asymmetry in flavour α, where the α are the

lepton mass eigenstates at the temperature of leptogenesis. As discussed in [13], the Yαα
are the diagonal elements of a matrix [Y ] in flavour space, whose trace is the total lepton

asymmetry. In this paper, the off-diagonal elements are neglected.6

The mass eigenstates for the particles in the Boltzmann equations(BE) are determined

by the interactions which are fast compared to those processes included in the BE. The

interaction rate for Yukawa coupling hα can be estimated as [17]

Γα ' 5× 10−3h2
α T, (3.1)

so interactions involving the tau (mu) Yukawa coupling are out-of-equilibrium in the

primeval plasma if T & 1012 GeV (T & 109 GeV).7 Thermal leptogenesis takes place at

temperatures on the order of M1, and the asymmetry is generated when the rates . H,

so we conclude that the τ (µ) lepton doublet is a distinguishable mass eigenstate, for the

purposes of leptogenesis, at T < 1012(109) GeV.

The Boltzmann equations that we will use in this paper, for the flavour asymmetries

Yαα, are listed below. They differ from those of [13] in two respects.

6See [13] for a discussion. The equations of motion for the matrix [Y ] are more complicated than the

Boltzmann equations, but at most temperatures are equivalent to Boltzmann equations written in the mass

eigenstate basis of the leptons in the plasma. The off-diagonal elements of [Y ] could have some effect on

the lepton asymmetry, if leptogenesis takes place just as a charged lepton Yukawa coupling is coming into

equilibrium (so the mass eigenstate basis is changing).
7The electron Yukawa coupling mediates interactions relevant in the early Universe only for temperatures

beneath ∼ 105 GeV and can be safely disregarded.

– 6 –



J
H
E
P
0
9
(
2
0
0
6
)
0
1
0

First, we have neglected the off-diagonal terms of the matrix [Y ]. The second and

most significant difference is that we have included CP violation in the ∆L = 1 scattering

rate, which will give YL ∝ K2 for weak washout (instead of K in eq. (2.15)). That is, the

function γ∆L=1, which appears in the N1 creation term, also now appears in the first term

of equation (3.2), which describes the production of the lepton flavour asymmetry. Later

in this section we will calculate the CP asymmetry in scattering, and show that it gives

the same ε as decay and inverse decay, in the limit of hierarchical right-handed neutrinos.

As in [13], we continue to neglect the non-resonant contribution to ∆L = 2 scatterings,

and its associated flavour effects [8]. At the end of section 4.1.2, we discuss the parameter

range where this is acceptable.

Equation (2.7) for the N1 number density remains unchanged, and the equation for

the flavoured lepton asymmetry is

dY αα

dz
=

z

sH(M1)

[(
YN1

Y EQ
N1

− 1

)
εαα(γD + γ∆L=1)− Y αα

Y EQ
L

(γααD + γαα∆L=1)

]
, (3.2)

where there is no sum over α in the last term of equation (3.2) (or (3.3)).

The rates [6] and asymmetries are calculated in zero temperature field theory, and

include processes mediated by the neutrino and top Yukawa couplings. This is simple,

and parametrically consistent. However, finite temperature and gauge corrections can be

significant [5], and should in principle be included.

To obtain analytic solutions we simplify this, with the approximations introduced in

the previous section, to

Y ′αα = εααKz
K1(z)

K2(z)
f1(z)∆N1 −

1

2
z3K1(z) f2(z)KααYαα (3.3)

∆′N1
= −z K K1(z)

K2(z)
f1(z) ∆N1 − Y EQ ′

N1
, (3.4)

where

Kαα = K
λ1αλ

∗
1α∑

γ |λ1γ |2
=

(
m̃αα

3× 10−3 eV

)
, K =

∑

α

Kαα . (3.5)

Kαα parametrizes the decay rate of N1 to the α-th flavour, and the trace
∑

αKαα, coincides

with the K parameter defined in the previous section, see eq. (2.5).

Notice in particular that the dynamics of the right-handed neutrinos is always set by

the total K.

The CP asymmetry in the α-th flavour is εαα and is normalised by the total decay rate

εαα =
1

(8π)

1

[λλ†]11

∑

j

Im
{

(λ1α)(λλ†)1jλ
∗
jα

}
g

(
M2
j

M2
1

)
(3.6)

→ 3

(8π)[λλ†]11
Im

{
λ1β

[m∗]βα
v2

λ1α

}
(3.7)

where the second line is in the limit of hierarchical NJ , and m = U ∗DmU
† = v2λTM−1λ

is the light neutrino mass matrix. If mmax is the heaviest light neutrino mass (= matm

– 7 –
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for the non-degenerate case) and we define εmax = 3∆m2
atmM1/(8πv

2mmax) [18], then the

flavour dependent CP asymmetries are bounded by

εαα ≤
3M1mmax

8πv2

√
Kαα

K
= εmax m2

max

∆m2
atm

√
Kαα

K
(3.8)

so the maximum CP asymmetry in a given flavour is unsuppressed for degenerate light

neutrinos [13], but decreases as the square root of the branching ratio to that flavour

= Kαα/K.

The CP asymmetry εαα can be written in terms of the diagonal matrix of the light

neutrino mass eigenvalues m = Diag(m1,m2,m3), the diagonal matrix of the the right

handed neutrino masses M = Diag(M1,M2,M3) and an orthogonal complex matrix R =

vM−1/2 λU m−1/2 [19], where U is the leptonic mixing matrix, which ensures that the

correct low-energy parameters are obtained

εαα = − 3M1

16πv2

Im
(∑

βρm
1/2
β m

3/2
ρ U∗αβUαρRβ1Rρ1

)

∑
βmβ |R1β |2

. (3.9)

As noted in [14], for a real R matrix, the individual CP asymmetries εαα may not vanish

because of the presence of CP violation in the U matrix. On the contrary, the total CP

asymmetry ε1 =
∑

α εαα vanishes.

3.1 The CP asymmetry in ∆L = 1 scattering

We now wish to show that the CP asymmetry in scattering processes such as (qtc → N`α)

is the same as in decays and inverse decays.8 This result was found in [9, 20], for the

case of resonant leptogenesis. CP violation in scattering is usually neglected in thermal

leptogenesis [5, 6], because observed neutrino masses favour the strong washout regime K >

1. In strong washout, any contribution to the lepton asymmetry by scattering processes

during N1 production is rapidly washed out, so the CP violation in these processes can

be neglected, for lack of observable consequences. However, we wish to include this CP

violation, because washout in one flavour could be small, even though K À 1 and we

wish to correctly include the contribution of weakly washed out lepton flavours to the final

lepton asymmetry.

For simplicity, we work at zero temperature, in the limit of hierachical right-handed

neutrinos. This means we calculate in an effective field theory with particle content of the

SM +N1, and the effects of the heavier N2 and N3 appear in a dimension five operator

(HLα)(HLβ). For computing one-loop CP violating effects involving N1, we can take the

coefficient of this operator ∝ [mν ]αβ/v
2.

We define the CP asymmetries in ∆L = 1 scattering (mediated by s and t-channel

Higgs boson exchange) as

ε̂ααs =
σ(tcq → NLα)− σ̄(q̄tc → NL̄α)

σ + σ̄
(3.10)

8We thank E. Nardi for discussions of his work in progress.
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ε̂ααt =
σ(qN → tcLα)− σ̄(q̄N → tcL̄α)

σ + σ̄
=
σ(qL̄α → tcN)− σ̄(q̄Lα → tcN)

σ + σ̄
(3.11)

where barred fields are the antiparticles. The initial state density factors cancel in the

ratio, so the cross-sections σ, σ̄ can be replaced by the matrix elements squared |M|2,

integrated over final state phase space
∫
dΠ. If the tree + loop matrix element is separated

into a coupling constant part c and an amplitude A:

M = ctAt + c`A` , (3.12)

where the matrix element for the CP conjugate process is M̄ = ct∗At + c`∗A`, then the CP

asymmetry can be written

ε =
4Im{ctcl∗}
|ct|2

∫
Im{AtAl∗}dΠ∫
|At|2dΠ

. (3.13)

The loop amplitude has an imaginary part when there are branch cuts corresponding to

intermediate on-shell particles, which can arise here in a bubble on the N line at the NHLα
vertex, e.g. for s-channel Higgs exchange:

Im{AtAl∗} = At(tcq → NLα)

∫
At∗(tcq → LαL

′
βH
′)dΠ′At∗(L′βH ′ → N) . (3.14)

H ′ and L′β are the (assumed massless) intermediate on-shell particles, and dΠ′ is the

integration over their phase space.

