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91405 Orsay Cedex, France
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Abstract

We give analytic approximations to the baryon asymmetry produced by ther-
mal leptogenesis with hierarchical right-handed neutrinos. Our calculation in-
cludes flavour-dependent washout processes and CP violation in scattering, and
neglects gauge interactions and finite temperature corrections. Our approxi-
mate formulae depend upon the three CP asymmetries in the individual lepton
flavours as well as on three flavour-dependent efficiency factors. We show that
the commonly used expressions for the lepton asymmetry, which depend on the
total CP asymmetry and one single efficiency factor, may fail to reproduce the
correct lepton asymmetry in a number of cases. We illustrate the importance
of using the flavour-dependent formulae in the context of a two right-handed
neutrino model.



Note Added: In the published version of this paper, we applied incorrectly the A
matrix [8], which relates the asymmetries in B/3 − Lα to the asymmetries Yαα carried by
the lepton doublets. This over-estimated the baryon asymmetry by a factor of order one
(or a few). In this revised version, we modify sections 4.1.4 and 4.2 to give a more correct
relation between our analytic estimates for the flavour asymmetries, and the final baryon
asymmetry. We thank E.J. Chun and M. Plumacher for discussions on this issue, and in
particular A Strumia for details of his calculations and results.

1 Introduction

There are robust observational evidences that a tiny excess of matter over antimatter
was produced in our Universe [1], but its origin is still a mystery. Baryogenesis through
Leptogenesis [2] is a simple mechanism to explain this baryon asymmetry of the Universe.
A lepton asymmetry is dynamically generated and then converted into a baryon asymmetry
due to (B+L)-violating sphaleron interactions [3] which exist in the Standard Model (SM).

A simple model in which this mechanism can be implemented is “Seesaw”(type I) [4],
consisting of the Standard Model (SM) plus two or three right-handed (RH) Majorana
neutrinos. In this simple extension of the SM, the usual scenario that is explored (referred
to as “thermal leptogenesis”) consists of a hierarchical spectrum for the RH neutrinos,
such that the lightest of the RH neutrinos is produced by thermal scattering after inflation,
and subsequently decays out-of-equilibrium in a lepton number and CP-violating way, thus
satisfying Sakharov’s constraints.

In recent years, a lot of work [5, 6, 7], has been devoted to a thorough analysis of
this model, giving limited attention to the issue of lepton flavour [8]. The dynamics of
leptogenesis is usually addressed within the ‘one-flavour’ approximation, where Boltzmann
equations are written for the abundance of the lightest RH neutrino, responsible for the out
of equilibrium and CP asymmetric decays, and for the total lepton asymmetry. However,
this ‘one-flavour’ approximation is rigorously correct only when the interactions mediated
by charged lepton Yukawa couplings are out of equilibrium.

In ref. [8], flavoured Boltzmann Equations were written down. Flavour effects in “reso-
nant leptogenesis” were studied in [9], discussed for thermal leptogenesis in the two-right-
handed neutrino model in [10], and used in [11] to protect an asymmetry made in the
decay of the middle right-handed neutrino. In the four generation models of [12], flavour
was used to enhance the asymmetry, foreshadowing the results we obtain here. The impact
of flavour in thermal leptogenesis has been recently studied in some detail [13, 14], including
the quantum oscillations/correlations of the asymmetries in lepton flavour space [13]. It
was shown that the Boltzmann equations describing the asymmetries in flavour space have
additional terms which can significantly affect the result for the final baryon asymmetry.
In [13], we focused on how flavour effects can enlarge the area of parameter space where
leptogenesis can work: the lower bound on the reheat temperature is mildly decreased, and
the upper bound on the light neutrino mass scale no longer holds1.

1The bound is removed when flavour effects are relevant, which is the case for leptogenesis at tempera-
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Flavour effects have not usually been included in leptogenesis calculations. This is
perhaps because perturbatively, they seem to be a small correction. For instance, if the
asymmetry is a consequence of the very-out-of-equilibrium decay of an initial population
of right-handed neutrinos, then the total lepton asymmetry is of order ǫ/g∗, where ǫ is the
total CP asymmetry in the decay, and g∗ counts for the entropy dilution factor. Clearly the
small charged lepton Yukawa couplings have no effect on ǫ. However, realistic leptogenesis
is a drawn-out dynamical process, involving the production and destruction of right-handed
neutrinos, and of a lepton asymmetry that is distributed among distinguishable flavours.
The processes which wash out lepton number are flavour dependent, e.g the inverse decays
from electrons can destroy the lepton asymmetry carried by, and only by, the electrons.
The asymmetries in each flavour are therefore washed out differently, and will appear with
different weights in the final formula for the baryon asymmetry. This is physically inequiva-
lent to the treatment of washout in the one-flavour approximation, where indistinguishable
leptons propagate between decays and inverse decays, so inverse decays from all flavours
are taken to wash out asymmetries in any flavour2.