In the scattering process ct = htλ
∗
1α and c` = 3htλ1β[m∗]βα/v2, where ht is the top

Yukawa coupling, so the complex coupling constant combination in ε̂αα(AH̄ → NLα) is

clearly the same as in εαα of eq. (3.7).9 To obtain the amplitude ratio (the second fraction

in eqn (3.13)), we take, for instance At(N → H̄L̄α) = ū`PLuN , and after straightforward

spin sums, one sees that it is the same for scattering and N decay, so ε̂ααs = ε̂ααt = εαα.

The equality (3.11), and the result that the s and t-channel scattering asymmetries are

equal to the decay asymmetry, may be an artifact of our effective field theory calculation,

where there is no momentum exchanged on the N2,3 line in the loop.

In the finite temperature calculation of [5], the Higgs boson has a large thermal mass

due to its interactions with the top quarks. At T ÀM1 it can therefore decay to NL, and

ref. [5] found a CP asymmetry in this decay. Some part of the N production that is included

in zero temperature scattering computations, is resummed in the finite temperature H

decays, so it is consistent that in both processes, a lepton asymmetry can be generated.

Checking CPT and unitarity

We would like to verify that the CP violating matrix elements M for ∆L = 1 scattering

processes, satisfy the constraints following from CPT invariance and S-matrix unitarity.

9In both cases, there is an overall factor of three, from the weak SU(2) index contractions. This can be

seen by reinstating the N2,3 propagators: the charged and neutral component of the intermediate H ′ and

L′ contribute in the N1 wave-function correction, giving a 2, but only the charged or the neutral H ′ and

L′ appear in the vertex correction.

– 9 –
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See e.g. [21] for useful related discussions. For i any state, and ī its CP conjugate, CPT

and unitarity imply [22]

∑

j̄

|M(̄i→ j̄)|2 =
∑

j̄

|M(j̄ → ī)|2 =
∑

j

|M(i→ j)|2, (3.15)

where {j} is the set of accessible states. We want to check that this is consistent with

having a CP asymmetry in scattering processes like qtc → N`.

First, as a warm-up, let us consider the case of inverse decays H` → N in the single

flavour approximation. It is well-known that there is a CP asymmetry here, and this will

show how to apply CPT and unitarity bounds with unstable particles (N) in the final state.

Suppose that

|M(H`→ N)|2 ≡ |M0|2
2

(1 + ε) , |M(H̄ ¯̀→ N)|2 ≡ |M0|2
2

(1− ε) , (3.16)

where |M0|2 is order λ2 and |M0|2ε is order λ4.

At order λ2, the CPT + unitarity constraint is verified, but at order λ4, |M(H` →
N)|2 6= |M(H̄ ¯̀→ N)|2, because there can be additional final states: H̄ ¯̀ and H`. As in the

case of the Boltzman Equations, when we include these 2↔ 2 processes, we must subtract

out the real intermediate N1, because we have already included this by treating the N1 as

a final state particle. So at order λ4:

|M(H`→ X)|2 = |M(H`→ N)|2 + |M(H`→ H̄ ¯̀)|2 − |MRIS(H`→ H̄ ¯̀)|2

+|M(H`→ H`)|2 − |MRIS(H`→ H`)|2

=
|M0|2

2
(1 + ε) + |M(H`→ H̄ ¯̀)|2 − |M0|2

2
(1 + ε)

(1 + ε)

2

+|M(H`→ H`)|2 − |M0|2
2

(1 + ε)
(1 − ε)

2

= |M(H`→ H̄ ¯̀)|2 + |M(H`→ H`)|2 + · · · (3.17)

where X is all possible final states, and the on-shell intermediate N1 has been subtracted

in the narrow width approximation [5]. Repeating for (H̄ ¯̀ → X) will give the same

rate, because at O(λ4), |M(H` → H̄ ¯̀)|2 = |M(H̄ ¯̀ → H`)|2, and |M(H` → H`)|2 =

|M(H̄ ¯̀→ H̄ ¯̀)|2. So CPT and unitarity are satisfied for inverse decays, as they ought to

be.

CPT and unitarity are realised in the scattering process (qtc → N`α), in a similar way

to inverse decays. CPT and unitarity should hold order by order in perturbation theory,

so we work at order λ2λ2
αh

2
t , and define

|M(qtc → N`α)|2 = |Ms|2(1 + εαα) , (3.18)

where |Ms|2 ∝ λ2
αh

2
t , and |Ms|2ε ∝ λ2λ2

αh
2
t . At order λ2λ2

αh
2
t , we should also include

various tree diagrams without N in the final state. Following the inverse decay discussion,

one can write

|M(qtc → X`α)|2 = |M(qtc → N`α)|2

– 10 –
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+
∑

β

[
|M(qtc → `βH`α)|2 − |MRIS(qtc → `βH`α)|2

]

+
∑

β

[
|M(qtc → `βH`α)|2 − |MRIS(qtc → `βH`α)|2

]

= |Ms|2(1 + εαα) + |M(qtc → `H`α)|2 − |Ms|2(1 + εαα)
(1 + ε)

2

+|M(qtc → `H`α)|2 − |Ms|2(1 + εαα)
(1− ε)

2

=
∑

β

[
|M(qtc → `βH`α)|2 + |M(qtc → `βH`α)|2

]
, (3.19)

where, in the narrow width approximation,

|MRIS(qtc → `βH̄`α)|2 = |M(qtc → N`α)|2 × BR(N → H̄`β) (3.20)

In eq. (3.19), the CP asymmetry εαα has disappeared, so if we repeat the calculation

for the CP conjugate initial state q̄tc, we should obtain the same result, verifying that a CP

asymmetry in qtc → N`α is consistent with CPT and unitarity. Furthermore, eq. (3.19) is

reassuring, because the unstable state N has disappeared. There is no CP violation in the

total rate for qtc → asymptotic (stable) final states, but CP violation in the partial rate to

the unstable N is possible. This can be relevant to the final value of the baryon symmetry

when some of the lepton flavours are weakly washed out (see section 4.1.2).

4. Approximate formulae for the baryon asymmetry

In this section we present analytical formulae for the final baryon asymmetry in the case

in which flavours are taken into account. We can have different possible cases according to

which interaction mediated by the charged Yukawa couplings is in equilibrium, [8, 14].

4.1 µ and τ Yukawa couplings in equilibrium: M1 . 109 GeV

The µ and τ doublet leptons (and by default, the electron doublet) will be mass eigenstates

at the temperature of leptogenesis when the mass of the lightest right-handed neutrino M1

is smaller than about 109 GeV. The Boltzmann equation for the diagonal entry Yαα reads

(no summation over the index α)

Y ′αα = εααKz
K1(z)

K2(z)
f1(z)∆N1 −

1

2
z3K1(z) f2(z)KααYαα . (4.1)

Let us now solve analytically eq. (4.1) according to the magnitude of the various Kαα.

4.1.1 Strong wash-out regime for all flavours

In such a case all the Kαα À 1. The right-handed neutrinos N1’s are nearly in thermal

equilibrium. Under these circumstances, one can set ∆′N1
' 0 and ∆N1 ' (zK2/4g∗K).

The lepton asymmetry for the flavour α is given by
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Yαα ' εαα
∫ ∞

0
dz

K1

4g∗
z2 e−

R∞
z dz′ ((z′)3/2)K1(z′)Kαα . (4.2)

Using the steepest descent method to evaluate the integral, one finds that it gets the major

contribution at z such that z = log Kαα+(5 ln z/2) when inverse decays become inefficient.

The lepton asymmetry in the flavour α becomes

Yαα ' 0.3
εαα
g∗

(
0.55 × 10−3 eV

m̃αα

)1.16

. (4.3)

To get convinced that this result differs from the one usually considered in the literature,

let us take the total lepton asymmetry YL =
∑

α Yαα

YL '
∑

α

0.3
εαα
g∗

(
0.55 × 10−3 eV

m̃αα

)1.16

. (4.4)

It does not coincide with total lepton asymmetry result (2.14) in the strong wash-out

regime. Indeed, the total lepton asymmetry (4.4) is the sum of the εαα, each weighted

by the wash-out factor Kαα and not the sum of the εαα divided by the sum of the Kαα.

Eqs. (2.14) and (4.4) coincide only if one family is dominating the contribution to the total

CP asymmetry and the corresponding wash-out factor is the tiniest.

4.1.2 Weak wash-out regime for all flavours

In this case all the Kαα ¿ 1. We assume that right-handed neutrinos are not initially

present in the plasma, but they are generated by inverse decays and scatterings. As ex-

plained in section 2, the equation of motion for YN1 is well approximated by

Y ′N1
= −(Ks +Kz)

(
YN1 − Y EQ

N1

)
, (4.5)

We split the solution in two pieces. Let us define zEQ the value of z at which YN1(zEQ) =

Y EQ
N1

(zEQ). This value has to be found a posteriori. For z ¿ zEQ, we may suppose that

YN1 ¿ Y EQ
N1

and eq. (4.5) is solved by

Y −N1
(z) '

∫ z

0
dz′ (Ks +Kz′)Y EQ

N1
=

1

4g∗

∫ z

0
dz′ (Ks +Kz′)(z′)2 K2(z′)

=
K

4g?

(
Ks

K
I1(z) + I2(z)

)
(4.6)

With I1 and I2 integral involving the modified Bessel functions:

I1(z) =

∫ z

0
x2K2(x)dx ' f(z) + z3K2(z) (4.7)

where [6]

f(z) =
3πz3

((9π)c + (2z3)c)1/c
, c = 0.7 (4.8)
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The integral I2 is well known, and equals

I2(z) =

∫ z

0
x3K2(x)dx = 8− z3K3(z) (4.9)

Therefore

Y −N1
(z) ' K

4g?

(
Ks

K
(f(z) + z3K2(z)) + 8− z3K3(z)

)
(4.10)

As expected for weak washout, we find that the maximum number density of N1 is

proportional to K (recall Ks ∝ K).

Let us now compute the value of zEQ. We expect it to be À 1 and we therefore

approximate, up to O(z−3/2): K2(z) ' K3(z) '
√

π
2 z
−1/2e−z. Imposing Y −N1

(zEQ) =

Y EQ
N1

(zEQ), we find

zEQ '
3

2
ln zEQ − ln

(
8√
π/2

K + 3

√
π

2
Ks

)
. (4.11)

This solution is a good approximation to the real value for K ¿ 1.

For z > zEQ, we have (Ks +Kz) ' Kz and

YN1(z) ' Y EQ
N1

(zEQ)eK/2(z
2
EQ−z2) . (4.12)

We have included CP violation in ∆L = 1 scattering, unlike the usual analysis, so we

expect our solution for Y αα
L to have a different scaling with K than eqn (2.15). The reason

is as discussed in [5, 6]: if CP/ in scattering is neglected, then YN ∝ K, and the N1 decay

out of equilibrium, so one expects Y αα
L ∝ Kεαα. However, if CP/ in N1 production ('

scattering) is included, and washout is neglected, then the equations for YN1 and Y αα
L are

identical, so Y αα
L (z → ∞) vanishes. That is, for every |1/εαα| N1’s that are created, be

it by inverse decay or scattering, an (anti)-lepton α is produced. This (anti-)asymmetry

will approximately cancel against the lepton asymmetry generated later on, when the N1

decay. However the cancellation will be imperfect, because the anti-asymmetry has more

time to be washed out, so the final asymmetry should scale as KKαα. After integrating

by parts, this is what we find for the asymmetry in the flavour α, which is given by

Yαα ' εαα

∫ ∞

0
dz′YN1(z′)gαα(z′)e−

R∞
z dz′′gαα(z′′) , gαα(z) =

1

2
z3KααK1(z)f2(z) ,

' 1.5
εαα
g∗

(
m̃1

3.3 × 10−3 eV

)(
m̃αα

3.3× 10−3 eV

)
. (4.13)

We have checked numerically that this analytical formula fits the numerical results to a

30%.

Our findings hold provided that the non-resonant ∆L = 2 scattering rates, in particular

those mediated by the N2 and N3 heavy neutrinos, are slower than decays and ∆L = 1

scatterings when most of the asymmetry is generated. We estimate that this applies when
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(
M1

1014 GeV

)
¿ 10−1 Kαα . (4.14)

This means that Kαα should be larger than 10−4.

4.1.3 Strong wash-out for some flavours and either weak or mild wash-out for

others

In the case in which Kαα À 1 for some flavour α, but Kββ ¿ 1 for some other flavour β, it

is impossible to match this case with any of the cases discussed in the section for the ‘one-

flavour’ approximation. Because some flavours α strongly interact with the right-handed

neutrinos, we may set K =
∑

αKαα À 1. Thus, right-handed neutrinos are brought

to thermal equilibrium by inverse decays and by ∆L = 1 scatterings to an abundance

approximately given by

YN1(z) ' Y EQ
N1

(
1− e−Ksz−Kz2/2

)
. (4.15)

The lepton asymmetry in flavour β is then given by

Yββ ' εββ

∫ ∞

0
dz Y EQ

N1
(z′)

(
1− e−Ksz′−Kz

′2/2
)
gββ(z′)

' 0.4
εββ
g∗

(
m̃ββ

3.3× 10−3 eV

)
. (4.16)

Again, we have checked that this formula fits the numerical results to about 30 %. It has the

dependence on Kββ expected from our inclusion of CP/ in scattering. The anti-asymmetry

∼ −εββs/g∗ created during N1 production has the leisure to be partially destroyed by

processes violating β lepton number. The amount of this reduction is controlled by Kββ,

so one expects the final β asymmetry ∝ εββKββ , as in eq. (4.16). Again, this result applies

for Kαα À 10−4.

In the case in which Kαα À 1 for some flavour α and the flavour β suffers a mild

(Kββ ∼ 1) wash-out, the final asymmetry in the flavour β is fitted within 30 % by the

formula

Yββ '
εββ
g∗

((
m̃ββ

8.25 × 10−3 eV

)−1

+

(
0.2 × 10−3 eV

m̃ββ

)−1.16
)−1

. (4.17)

This formula reduces to eqs. (4.3) and (4.16) for the weak and strong wash out for the

flavour β, respectively.

4.1.4 Recipe to go from the flavour asymmetries to the baryon asymmetry

To provide the complete analytical formulae for the baryon asymmetry in the case in which

M1 . 109 GeV, it suffices to provide the relationship between the lepton asymmetry for

each flavour Yαα and the asymmetries Y∆α , where ∆α = ((1/3)B−Yαα) which are effectively

conserved by the sphaleron interactions. The final baryon asymmetry is given by
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YB '
12

37

∑

α

Y∆α , (4.18)

where



Y∆e

Y∆µ

Y∆τ


 =




−22/9 −4/9 −4/9

−4/9 + 5/39 −4/9− 3 + 8/39 −4/9 + 8/39

−4/9 + 5/39 −4/9 + 8/39 −4/9 − 3 + 8/39






Yee
Yµµ
Yττ


 . (4.19)

Thus the recipe to compute the baryon asymmetry in the case in which M1 . 109 GeV is

the following:

1) Compute theKαα parameters for the three flavours to see which of the three different

previously discussed cases applies;

2) compute the lepton asymmetry in each flavour using the relevant formualae among

equations (4.4), (4.13), (4.16);

3) compute the baryon asymmetry

YB = −12

37

(
40

13
Yee +

51

13
Yµµ +

51

13
Yττ

)
. (4.20)

Figures 1, 2 and 3 illustrate the differences between the final baryon asymmetry with

flavours accounted for and the result obtained within the one-flavour approximation for

some values of the wash-out parameters and CP asymmetries.