In this paper we provide the necessary analytical expressions for the computation of the
baryon asymmetry including flavour that the interested reader may apply to their preferred
model. By comparing to the usually adopted ‘one-flavour’ approximation, we will show that
the commonly used expressions for the lepton asymmetry, which depend on the total CP
asymmetry and one single efficiency factor, fail to reproduce the correct lepton asymmetry
in a large number of cases. As an application, we also present in this paper a detailed
analysis of flavour effects on lepton asymmetries for a two right-handed neutrino model.
Explicit examples in which sizeable enhancements can be obtained are also given.

The paper is organized as follows. In Section 2, we review the conventional flavoured-
blind computation of the baryon asymmetry, and present some analytic approximations
that will be used later. In Section 3, we introduce the Boltzmann equations we will solve,
which differ by the inclusion of flavour and of CP violation in ∆L = 1 processes. The
following section provides a list of rules and expressions to apply in order to obtain an
estimate of the baryon asymmetry which includes flavour effects. Section 5 contains the
analysis in the context of two right-handed neutrino model which make manifest the dif-
ference between the results when flavours are and are not included. In section 6 different
textures for the neutrino Yukawa coupling matrix and their implications are explored. In
Section 7 we discuss the special case in which there is no CP violation in the right-handed
neutrino sector, and finally in Section 8 we draw our conclusions.

tures <∼ 1012 GeV.
2The “one-flavour” formulae describe leptogenesis that takes place at temperatures larger than 1012

GeV, before the charged lepton Yukawas come into equilibrium. They are also appropriate for right-
handed neutrinos who decay only to one flavour. (But note from eqns (51,52), that flavour effects can be
important when there are small branching ratios to other flavours.)
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2 The conventional computation of the baryon asym-

metry

This section introduces notation and reviews the calculation of the lepton asymmetry when
the charged lepton Yukawa couplings are neglected. As we shall see, the commonly used
formulae for the final lepton asymmetry, which we report in this section, may not be
appropriate once flavours are considered.

Our starting point is the Lagrangian of the Standard Model (SM) with the addition of
three right-handed neutrinos Ni (i = 1, 2, 3) with heavy Majorana masses M3 > M2 > M1

and Yukawa couplings λiα. Working in the basis in which the Yukawa couplings for the
charged leptons are diagonal, the Lagrangian reads

L = LSM +

(
Mi

2
N2

i + λiαNiℓα H + hα Hc ēRαℓα + h.c.

)
. (1)

Here ℓα and eRα indicate the lepton doublet and singlet with flavour (α = e, µ, τ) respec-
tively, and H is the Higgs doublet whose neutral component has a vacuum expectation
value equal to v = 246 GeV.

We assume that right-handed neutrinos are hierarchical, M2,3 ≫ M1 so that studying
the evolution of the number density of N1 suffices. The final amount of (B−L) asymmetry
can be parametrized as YB−L = nB−L/s, where s = 2π2g∗T

3/45 is the entropy density and g∗
counts the effective number of spin-degrees of freedom in thermal equilibrium (g∗ = 217/2 in
the SM with a single generation of right-handed neutrinos). After reprocessing by sphaleron
transitions, the baryon asymmetry is related to the L asymmetry by [15]

YB = −
(

8nG + 4nH

14nG + 9nH

)
YL, (2)

where nH is the number of Higgs doublets, and nG the number of fermion generations (in
equilibrium).

One defines the CP asymmetry generated by N1 decays as

ǫ1 ≡
∑

α[Γ(N1 → Hℓα) − Γ(N1 → Hℓα)]∑
α[Γ(N1 → Hℓα) + Γ(N1 → Hℓα)]

=
1

8π

∑

j 6=1

Im
[
(λλ†)2

j1

]

[λλ†]11
g

(
M2

j

M2
1

)
, (3)

where the wavefunction plus vertex contributions are included in [16]

g(x) =
√

x

[
1

1 − x
+ 1 − (1 + x) ln

(
1 + x

x

)]
x≫1−→ − 3

2
√

x
. (4)

Notice, in particular, that ǫ1 denotes the CP asymmetry in the total number (the trace) of
flavours.