4.2 Only the tau Yukawa coupling in equilibrium: (109 .M1 . 1012) GeV

This case is realized when the mass of the lightest right-handed neutrino M1 is larger than

about 109 GeV, but smaller than about 1012 GeV.10 Interactions mediated by hτ are in

equilibrium, but not those mediated by hµ. The off-diagonal entries of the matrix Yτβ
all vanish and the muon and electron asymmetries are indistinguishable. The problem

of finding the total baryon asymmetry reduces to a case of two flavours, the lepton `τ ,

and ˆ̀
2, the non-τ components of the lepton into which N1 decays.11 At tree level, `2 =

∑
α=e,µ λ1α`α/

(∑
α=e,µ |λ1α|2

)1/2
. One can therefore define two CP asymmetries, εττ and

ε2 = εee + εµµ, and the corresponding wash-out parameters Kττ and K2 = Kee +Kµµ for

the two asymmetries Yττ and Y2 = Yee + Yµµ. One then solves this set of equations as

we described in the previous subsection depending upon the magnitude of the wash-out

parameters Kττ and K2.

The recipe to compute the baryon asymmetry in the case in which (109 . M1 .
1012) GeV is the following:

1) Compute the Kττ and K2 parameters to see whether they are either both larger

than unity, or both smaller than unity, or one larger and the other smaller than unity;

10In the case in which M1 is around 109 GeV off-diagonal terms may be relevant. However, they are

quickly damped away as soon as M1 becomes larger than 109 GeV [13].
11Notice that at one-loop, `2 ≡ the non-tau components of the antilepton into which N1 decays, is not

exactly `∗2 [8, 14].
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z

1. ´ 10-12
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1. ´ 10-10

1. ´ 10-9

Yb

Figure 1: The total baryon asymmetry including flavours (upper) and within the one-flavour

approximation (lower) as a function of z. The chosen parameters are Kee = 10, Kµµ = 30,

Kττ = 30, εee = 2.5× 10−6, εµµ = −2× 10−6, εττ = 10−7 and M1 = 1010 GeV.

0.01 0.1 1 10 100
z

1. ´ 10-14

1. ´ 10-13

1. ´ 10-12

1. ´ 10-11

1. ´ 10-10

Yb

Figure 2: The total baryon asymmetry including flavours (upper) and within the one-flavour

approximation (lower) as a function of z. The chosen parameters are Kee = 5× 10−2, Kµµ = 10−2,

Kττ = 10−3, εee = 2.5× 10−6, εµµ = −2× 10−6, εττ = 10−7 and M1 = 1010 GeV.

0.01 0.1 1 10 100
z

1. ´ 10-12

1. ´ 10-11

1. ´ 10-10

1. ´ 10-9

Yb

Figure 3: The total baryon asymmetry including flavours (upper) and within the one-flavour

approximation (lower) as a function of z. The chosen parameters are Kee = 10, Kµµ = 30,

Kττ = 10−2, εee = 2.5× 10−6, εµµ = −2× 10−6, εττ = 10−7 and M1 = 1010 GeV.

2) compute the CP asymmetry in each of the two flavours, and the lepton asymmetry

using the relevant formulae among equations (4.4), (4.13), (4.16);
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3) compute the baryon asymmetry

YB = −12

37

(
115

36
Y2 +

37

9
Yττ

)
. (4.21)

Again, our results apply if ∆L = 2 scatterings are negligible, see eq. (4.14).

4.3 No charged Yukawa couplings in equilibrum: M1 & 1012 GeV

This case is realized when the mass of the lightest right-handed neutrino M1 is larger than

about 1012 GeV. Interactions mediated by all charged lepton Yukawa couplings are out of

equilibrium and all flavours are indistinguishable. The problem of finding the total baryon

asymmetry reduces to a case of one flavour, the lepton

ˆ̀
1 =

∑

α=e,µ,τ

λ1α`α/

( ∑

α=e,µ,τ

|λ1α|2
)1/2

.

One can therefore define a single CP asymmetry, ε1 =
∑

α εαα, and the corresponding wash

out parameter K =
∑

αKαα. The corresponding Boltzmann equations read as those in

eq. (2.11). Only in this case the commonly used formulae reported in section 2 hold with

the eventual inclusion of the effects from the ∆L = 2 scatterings.

5. General analysis of leptogenesis in the two right-handed neutrino

model

In this section we will concentrate on the see-saw model with two right-handed neutrinos

(2RHN). Oscillation experiments indicate that two new mass scales have to be introduced,

in order to account for the solar and atmospheric mass splittings. These two mass scales

could be associated to the masses of two right-handed neutrinos, therefore a see-saw model

with just two right-handed neutrinos can already accommodate all the observations. An

additional motivation to consider the two right-handed neutrino model is that it corre-

sponds to some interesting limits of the complete see-saw model with three right-handed

neutrinos, namely when the mass of the heaviest right-handed neutrino is much larger

than the masses of the other two, or when the Yukawa couplings for the first generation of

right-handed neutrinos are much smaller than for the other two generations.

The two right-handed neutrino model depends on many less parameters than the com-

plete see-saw model and the theoretical analysis of leptogenesis becomes much more man-

ageable, while preserving the key features of the model with three right-handed neutrinos.

In the basis where the charged lepton Yukawa coupling and the right-handed mass ma-

trices are diagonal, the model is defined at high energies by a 2 × 3 Yukawa matrix and

two right-handed neutrino masses, M1 and M2. This amounts to eight moduli and three

phases. On the other hand, at low energies the neutrino mass matrix is defined by five

moduli (two masses and three mixing angles) plus two phases (the Dirac phase and the

Majorana phase). In particular, since the mass matrix is rank 2 in this model, the lightest

neutrino mass eigenvalue automatically vanishes and only two possible spectra may arise:
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• Normal hierarchy: m1 = 0 , m2 =
√

∆m2
sol , m3 =

√
∆m2

atm

• Inverted hierarchy: m3 = 0, m1 =
√

∆m2
atm −∆m2

sol , m2 =
√

∆m2
atm

The only Majorana phase corresponds to the phase difference between the two non-vani-

shing mass eigenvalues. Therefore, the number of unmeasurable parameters in the 2RHN

model is reduced to three moduli and one phase.

The most general Yukawa coupling compatible with the low energy data is given by:

λ = M1/2Rm1/2U †/v, (5.1)

where m = Diag(m1,m2,m3) is the diagonal matrix of the light neutrino mass eigenvalues

(which has m1 = 0 for the normal hierarchy and m3 = 0 for the inverted hierarchy),

M = Diag(M1,M2) is the diagonal matrix of the right handed neutrino masses, U is the

leptonic mixing matrix, and R is an orthogonal matrix that in the 2RHN model has the

following structure [24]

R =

(
0 cos θ̂ ξ sin θ̂

0 − sin θ̂ ξ cos θ̂

)
(normal hierarchy), (5.2)

R =

(
cos θ̂ ξ sin θ̂ 0

− sin θ̂ ξ cos θ̂ 0

)
(inverted hierarchy), (5.3)

with θ̂ a complex parameter and ξ = ±1 a discrete parameter that accounts for a discrete

indeterminacy in R. In consequence, the elements of the neutrino Yukawa matrix read:

λ1α =
√
M1(
√
m2 cos θ̂ U∗α2 + ξ

√
m3 sin θ̂ U∗α3)/v,

λ2α =
√
M2(−√m2 sin θ̂ U∗α2 + ξ

√
m3 cos θ̂ U∗α3)/v, (5.4)

for the case with normal hierarchy and

λ1α =
√
M1(
√
m1 cos θ̂ U∗α1 + ξ

√
m2 sin θ̂ U∗α2)/v,

λ2α =
√
M2(−√m1 sin θ̂ U∗α1 + ξ

√
m2 cos θ̂ U∗α2)/v, (5.5)

for the case with inverted hierarchy. The three moduli and the phase that are not de-

termined by low energy experiments are identified in this parametrization with the two

right-handed masses M1 and M2, and the complex parameter θ̂.