Besides the CP parameter ǫ1, the final baryon asymmetry depends on a single wash-out
parameter,
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K ≡
∑

α Γ(N1 → Hℓα)

H(M1)
≡
(

m̃1

m̃∗

)
, (5)

where H(M1) denotes the value of the Hubble rate evaluated at a temperature T = M1

(m̃∗ ∼ 3 × 10−3 eV) and

m̃1 ≡
(λλ†)11v

2

M1
(6)

is proportional to the total decay rate of the right-handed neutrino N1.

By defining the variable z = M1/T , the Boltzmann equations for the lepton asymmetry
YL, and the right-handed neutrino number density YN1

(both normalised to the entropy s),
may be written in a compact form as

d(YN1
− Y EQ

N1
)

dz
= − z

sH(M1)
(γD + γ∆L=1)

(
YN1

Y EQ
N1

− 1

)
−

dY EQ
N1

dz
, (7)

dYL

dz
=

z

sH(M1)

[(
YN1

Y EQ
N1

− 1

)
ǫ1γD − YL

Y EQ
L

(γD + γ∆L=1 + γ∆L=2)

]
. (8)

The processes taken into account in these equations are decays and inverse decays with
rate γD, ∆L = 1 scatterings such as (qtc → Nℓ), and ∆L = 2 processes mediated by heavy
neutrinos. The first three modify the abundance of the lightest right-handed neutrinos.
The ∆L = 2 scatterings mediated by N2,3 are neglected in our analysis for simplicity3. The
various γ are thermally averaged rates, including all contributions summed over flavour
(s, t channel interference etc); explicit expressions can be found in the literature (see for
example [5, 6]). Notice that in this “usual” analysis, ∆L = 1 scattering contributes to the
creation of N1’s and not to the production of a lepton asymmetry, only to the washout
4. This is a minor point in the single flavour analysis; it is more relevant when flavour is
included, and will be discussed in the following two sections.

Approximate analytic solutions for YL and ∆N1
≡ YN1

− Y EQ
N1

, which reproduce the
numerical plots [5, 6], can be obtained from simplified equations [8, 6]. Calculating in zero
temperature field theory for simplicity5, one obtains

γD ≃ sY EQ
N1

K1(z)

K2(z)
ΓD, Y EQ

N1
≃ 1

4g∗
z2 K2(z) . (9)

The Boltzmann equations can be approximated

∆′
N1

= −zK
K1(z)

K2(z)
f1(z) ∆N1

− Y EQ ′
N1

, (10)

Y ′
L = ǫ1Kz

K1(z)

K2(z)
∆N1

− 1

2
z3 K K1(z) f2(z) YL (11)

3See,e.g. the Appendix of [13]. We discuss later the restrictions this implies.
4We thank A Strumia, A. Pilaftsis, G. Giudice and E. Nardi for useful conversations about this point.
5Significant finite temperature corrections were found in [5], which have O(1) effects on the final asym-

metry.
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where K1 and K2 are modified Bessel functions of the second kind. The function f1(z)
accounts for the presence of ∆L = 1 scatterings [5, 6], and f2(z) accounts for scatterings in
the washout term of the asymmetry. They can be approximated [6], in interesting limits,
as

f1(z) ≃
{

1 for z ≫ 1
N2

c m2
t

4π2v2z2 for z <∼ 1 ,
(12)

and

f2(z) ≃
{

1 for z ≫ 1
aKN2

c m2
t

8π2v2z2 for z <∼ 1 ,
(13)

where
N2

c m2
t

8π2v2 ≡ Ks/K ∼ 0.1 parametrizes the strength of the ∆L = 1 scatterings and
aK = 4/3 (2) for the weak (strong) wash out case. A good approximation to the rate
Kz(K1(z)/K2(z))f1(z) is given by the function (Ks + Kz) [5, 6] while the wash out term
−(1/2)z3KK1(z)f2(z)YL is well approximated at small z by −aKKsYL.

In the strong wash-out regime, the parameter K ≫ 1 and the right handed neutrinos
N1’s are nearly in thermal equilibrium. Under these circumstances, one can set ∆′

N1
≃ 0

and ∆N1
≃ (zK2/4g∗K). Exploiting a saddle-point approximation in Eq. (11) one easily

reproduces the fit to the numerical results [5, 6]

YL ≃ 0.3
ǫ1

g∗

(
0.55 × 10−3 eV

m̃1

)1.16

. (14)

In the opposite weak wash-out regime, assuming that no right-handed neutrinos are
initially present in the plasma, there could be a cancellation in the final lepton asymmetry
between the (anti-) asymmetry generated in N1 production, and the lepton asymmetry
produced as the N1 decay. However, this cancellation does not occur, in Eqs. (7) and
(8), because CP violation in the ∆L = 1 scatterings is not included. ∆L = 1 processes
contribute significantly to the production of right-handed neutrinos, without making any
associated (anti-) lepton asymmetry, and the N1 later produce a lepton asymmetry in decay.
The number of N1 produced is ∝ K, and the final lepton asymmetry can be approximated
[5, 6]

YL ≃ 0.3
ǫ1

g∗

(
m̃1

3.3 × 10−3 eV

)
. (15)

Notice that the final baryon asymmetry in the ’one flavour approximation’ depends always
upon the trace of the CP asymmetries over flavours, ǫ1, times a function of the trace over
flavours of the decay rate of the right-handed neutrinos, K. This is due to the fact that
the inverse decay term in Eq. (7) is proportional to the trace over the flavours of the
lepton asymmetry times the trace over the flavours of the decay rate of N1’s. The reader
is invited to remember this point in the following when we explain why the ‘one flavour
approximation’ fails to predict the exact baryon asymmetry.
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3 Including flavours and CP violation in scattering

In this section, we introduce the Boltzmann equations for individual flavour asymmetries,
[8]. We define Yαα to be the lepton asymmetry in flavour α, where the α are the lepton mass
eigenstates at the temperature of leptogenesis. As discussed in [13], the Yαα are the diagonal
elements of a matrix [Y ] in flavour space, whose trace is the total lepton asymmetry. In
this paper, the off-diagonal elements are neglected 6.

The mass eigenstates for the particles in the Boltzmann equations(BE) are determined
by the interactions which are fast compared to those processes included in the BE. The
interaction rate for Yukawa coupling hα can be estimated as [17]

Γα ≃ 5 × 10−3h2
α T, (16)

so interactions involving the tau (mu) Yukawa coupling are out-of-equilibrium in the
primeval plasma if T >∼ 1012 GeV (T >∼ 109 GeV) 7. Thermal leptogenesis takes place at
temperatures on the order of M1, and the asymmetry is generated when the rates <∼ H ,
so we conclude that the τ (µ) lepton doublet is a distinguishable mass eigenstate, for the
purposes of leptogenesis, at T < 1012(109) GeV.

The Boltzmann equations that we will use in this paper, for the flavour asymmetries
Yαα, are listed below. They differ from those of [13] in two respects.

First, we have neglected the off-diagonal terms of the matrix [Y ]. The second and
most significant difference is that we have included CP violation in the ∆L = 1 scattering
rate, which will give YL ∝ K2 for weak washout (instead of K in eq. (15)). That is, the
function γ∆L=1, which appears in the N1 creation term, also now appears in the first term
of equation (17), which describes the production of the lepton flavour asymmetry. Later in
this section we will calculate the CP asymmetry in scattering, and show that it gives the
same ǫ as decay and inverse decay, in the limit of hierarchical right-handed neutrinos. As
in [13], we continue to neglect the non-resonant contribution to ∆L = 2 scatterings, and its
associated flavour effects [8]. At the end of section 4.1.2, we discuss the parameter range
where this is acceptable.

Equation (7) for the N1 number density remains unchanged, and the equation for the
flavoured lepton asymmetry is

dY αα

dz
=

z

sH(M1)

[(
YN1

Y EQ
N1

− 1

)
ǫαα(γD + γ∆L=1) −

Y αα

Y EQ
L

(γαα
D + γαα

∆L=1)

]
, (17)

where there is no sum over α in the last term of equation (17) (or (18)).

6See [13] for a discussion. The equations of motion for the matrix [Y ] are more complicated than the
Boltzmann equations, but at most temperatures are equivalent to Boltzmann equations written in the mass
eigenstate basis of the leptons in the plasma. The off-diagonal elements of [Y ] could have some effect on
the lepton asymmetry, if leptogenesis takes place just as a charged lepton Yukawa coupling is coming into
equilibrium (so the mass eigenstate basis is changing).

7The electron Yukawa coupling mediates interactions relevant in the early Universe only for temperatures
beneath ∼ 105 GeV and can be safely disregarded.
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The rates [6] and asymmetries are calculated in zero temperature field theory, and
include processes mediated by the neutrino and top Yukawa couplings. This is simple,
and parametrically consistent. However, finite temperature and gauge corrections can be
significant [5], and should in principle be included.

To obtain analytic solutions we simplify this, with the approximations introduced in
the previous section, to

Y ′
αα = ǫααKz

K1(z)

K2(z)
f1(z)∆N1

− 1

2
z3K1(z) f2(z) KααYαα (18)

∆′
N1

= −z K
K1(z)

K2(z)
f1(z) ∆N1

− Y EQ ′
N1

, (19)

where

Kαα = K
λ1αλ∗

1α∑
γ |λ1γ|2

=

(
m̃αα

3 × 10−3 eV

)
, K =

∑

α

Kαα . (20)

Kαα parametrizes the decay rate of N1 to the α-th flavour, and the trace
∑

α Kαα, coincides
with the K parameter defined in the previous section, see Eq. (5).