Notice that we have included all the low energy phases in the definition of the matrix

U , i.e. we have written the leptonic mixing matrix in the form U = V Diag(1, e−iφ/2, 1),

where φ is the Majorana phase and V has the form of the CKM matrix:

V =




c13c12 c13s12 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

s23s12 − c23s13c12e
iδ −s23c12 − c23s13s12e

iδ c23c13


 , (5.6)

so that the neutrino mass matrix is M = U ∗Diag(m1,m2,m3)U †. It is straightforward

to check that the Yukawa coupling eq. (5.1) indeed satisfies the see-saw formula M =

λTDiag(M−1
1 ,M−1

2 )λv2.
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The flavour CP asymmetries can be readily computed in terms of low energy data and

the unmeasurable parameters M1, M2 and θ̂ substituting the expression for the Yukawa

coupling in eq. (3.6). In the limit M1 ¿M2 we obtain for the case with normal hierarchy

the following result:

εαα '
3

8πv2

M1

m2| cos2 θ̂|+m3| sin2 θ̂|
[(m2

3|Uα3|2 −m2
2|Uα2|2) Im sin2 θ̂ +

+ξ
√
m2m3(m3 +m2) ReU∗α2Uα3 Im sin θ̂ cos θ̂ +

+ξ
√
m2m3(m3 −m2) ImU∗α2Uα3 Re sin θ̂ cos θ̂], (5.7)

and analogously for the case with inverted hierarchy, with the changes in the labels 3→ 2

and 2→ 1.

We will analyze numerically the predictions for the baryon asymmetry taking flavour

properly into account, as described in section 3, and also for comparison following the

conventional computation ignoring flavour, as described in section 2. We will perform this

analysis both for the case of normal hierarchy and inverted hierarchy, fixing the atmo-

spheric and solar mass splittings and mixing angles to the values suggested by oscillation

experiments, ∆m2
atm ' 2.2× 10−3 eV2, ∆m2

sol ' 8.1 × 10−5 eV2, θ23 ' π/4 and θ12 ' π/6,

respectively [23]. The remaining parameters in the leptonic mixing matrix are fixed to

θ13 = 0.1, δ = π/4, φ = π/3. In general, the results are not very sensitive to the value of

θ13. On the other hand, the aspect of the plots does depend on the precise value of the

phases δ and φ, although our main conclusions remain valid.

We will show our results for different values of M1, to cover the possibility that only

the tau Yukawa interaction is in equilibrium (M1 & 109 GeV) or that the tau and the

muon Yukawa interactions are in equilibrium (M1 . 109 GeV), and for different values of

the complex parameter θ̂, restricting ourselves to the region |θ̂| < 1. We will also fix ξ = 1,

although the results for the case ξ = −1 can be read from our results by changing θ̂ → −θ̂,
as can be checked from eq. (5.7).

In figure 4 we show the result of the calculation of the baryon asymmetry in the

complex plane of θ̂ when the mass spectrum presents a normal hierarchy, following the cal-

culation that takes flavour properly into account (left plots) and following the conventional

calculation ignoring flavour (right plots). In the upper plots we show the results when

M1 = 108 GeV, so that the tau and muon Yukawa interactions are in equilibrium, whereas

in the lower plots we take M1 = 1010 GeV, so that only the tau Yukawa interaction is in

equilibrium. It is apparent from these plots that the proper treatment of flavour in the

Boltzmann equations is necessary in order to calculate correctly the baryon asymmetry.12

The differences between the correct analysis of leptogenesis, taking flavour into account,

and the conventional analysis are more acute along the axes Imθ̂ = 0 and Reθ̂ = 0, and

around the values of θ̂ that correspond to texture zeros in the Yukawa coupling. The

12In particular, the prediction for the baryon asymmetry in the conventional computation is symmetric

under Reθ̂ → −Reθ̂ and Imθ̂ → −Imθ̂, and consequently independent of the discrete parameter ξ. On the

other hand, when flavour is taken into account, the parameter ξ indeed plays a role in the computation of

the baryon asymmetry.
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Figure 4: Baryon asymmetry in the 2RHN model when the neutrinos present a spectrum with

normal hierarchy. In the left plots we show the result of the calculation that takes flavour into

account, whereas in the right plots, the result of the conventional calculation that ignores flavour.

On the top plots we take M1 = 108GeV, so that the tau and muon Yukawa couplings are in

equilibrium, while in the lower plots, M1 = 1010GeV, so that only the tau Yukawa coupling is in

equilibrium. In these plots we have fixed θ13 = 0.1, δ = π/4, φ = π/3 and the remaining neutrino

parameters to their favoured experimental values.

corresponding values of θ̂ are indicated in the plots with a red star, when |λ13| ' 0, and

with a blue cross, when |λ12| ' 0 (a texture zero in the (1,1) position appears at |θ̂| > 1).

The point in the θ̂ complex plane where |λ1α| ' 0 can be derived from eq. (5.4), being the

result:

tan θ̂
(α)
0 ' −ξ

√
m2

m3

U∗α2

U∗α3

. (5.8)

The reason why in the conventional analysis the baryon asymmetry vanishes along the

axes can be easily understood from the expression of the total CP asymmetry in the 2RHN

model. For instance, for the case with normal hierarchy:

ε1 '
3M1

8πv2

(m2
3 −m2

2) Im sin2 θ̂

m2| cos2 θ̂|+m3| sin2 θ̂|
. (5.9)
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Hence, the total CP asymmetry vanishes when Imθ̂ = 0 (i.e. R real) and when Reθ̂ = 0

(since in this case sin2 θ̂ = − sinh2 |θ̂|, and R is again real). This is not necessarily the case

when flavour is properly taken into account, as can be realized from the expressions of the

flavour CP asymmetries, eq. (3.7).

On the other hand, when the Yukawa coupling presents an approximate texture zero,

the difference stems mainly from the washing-out of the asymmetry. When the spectrum

has a normal hierarchy, the CP asymmetry in the α-th flavour is comparable to the total

CP asymmetry. However, the smallness of the interaction of the lightest right-handed

neutrino with `α translates into a weak wash-out of the asymmetry, in stark contrast

with the result of the same analysis following the conventional computation, where the

total CP asymmetry is necessarily strongly washed-out (recall that in the 2RHN model

with normal hierarchy m̃1 ≥
√

∆m2
sol, so K > 1). As a consequence, when λ1α ' 0,

the actual prediction for the baryon asymmetry can be around one order of magnitude

larger than previously believed. Interestingly enough, in realistic models strict texture

zeros rarely appear; there are usually subleading effects that produce small entries instead

of strict texture zeros. To be precise, texture zeros normally appear in a basis where the

charged lepton Yukawa coupling and/or the right-handed neutrino mass matrix are slightly

non diagonal. Therefore, the diagonalization of these matricial couplings to express the

Lagrangian as in eq. (2.1) will lift the texture zero in the neutrino Yukawa matrix, yielding

a small entry instead. Finally, even if the texture zero was strict at the high energy scale,

radiative corrections could lift them.

The differences between the computation of the baryon asymmetry taking into account

flavour or not are even more acute in the case of a spectrum with inverted hierarchy, as

can be realized from figure 5. As in the case of the spectrum with normal hierarchy, the

maximum differences arise along the axes Imθ̂ = 0 and Reθ̂ = 0, and around the values of

θ̂ that correspond to texture zeros in the first row of the Yukawa coupling, also indicated

in these plots with a red star and a blue cross.13 The precise value of θ̂ where |λ1α| ' 0 is:

tan θ̂
(α)
0 ' −ξ

√
m1

m2

U∗α1

U∗α2

. (5.10)

Around this value for θ̂, the difference between the conventional calculation (right plots)

and the calculation taking into account flavour can be as large as three orders of magnitude

when M1 = 108 GeV (see upper left plot) or two orders of magnitude when M1 = 1010 GeV

(see lower left plot).

The reason for this huge enhancement is double. First, in the conventional calculation

ignoring flavour, when the spectrum has an inverted hierarchy the total CP asymmetry

goes as ∆m2
sol/
√

∆m2
atm. However, the flavour CP asymmetries go as

√
∆m2

atm, therefore,

the individual flavour CP asymmetries can be a factor of 20 bigger than the total CP

asymmetry. Secondly, the total lepton asymmetry computed ignoring flavour is strongly

13Notice the proximity of both points, which is due to the maximal atmospheric mixing. Furthermore, as

θ13 approaches zero, the two points collapse into one, which reflects the fact that in the limit with θ13 = 0

and θ23 = π/4, there is an exact µ↔ τ symmetry, and imposing λ12 = 0 automatically implies λ13 = 0.
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Figure 5: The same as figure (4), but for a spectrum with inverted hierarchy.

washed-out, since m̃1 ≥
√

∆m2
atm. yielding a suppressed baryon asymmetry. On the

contrary, when there is an approximate texture zero, λ1α ' 0, the lepton asymmetry in

the α-th flavour is only weakly washed-out. These two effects combined are the responsible

of the huge enhancement of the baryon asymmetry when the spectrum has an inverted

hierarchy and there is an approximate texture zero in the first row of the neutrino Yukawa

coupling.

6. Texture zeros in the two right-handed neutrino model

In this section we would like to study carefully the predictions for the baryon asymmetry in

the case that there are approximate texture zeros in the neutrino Yukawa coupling. Texture

zeros commonly arise in model constructions based on the Froggatt-Nielsen mechanism [25].

The assignment of different charges under an extra symmetry to particles of different

generations, translates into a Yukawa coupling with a non-trivial structure in the effective

theory, once the extra symmetry is spontaneously broken. The assignment of charges could

be such that the resulting Yukawa coupling could have one or several entries which are very

small compared to the others. In some instances, the entry for the Yukawa coupling could
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exactly vanish at the high energy scale, although these vanishing entries are usually filled

when the fields are brought to the basis where the charged lepton Yukawa coupling and

the right-handed mass matrix are both diagonal. In addition to this, radiative effects can

also fill these entries.

In the 2RHN model an exact texture zero in the Yukawa coupling fixes the value of

tan θ̂ in terms of low energy data. Namely, if |λ1β | = 0,

tan θ̂
(β)
0 ' −ξ

√
m2

m3

U∗β2

U∗β3

(normal hierarchy), (6.1)

tan θ̂
(β)
0 ' −ξ

√
m1

m2

U∗β1

U∗β2

(inverted hierarchy). (6.2)

By perturbing the Yukawa coupling around this value of θ̂
(β)
0 it is possible to lift

the texture zero, while still reproducing the observed masses and mixing angles. The

R-matrices that yield a viable Yukawa coupling with an approximate texture zero are:

R =

(
0 cos θ̂

(β)
0 ξ sin θ̂

(β)
0

0 − sin θ̂
(β)
0 ξ cos θ̂

(β)
0

)
−ρeiω

(
0 sin θ̂

(β)
0 −ξ cos θ̂

(β)
0

0 cos θ̂
(β)
0 ξ sin θ̂

(β)
0

)
(normal hierarchy), (6.3)

R =

(
cos θ̂

(β)
0 ξ sin θ̂

(β)
0 0

− sin θ̂
(β)
0 ξ cos θ̂

(β)
0 0

)
− ρeiω

(
sin θ̂

(β)
0 −ξ cos θ̂

(β)
0 0

cos θ̂
(β)
0 ξ sin θ̂

(β)
0 0

)
(inverted hierarchy),

(6.4)

where ρeiω parametrizes the departure from the strict texture zero in the θ̂-parameter space,

i.e. θ̂ = θ̂
(β)
0 +ρeiω. In the case with normal hierarchy the Yukawa couplings explicitly read,

λ1α '
√

M1
Mββ

[√
m2m3

(
U∗α2U

∗
β3 − U∗β2U

∗
α3

)
+ ξρeiωMαβ

]
/v,

λ2α '
√

M2
Mββ

[
ξMαβ −

√
m2m3ρe

iω
(
U∗α2U

∗
β3 − U∗β2U

∗
α3

)]
/v, (6.5)

while in the case with inverted hierarchy,

λ1α '
√

M1
Mββ

[√
m1m2

(
U∗α1U

∗
β2 − U∗β1U

∗
α2

)
+ ξρeiωMαβ

]
/v,

λ2α '
√

M2
Mββ

[
ξMαβ −

√
m1m2ρe

iω
(
U∗α1U

∗
β2 − U∗β1U

∗
α2

)]
/v. (6.6)

These expressions can be substituted in eqs. (3.7) and eq. (3.5) to derive the CP

asymmetries and the washout factors in the α-th flavour, in the case that |λ1β | ' 0.

Expanding for small values of ρ and keeping the lowest order terms we obtain for the case

with normal hierarchy the following CP flavour asymmetries:

εαα ' −
3M1m3

8πv2

1

|Uβ2|2 + |Uβ3|2
Im

[
eiφ/2

M∗ββ
|Mββ|

∑

γ

εαβγ

(
Uα3U

∗
β2 −

m2

m3
Uα2U

∗
β3

)
Uγ1

]

if α 6= β,

εββ ' −
3M1m3

8πv2

|Mββ |√
m2m3

ξρ

|Uβ2|2 + |Uβ3|2
Im

[
U∗β2Uβ3

(
eiω +

m2

m3
e−iω

)]
, (6.7)
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and the following washout factors:

Kαα '
m2m3

m̃∗|Mββ |

∣∣∣∣∣
∑

γ

εαβγUγ1

∣∣∣∣∣

2

if α 6= β,

Kββ '
|Mββ|
m̃∗

ρ2. (6.8)

The corresponding formulas for the case with inverted hierarchy are:

εαα ' −
3M1m2

8πv2

1

|Uβ1|2 + |Uβ2|2
Im

[
eiφ/2

M∗ββ
|Mββ|

∑

γ

εαβγ

(
Uα2U

∗
β1 −

m1

m2
Uα1U

∗
β2

)
Uγ3

]

if α 6= β,

εββ ' −
3M1m2

8πv2

|Mββ |√
m1m2

ξρ

|Uβ1|2 + |Uβ2|2
Im

[
U∗β1Uβ2

(
eiω +

m1

m2
e−iω

)]
, (6.9)

and

Kαα '
m1m2

m̃∗|Mββ|

∣∣∣∣∣
∑

γ

εαβγUγ3

∣∣∣∣∣

2

, if α 6= β,

Kββ '
|Mββ|
m̃∗

ρ2. (6.10)

The predictions for the flavour asymmetries and the washout factors, and accordingly

for the final baryon asymmetry, will depend on the low energy observables and the “texture

zero uplifting” parameters ρ and ω. In some cases, the prediction of the baryon asymmetry

will not depend on ρ and ω, and therefore it could be possible to establish a connection

between leptogenesis and low energy observables [24, 26]. Let us analyze separately the

different possibilites:

6.1 Texture zero in the (1,1) position

The possibility of a texture zero in the (1,1) position is perhaps the most interesting one

from the phenomenological point of view. The postulates that the up and down quark

matrices are symmetric in the first two generations and that they present a simultaneous

zero in the (1,1) position, lead to the renown prediction for the Cabibbo angle λC '√
md/ms [27]. The success and robustness of this prediction may suggest we apply the

same rationale to the leptonic sector, and impose a texture zero in the (1,1) position of the

neutrino Yukawa matrix, and perhaps also in the charged lepton Yukawa coupling and the

right-handed neutrino mass matrices.

The flavour CP asymmetries for the case with normal hierarchy can be straightfor-

wardly obtained from eq. (6.7), being the result:

εee '
3M1m3

8πv2

|Mee|√
m2m3

2ξρ sin θ13 sin(δ − φ/2− ω),

εµµ ' −
3M1m3

8πv2

√
3

8

m3

|Mee|
sin θ13

[
m2

m3
sin δ +

(
m2

m3

)2

sin(δ − φ) +
4√
3

sin θ13 sin(2δ − φ)

]
,
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εττ '
3M1m3

8πv2

√
3

8

m3

|Mee|
sin θ13

[
m2

m3
sin δ +

(
m2

m3

)2

sin(δ − φ)− 4√
3

sin θ13 sin(2δ − φ)

]
,

(6.11)

where Mee ' m3e
2iδ sin2 θ13 + eiφm2/4 is the (1,1) element of the effective neutrino mass

matrix (recall that this matrix element is precisely the relevant one for analyses of neutri-

noless double beta decay).