Notice in particular that the dynamics of the right-handed neutrinos is always set by
the total K.

The CP asymmetry in the α-th flavour is ǫαα and is normalised by the total decay rate

ǫαα =
1

(8π)

1

[λλ†]11

∑

j

Im
{
(λ1α)(λλ†)1jλ

∗
jα

}
g

(
M2

j

M2
1

)
(21)

→ 3

(8π)[λλ†]11
Im

{
λ1β

[m∗]βα

v2
λ1α

}
(22)

where the second line is in the limit of hierarchical NJ , and m = U∗DmU † = v2λT M−1λ is
the light neutrino mass matrix. If mmax is the heaviest light neutrino mass (= matm for the
non-degenerate case) and we define ǫmax = 3∆m2

atmM1/(8πv2mmax) [18], then the flavour
dependent CP asymmetries are bounded by

ǫαα ≤ 3M1mmax

8πv2

√
Kαα

K
= ǫmax m2

max

∆m2
atm

√
Kαα

K
(23)

so the maximum CP asymmetry in a given flavour is unsuppressed for degenerate light
neutrinos [13], but decreases as the square root of the branching ratio to that flavour
= Kαα/K.

The CP asymmetry ǫαα can be written in terms of the diagonal matrix of the light
neutrino mass eigenvalues m = Diag(m1, m2, m3), the diagonal matrix of the the right
handed neutrino masses M = Diag(M1, M2, M3) and an orthogonal complex matrix R =
v M−1/2 λ U m−1/2 [19], where U is the leptonic mixing matrix, which ensures that the
correct low-energy parameters are obtained
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ǫαα = − 3M1

16πv2

Im
(∑

βρ m
1/2
β m

3/2
ρ U∗

αβUαρRβ1Rρ1

)

∑
β mβ |R1β|2

. (24)

As noted in [14], for a real R matrix, the individual CP asymmetries ǫαα may not vanish
because of the presence of CP violation in the U matrix. On the contrary, the total CP
asymmetry ǫ1 =

∑
α ǫαα vanishes.

3.1 The CP asymmetry in ∆L = 1 scattering

We now wish to show that the CP asymmetry in scattering processes such as (qtc → Nℓα)
is the same as in decays and inverse decays 8. This result was found in [9, 20], for the case of
resonant leptogenesis. CP violation in scattering is usually neglected in thermal leptogenesis
[5, 6], because observed neutrino masses favour the strong washout regime K > 1. In strong
washout, any contribution to the lepton asymmetry by scattering processes during N1

production is rapidly washed out, so the CP violation in these processes can be neglected,
for lack of observable consequences. However, we wish to include this CP violation, because
washout in one flavour could be small, even though K ≫ 1 and we wish to correctly include
the contribution of weakly washed out lepton flavours to the final lepton asymmetry.

For simplicity, we work at zero temperature, in the limit of hierachical right-handed
neutrinos. This means we calculate in an effective field theory with particle content of the
SM +N1, and the effects of the heavier N2 and N3 appear in a dimension five operator
(HLα)(HLβ). For computing one-loop CP violating effects involving N1, we can take the
coefficient of this operator ∝ [mν ]αβ/v2.

We define the CP asymmetries in ∆L = 1 scattering (mediated by s and t-channel
Higgs boson exchange) as

ǫ̂αα
s =

σ(tcq → NLα) − σ̄(q̄tc → NL̄α)

σ + σ̄
(25)

ǫ̂αα
t =

σ(qN → tcLα) − σ̄(q̄N → tcL̄α)

σ + σ̄
=

σ(qL̄α → tcN) − σ̄(q̄Lα → tcN)

σ + σ̄
(26)

where barred fields are the antiparticles. The initial state density factors cancel in the ratio,
so the cross-sections σ, σ̄ can be replaced by the matrix elements squared |M|2, integrated
over final state phase space

∫
dΠ. If the tree + loop matrix element is separated into a

coupling constant part c and an amplitude A:

M = ctAt + cℓAℓ , (27)

where the matrix element for the CP conjugate process is M̄ = ct∗At + cℓ∗Aℓ, then the CP
asymmetry can be written

ǫ =
4Im{ctcl∗}

|ct|2

∫
Im{AtAl∗}dΠ∫

|At|2dΠ
. (28)

8We thank E. Nardi for discussions of his work in progress.
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The loop amplitude has an imaginary part when there are branch cuts corresponding to
intermediate on-shell particles, which can arise here in a bubble on the N line at the NHLα

vertex, e.g. for s-channel Higgs exchange:

Im{AtAl∗} = At(tcq → NLα)

∫
At∗(tcq → LαL′

βH ′)dΠ′At∗(L′
βH ′ → N) . (29)

H ′ and L′
β are the (assumed massless) intermediate on-shell particles, and dΠ′ is the inte-

gration over their phase space.

In the scattering process ct = htλ
∗
1α and cℓ = 3htλ1β [m∗]βα/v2, where ht is the top

Yukawa coupling, so the complex coupling constant combination in ǫ̂αα(AH̄ → NLα) is
clearly the same as in ǫαα of eq. (22)9. To obtain the amplitude ratio (the second fraction
in eqn (28)), we take, for instance At(N → H̄L̄α) = ūℓPLuN , and after straightforward
spin sums, one sees that it is the same for scattering and N decay, so ǫ̂αα

s = ǫ̂αα
t = ǫαα.

The equality (26), and the result that the s and t-channel scattering asymmetries are
equal to the decay asymmetry, may be an artifact of our effective field theory calculation,
where there is no momentum exchanged on the N2,3 line in the loop.

In the finite temperature calculation of [5], the Higgs boson has a large thermal mass due
to its interactions with the top quarks. At T ≫ M1 it can therefore decay to NL, and ref.
[5] found a CP asymmetry in this decay. Some part of the N production that is included in
zero temperature scattering computations, is resummed in the finite temperature H decays,
so it is consistent that in both processes, a lepton asymmetry can be generated.

Checking CPT and unitarity

We would like to verify that the CP violating matrix elements M for ∆L = 1 scattering
processes, satisfy the constraints following from CPT invariance and S-matrix unitarity.
See e.g. [21] for useful related discussions. For i any state, and ī its CP conjugate, CPT
and unitarity imply [22]

∑

j̄

|M(̄i → j̄)|2 =
∑

j̄

|M(j̄ → ī)|2 =
∑

j

|M(i → j)|2, (30)

where {j} is the set of accessible states. We want to check that this is consistent with
having a CP asymmetry in scattering processes like qtc → Nℓ.

First, as a warm-up, let us consider the case of inverse decays Hℓ → N in the single
flavour approximation. It is well-known that there is a CP asymmetry here, and this will
show how to apply CPT and unitarity bounds with unstable particles (N) in the final state.

Suppose that

|M(Hℓ → N)|2 ≡ |M0|2
2

(1 + ǫ) , |M(H̄ℓ̄ → N)|2 ≡ |M0|2
2

(1 − ǫ) , (31)

9In both cases, there is an overall factor of three, from the weak SU(2) index contractions. This can be
seen by reinstating the N2,3 propagators: the charged and neutral component of the intermediate H ′ and
L′ contribute in the N1 wave-function correction, giving a 2, but only the charged or the neutral H ′ and
L′ appear in the vertex correction.
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where |M0|2 is order λ2 and |M0|2ǫ is order λ4.

At order λ2, the CPT + unitarity constraint is verified, but at order λ4, |M(Hℓ →
N)|2 6= |M(H̄ℓ̄ → N)|2, because there can be additional final states: H̄ℓ̄ and Hℓ. As
in the case of the Boltzman Equations, when we include these 2 ↔ 2 processes, we must
subtract out the real intermediate N1, because we have already included this by treating
the N1 as a final state particle. So at order λ4:

|M(Hℓ → X)|2 = |M(Hℓ → N)|2 + |M(Hℓ → H̄ℓ̄)|2 − |MRIS(Hℓ → H̄ℓ̄)|2
+ |M(Hℓ → Hℓ)|2 − |MRIS(Hℓ → Hℓ)|2

=
|M0|2

2
(1 + ǫ) + |M(Hℓ → H̄ℓ̄)|2 − |M0|2

2
(1 + ǫ)

(1 + ǫ)

2

+ |M(Hℓ → Hℓ)|2 − |M0|2
2

(1 + ǫ)
(1 − ǫ)

2
= |M(Hℓ → H̄ℓ̄)|2 + |M(Hℓ → Hℓ)|2 + · · · (32)

where X is all possible final states, and the on-shell intermediate N1 has been subtracted
in the narrow width approximation [5]. Repeating for (H̄ℓ̄ → X) will give the same
rate, because at O(λ4), |M(Hℓ → H̄ℓ̄)|2 = |M(H̄ℓ̄ → Hℓ)|2, and |M(Hℓ → Hℓ)|2 =
|M(H̄ℓ̄ → H̄ℓ̄)|2. So CPT and unitarity are satisfied for inverse decays, as they ought to
be.