On the other hand, the washout parameters are, from eq. (6.8):

Kee '
|Mee|
m̃∗

ρ2,

Kµµ '
1

8

m2m3

m̃∗|Mee|
(1− 2

√
3 sin θ13 cos δ),

Kττ '
1

8

m2m3

m̃∗|Mee|
(1 + 2

√
3 sin θ13 cos δ), (6.12)

with m̃∗ ' 3× 10−3 eV. In view of the present experimental bound sin θ13 . 0.2, it follows

that |Mee| . m2/4 and accordingly Kµµ,ττ & m3/(2m̃
∗) ' 20. Hence, when there is

an approximate (1,1) texture zero and ρ is sufficiently small, the muon and the tau CP

asymmetries are strongly washed-out, while the electron CP asymmetry is only weakly

washed-out.

For the case of an inverted hierarchy of neutrinos, the flavour CP asymmetries read:

εee '
3M1m2

8πv2

|Mee|√
m1m2

ξρ

√
3

2
cosω sin(φ/2),

εµµ ' −
3M1m2

8πv2

3

8

[
∆m2

sol

∆m2
atm

sinφ√
10 + 6 cosφ

+
sin θ13√

3

(
2 sin δ + sin(δ − φ)− 3 sin(δ + φ)√

10 + 6 cos φ

)]
,

εττ ' −
3M1m2

8πv2

3

8

[
∆m2

sol

∆m2
atm

sinφ√
10 + 6 cosφ

− sin θ13√
3

(
2 sin δ + sin(δ − φ)− 3 sin(δ + φ)√

10 + 6 cos φ

)]
,

(6.13)

and the washout-parameters,

Kee '
|Mee|
m̃∗

ρ2,

Kµµ '
1

2

m1m2

m̃∗|Mee|
,

Kττ '
1

2

m1m2

m̃∗|Mee|
, (6.14)

where in this case Mee ' (3m1 + eiφm2)/4. Therefore, it follows that

Kµµ,ττ &
√

∆m2
atm/(2m̃

∗),

so the muon and tau asymmetries are strongly washed-out, whereas the electron asymmetry

is weakly washed-out.
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These formulas can be straightforwardly applied to the recipes presented in subsec-

tion 4.1.3, to go from the flavour asymetries to the baryon asymmetry in the different

regimes for M1. We find numerically that when M1 . 109 GeV it is not possible to re-

produce the observed baryon asymmetry; in order to reproduce the data it is necessary

M1 & 1011 GeV so that only the tau Yukawa interactions are in thermal equilibrium. If

this is the case, leptogenesis only depends on observables that are in principle measurable

at low energies, since the electron asymmetry is always negligible compared to the muon

asymmetry (recall that when M1 & 1010 GeV the relevant quantities to compute the baryon

asymmetry are Y2 = Yee + Yµµ and K2 = Kee +Kµµ). Using eqs. (4.16), (4.21) and taking

into account that Kµµ ' Kττ , it follows that when sin θ13 is large, in the case with normal

hierarchy YB ∝ sin2 θ13 sin(2δ − φ), while in the case with inverted hierarchy the relation

is more complicated (it goes roughly as the term propotional to sin θ13 in eq. (6.13)). On

the other hand, when sin θ13 is small, in the case with normal hierarchy the baryon asym-

metry is very suppressed (it goes as sin2 θ13), while in the case with inverted hierarchy

YB ∝ sinφ/
√

10 + 6 cosφ, being in this case the asymmetry suppressed by ∆m2
sol/∆m

2
atm.

6.2 Texture zero in the (1,2) position

In the case that there is an approximate texture zero in the (1,2) position of the neutrino

Yukawa matrix, the flavour CP asymmetries read:

εee '
3M1m3

8πv2

√
3

7

[
sin θ13 sin(δ − φ)−

√
3

4

m2
2

m2
3

sinφ

]
,

εµµ ' −
3M1m3

8πv2

√
m3

m2

√
3

7
ξρ sin(φ/2 + ω),

εττ '
3M1m3

8πv2

3

7

[
sinφ+

sin θ13√
3

sin(δ − φ)

]
. (6.15)

On the other hand, the washout parameters read:

Kee '
1

4

m2

m̃∗
(1− 2

√
3 sin θ13 cos δ),

Kµµ '
1

2

m3

m̃∗
ρ2,

Kττ '
3

2

m2

m̃∗
. (6.16)

Therefore, the electron asymmetry and the muon asymmetries are only weakly washed-out,

while the tau asymmetry is strongly washed-out (when M1 & 1010GeV, Y2 would be weakly

washed-out and Yττ , strongly washed-out).

We find that when there is an approximate texture zero in the (1,2) position, M1 &
1010 GeV is necessary in order to reproduce the observed baryon asymmetry. In the strict

texture zero limit, the baryon asymmetry is dominated by the tau lepton asymmetry and

therefore there is a well defined connection between leptogenesis and low energy observables,

YB ∝ sinφ. Despite this connection it becomes more diffuse as we depart from the texture

zero limit, the connection still holds in the region in the vicinity of the (1,2) texture zero

where the baryon asymmetry is enhanced (see figure 4 lower left plot).
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We find a similar behaviour when the spectrum presents an inverted hierarchy. In this

case the flavour asymmetries are:

εee ' −
3M1m2

8πv2

3

4

[
∆m2

sol

∆m2
atm

sinφ√
10 + 6 cosφ

+
sin θ13√

3

(
2 sin δ + sin(δ − φ)− 3 sin(δ + φ)√

10 + 6 cos φ

)]
,

εµµ ' −
3M1m2

8πv2

√
3

2

ξρ

8

√
5 + 3 cos φ sin(φ/2) cosω,

εττ '
3M1m2

8πv2

√
3

4
sin θ13

[
2 sin δ + sin(δ − φ)− 3 sin(δ + φ)√

10 + 6 cosφ

]
, (6.17)

and the washout factors,

Kee '
1

2

m1m2

m̃∗|Mµµ|
,

Kµµ '
|Mµµ|
m̃∗

ρ2,

Kττ '
m1m2

m̃∗|Mµµ|
sin2 θ13, (6.18)

with Mµµ ' m1/8 + 3/8m2e
iφ. Using that |Mµµ| . m2/2, we find that the electron

asymmetry is necessarily strongly washed-out, whereas the muon and the tau asymmetries

are only weakly washed-out (when M1 & 1010GeV, Y2 would be strongly washed-out and

Yττ , weakly washed-out).

For the case with inverted hierarchy, we require again M1 & 1010GeV to reproduce

the observed asymmetry (or even larger, when sin θ13 is small). The baryon asymmetry is

in this case also dominated by the tau asymmetry, except when sin θ13 is very small. In

the case that the baryon asymmetry is dominated by the tau asymmetry, although there

exists a connection between leptogenesis and low energy observables, this connection is too

complicated to be of any practical use. On the other hand, when sin θ13 is very small, there

is no relation whatsoever, since leptogenesis would depend on the unobservable parameters

ρ and ω.

6.3 Texture zero in the (1,3) position

Finally, in the case that the texture zero appears in the (1,3) position, the flavour CP

asymmetries are:

εee ' −
3M1m3

8πv2

√
3

7

[
sin θ13 sin(δ − φ) +

√
3

4

m2
2

m2
3

sinφ

]
,

εµµ '
3M1m3

8πv2

3

7

[
sinφ− sin θ13√

3
sin(δ − φ)

]
,

εττ '
3M1m3

8πv2

√
m3

m2

√
3

7
ξρ sin(φ/2 + ω). (6.19)

On the other hand, the washout parameters read:

Kee '
1

4

m2

m̃∗
(1 + 2

√
3 sin θ13 cos δ),

– 27 –



J
H
E
P
0
9
(
2
0
0
6
)
0
1
0

Kµµ '
3

2

m2

m̃∗
,

Kττ '
1

2

m3

m̃∗
ρ2. (6.20)

Therefore, in this case, the electron and the tau asymmetries are weakly washed-out, and

the muon asymmetry, strongly washed-out. On the other hand, for M1 & 109GeV the

relevant quantity to estimate the washout is K2 = Kee +Kµµ > 1, so in this regime Y2 is

strongly washed out and Yττ is weakly washed out.

Similarly to the case of the (1,2) texture zero, this case requires M1 & 1010 GeV

to reproduce the observations. Furthermore, the baryon asymmetry in the vicinity of the

texture zero is dominated by the muon asymmetry and hence depends mainly on sinφ. This

behaviour occurs in particular, in the region where the baryon asymmetry is enhanced in

figure 4, lower left plot.