CPT and unitarity are realised in the scattering process (qtc → Nℓα), in a similar way
to inverse decays. CPT and unitarity should hold order by order in perturbation theory,
so we work at order λ2λ2

αh2
t , and define

|M(qtc → Nℓα)|2 = |Ms|2(1 + ǫαα) , (33)

where |Ms|2 ∝ λ2
αh2

t , and |Ms|2ǫ ∝ λ2λ2
αh2

t . At order λ2λ2
αh2

t , we should also include
various tree diagrams without N in the final state. Following the inverse decay discussion,
one can write

|M(qtc → Xℓα)|2 = |M(qtc → Nℓα)|2 +
∑

β

[
|M(qtc → ℓβHℓα)|2 − |MRIS(qtc → ℓβHℓα)|2

]

+
∑

β

[
|M(qtc → ℓβHℓα)|2 − |MRIS(qtc → ℓβHℓα)|2

]

= |Ms|2(1 + ǫαα) + |M(qtc → ℓHℓα)|2 − |Ms|2(1 + ǫαα)
(1 + ǫ)

2

+ |M(qtc → ℓHℓα)|2 − |Ms|2(1 + ǫαα)
(1 − ǫ)

2

=
∑

β

[
|M(qtc → ℓβHℓα)|2 + |M(qtc → ℓβHℓα)|2

]
, (34)

where, in the narrow width approximation,

|MRIS(qtc → ℓβH̄ℓα)|2 = |M(qtc → Nℓα)|2 × BR(N → H̄ℓβ) (35)
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In eq. (34), the CP asymmetry ǫαα has disappeared, so if we repeat the calculation for
the CP conjugate initial state q̄tc, we should obtain the same result, verifying that a CP
asymmetry in qtc → Nℓα is consistent with CPT and unitarity. Furthermore, eq. (34) is
reassuring, because the unstable state N has disappeared. There is no CP violation in the
total rate for qtc → asymptotic (stable) final states, but CP violation in the partial rate to
the unstable N is possible. This can be relevant to the final value of the baryon symmetry
when some of the lepton flavours are weakly washed out (see section 4.1.2).

4 Approximate formulae for the baryon asymmetry

In this section we present analytical formulae for the final baryon asymmetry in the case
in which flavours are taken into account. We can have different possible cases according to
which interaction mediated by the charged Yukawa couplings is in equilibrium, [8, 14].

4.1 µ and τ Yukawa couplings in equilibrium: M1
<∼ 109 GeV

The µ and τ doublet leptons (and by default, the electron doublet) will be mass eigenstates
at the temperature of leptogenesis when the mass of the lightest right-handed neutrino M1

is smaller than about 109 GeV. The Boltzmann equation for the diagonal entry Yαα reads
(no summation over the index α)

Y ′
αα = ǫααKz

K1(z)

K2(z)
f1(z)∆N1

− 1

2
z3K1(z) f2(z) KααYαα . (36)

Let us now solve analytically Eq. (36) according to the magnitude of the various Kαα.

4.1.1 Strong wash-out regime for all flavours

In such a case all the Kαα ≫ 1. The right-handed neutrinos N1’s are nearly in thermal
equilibrium. Under these circumstances, one can set ∆′

N1
≃ 0 and ∆N1

≃ (zK2/4g∗K).
The lepton asymmetry for the flavour α is given by

Yαα ≃ ǫαα

∫ ∞

0

dz
K1

4g∗
z2 e−

∫
∞

z
dz′ ((z′)3/2)K1(z′)Kαα . (37)

Using the steepest descent method to evaluate the integral, one finds that it gets the major
contribution at z such that z = log Kαα+(5 ln z/2) when inverse decays become inefficient.
The lepton asymmetry in the flavour α becomes

Yαα ≃ 0.3
ǫαα

g∗

(
0.55 × 10−3 eV

m̃αα

)1.16

. (38)

To get convinced that this result differs from the one usually considered in the literature,
let us take the total lepton asymmetry YL =

∑
α Yαα

12



YL ≃
∑

α

0.3
ǫαα

g∗

(
0.55 × 10−3 eV

m̃αα

)1.16

. (39)

It does not coincide with total lepton asymmetry result (14) in the strong wash-out regime.
Indeed, the total lepton asymmetry (39) is the sum of the ǫαα, each weighted by the wash-
out factor Kαα and not the sum of the ǫαα divided by the sum of the Kαα. Eqs. (14) and
(39) coincide only if one family is dominating the contribution to the total CP asymmetry
and the corresponding wash-out factor is the tiniest.