The case with inverted hierarchy presents some qualitative differences with respect to

the case with normal hierarchy. When neutrinos have an inverted hierarchy, the flavour

CP asymmetries read:

εee ' −
3M1m2

8πv2

3

4

[
∆m2

sol

∆m2
atm

sinφ√
10 + 6 cosφ

− sin θ13√
3

(
2 sin δ + sin(δ − φ)− 3 sin(δ + φ)√

10 + 6 cos φ

)]
,

εµµ ' −
3M1m2

8πv2

√
3

4
sin θ13

[
2 sin δ + sin(δ − φ)− 3 sin(δ + φ)√

10 + 6 cosφ

]
,

εττ ' −
3M1m2

8πv2

√
3

2

ξρ

8

√
5 + 3 cos φ sin(φ/2) cosω, (6.21)

and the washout parameters,

Kee '
1

2

m1m2

m̃∗|Mττ |
,

Kµµ '
m1m2

m̃∗|Mττ |
sin2 θ13,

Kττ '
|Mττ |
m̃∗

ρ2, (6.22)

with Mττ ' m1/8 + 3/8m2e
iφ. As for the case with the (1,2) texture zero, we find that

the electron asymmetry is necessarily strongly washed-out, whereas the muon and the tau

asymmetries are only weakly washed-out (also, in the regime where only the tau Yukawa

interactions are in equilibrium, Y2 would be strongly washed-out and Yττ , weakly washed-

out).

It is important to note that all the flavour asymmetries in eq. (6.21) have a suppression

factor, with different origins. As a consequence, in the limit of the strict texture zero, the

resulting baryon asymmetry is very small and M1 & 5 × 1012GeV would be necessary to

accommodate observationl data. However, as we depart from the texture zero limit, we

find a huge enhancement of the baryon asymmetry, that can allow right-handed neutrino

masses as low as M1 ∼ 1010GeV, independently of the value of sin θ13. The reason is that

the tau CP asymmetry can become less suppressed, and at the same time the resulting tau

– 28 –



J
H
E
P
0
9
(
2
0
0
6
)
0
1
0

lepton asymmetry can be sizable since the tau asymmetry is only weakly washed-out (on

the contrary, ε2 = εee + εµµ could be comparable to εττ , but is strongly washed-out). As a

result, the baryon asymmetry is dominated by the tau asymmetry and hence any connection

between leptogenesis and low energy observables is lost in this region of enhanced baryon

asymmetry.

7. The case of R real

In section 5 it was discussed that there are two situations where the differences between

the computation of the baryon asymmetry taking into account flavour or not are maximal,

namely when there is an approximate texture zero in the neutrino Yukawa matrix, and

when the matrix R is real. The case with R real physically corresponds to the class of

models where CP is an exact symmetry in the right-handed neutrino sector. The rea-

son for this can be more easily understood working in the basis where the charged lepton

Yukawa coupling and the right-handed mass matrix are diagonal, so that the neutrino

Yukawa matrix is the only coupling in the leptonic Lagrangian that violates CP. More

specifically, the neutrino Yukawa coupling can be written in its singular value decompo-

sition, λ = V †RDiag(λ1, λ2, λ3)VL. Hence, the CP violation in the right-handed neutrino

sector is encoded in the phases in VR, that can be extracted from diagonalizing the com-

bination λλ† = V †RDiag(λ2
1, λ

2
2, λ

2
3)VR. On the other hand, using the parametrization of

the Yukawa coupling in eq. (5.1), this same combination of matrices can be written as

λλ† = M1/2RmR†M1/2/v2. Comparing the two expressions it is apparent that R is real if

and only if VR is real, i.e. when there is no CP violation in the right-handed sector.14

In this limit the flavour CP asymmetries and the baryon asymmetry depend exclusively

on the phases of the left-handed sector, that are in turn uniquely determined by the low

energy phases. Consequently, in this limit the leptogenesis mechanism is tightly connected

to the low energy phases. This connection is more apparent from the expression of the

flavour CP asymmetries in the parametrization eq. (5.1):

εαα '
3M1

8πv2

Im
(∑

β
√
mβR1βU

∗
αβ

)(∑
β

√
m3
βR1βUαβ

)

∑
βmβR

2
1β

=
3M1

8πv2

∑
β

∑
γ>β
√
mβmγ(mγ −mβ)R1βR1γImU∗αβUαγ∑

βmβR
2
1β

. (7.1)

This discussion suggests that the observation of low energy CP violation would consti-

tute an important hint to the leptogenesis mechanism. In a general case with R complex,

the low energy phases in the leptonic mixing matrix could stem from the phases in the

left-handed sector, in the right-handed sector, or in both sectors. In any of the cases, and

barring unnatural cancellations, a baryon asymmetry is necessarily generated through the

mechanism of leptogenesis, as long as at least one of the lepton Yukawa interactions is

in equilibrium (corresponding roughly to M1 . 1012 GeV). This result only follows when

14Furthermore, it can be checked that there is mixing in VR if and only if there is mixing in R, and that

mixing in any 2× 2 block in R translates into mixing in the same block of the matrix VR.
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flavour is correctly taken into account in the Boltzmann equations. In previous analyses of

leptogenesis ignoring flavour, the observation of low energy CP violation did not automat-

ically imply the existence of a baryon asymmetry, since the possibility existed that the low

energy phases could stem exclusively from the left-handed sector and hence be irrelevant

for leptogenesis.

8. Conclusions

Thermal leptogenesis is an attractive and minimal mechanism to make the baryon asym-

metry of the Universe. The asymmetry is commonly calculated by solving a Boltzmann

equation for the total lepton asymmetry (one-flavour approximation). In a previous pa-

per [13] we studied the impact of lepton flavours (charged lepton Yukawa couplings) on

the Boltzmann equations (one for each lepton flavour) and discussed the phenomenological

implications for leptogenesis.

It may be counter-intuitive that flavour matters in leptogenesis, since Yukawa couplings

are a small perturbative correction. We have shown that flavour effects are relevant when

the interaction rates mediated by the the charged Yukawa couplings are faster than the

typical timescale for leptogenesis. The charged Yukawa rates may be dropped from the

Boltzmann equations provided the latter are written in the flavour basis, where the charged

Yukawa couplings cannot change the flavour of the asymmetries. This implies that one

should solve Boltzmann equations for each flavour. In the region where our approximations

are valid the equations are not coupled.

The final value of the baryon asymmetry depends on the CP asymmetry in each flavour

α and on the washing out by the lepton number α violating processes. Taking into account

these flavour dependent washing out factors generically enhances the baryon asymmetry

with respect to the usual one-flavour approximation, in the limit of strong washout.

In this paper we have provided analytical approximations for the final baryon asym-

metry with flavours accounted for. These depend on the temperature of leptogenesis, and

can be obtained following the procedure of section 4.1.4, or of the end of section 4.2. We

also included CP violation in the ∆L = 1 scatterings relevant for N1 production.

In the two right-handed neutrino (2RHN) model, we have compared our results ob-

tained with flavoured Boltzmann equations against the usual one-flavour approximation,

to illustrate the big impact that flavour has on leptogenesis. We have found that there are

two situations where the differences between the treatment of leptogenesis taking flavour

properly into account and previous analyses, that ignored flavour, are maximal. The first

one arises when the neutrino Yukawa coupling present approximate texture zeros in the

first row, so that the CP asymmetry in that flavour is only weakly washed-out. As a

consequence, we have found that thermal leptogenesis in the 2RHN model can produce

the observed baryon asymmetry for masses of the lightest right-handed neutrino smaller

than previously believed, namely 1010 GeV for the case with normal hierarchy and 5×1010

GeV for the case with inverted hierarchy (to be compared with 1011 GeV and 1013 GeV,

respectively, from the conventional computation ignoring flavour). The second situation

corresponds to the limit in which CP is an exact symmetry in the right-handed neutrino
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sector. In this case, the conventional computation would yield an exactly vanishing baryon

asymmetry, whereas the computation that takes flavour into account could predict a sizable

baryon asymmetry.
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