4.1.2 Weak wash-out regime for all flavours

In this case all the Kαα ≪ 1. We assume that right-handed neutrinos are not initially
present in the plasma, but they are generated by inverse decays and scatterings. As ex-
plained in Sec. 2, the equation of motion for YN1

is well approximated by

Y ′
N1

= −(Ks + Kz)
(
YN1

− Y EQ
N1

)
, (40)

We split the solution in two pieces. Let us define zEQ the value of z at which YN1
(zEQ) =

Y EQ
N1

(zEQ). This value has to be found a posteriori. For z ≪ zEQ, we may suppose that

YN1
≪ Y EQ

N1
and Eq. (40) is solved by

Y −
N1

(z) ≃
∫ z

0

dz′ (Ks + Kz′)Y EQ
N1

=
1

4g∗

∫ z

0

dz′ (Ks + Kz′)(z′)2 K2(z
′)

=
K

4g⋆

(
Ks

K
I1(z) + I2(z)

)
(41)

With I1 and I2 integral involving the modified Bessel functions :

I1(z) =

∫ z

0

x2K2(x)dx ≃ f(z) + z3K2(z) (42)

where [6]

f(z) =
3πz3

((9π)c + (2z3)c)1/c
, c = 0.7 (43)

The integral I2 is well known, and equals

I2(z) =

∫ z

0

x3K2(x)dx = 8 − z3K3(z) (44)

Therefore

Y −
N1

(z) ≃ K

4g⋆

(
Ks

K
(f(z) + z3K2(z)) + 8 − z3K3(z)

)
(45)

As expected for weak washout, we find that the maximum number density of N1 is
proportional to K (recall Ks ∝ K).
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Let us now compute the value of zEQ. We expect it to be ≫ 1 and we therefore
approximate, up to O(z−3/2) : K2(z) ≃ K3(z) ≃

√
π
2
z−1/2e−z. Imposing Y −

N1
(zEQ) =

Y EQ
N1

(zEQ), we find

zEQ ≃ 3

2
ln zEQ − ln

(
8√
π/2

K + 3

√
π

2
Ks

)
. (46)

This solution is a good approximation to the real value for K ≪ 1.

For z > zEQ, we have (Ks + Kz) ≃ Kz and

YN1
(z) ≃ Y EQ

N1
(zEQ)eK/2(z2

EQ
−z2) . (47)

We have included CP violation in ∆L = 1 scattering, unlike the usual analysis, so we
expect our solution for Y αα

L to have a different scaling with K than eqn (15). The reason
is as discussed in [5, 6]: if CP/ in scattering is neglected, then YN ∝ K, and the N1 decay
out of equilibrium, so one expects Y αα

L ∝ Kǫαα. However, if CP/ in N1 production (≃
scattering) is included, and washout is neglected, then the equations for YN1

and Y αα
L are

identical, so Y αα
L (z → ∞) vanishes. That is, for every |1/ǫαα| N1’s that are created, be

it by inverse decay or scattering, an (anti)-lepton α is produced. This (anti-)asymmetry
will approximately cancel against the lepton asymmetry generated later on, when the N1

decay. However the cancellation will be imperfect, because the anti-asymmetry has more
time to be washed out, so the final asymmetry should scale as KKαα. After integrating by
parts, this is what we find for the asymmetry in the flavour α, which is given by

Yαα ≃ ǫαα

∫ ∞

0

dz′YN1
(z′)gαα(z′)e−

∫
∞

z
dz′′gαα(z′′) , gαα(z) =

1

2
z3KααK1(z)f2(z) ,

≃ 1.5
ǫαα

g∗

(
m̃1

3.3 × 10−3 eV

)(
m̃αα

3.3 × 10−3 eV

)
. (48)

We have checked numerically that this analytical formula fits the numerical results to a
30%.

Our findings hold provided that the non-resonant ∆L = 2 scattering rates, in particular
those mediated by the N2 and N3 heavy neutrinos, are slower than decays and ∆L = 1
scatterings when most of the asymmetry is generated. We estimate that this applies when

(
M1

1014 GeV

)
≪ 10−1 Kαα . (49)

This means that Kαα should be larger than 10−4.

4.1.3 Strong wash-out for some flavours and either weak or mild wash-out for
others

In the case in which Kαα ≫ 1 for some flavour α, but Kββ ≪ 1 for some other flavour β, it
is impossible to match this case with any of the cases discussed in the section for the ‘one-
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flavour’ approximation. Because some flavours α strongly interact with the right-handed
neutrinos, we may set K =

∑
α Kαα ≫ 1. Thus, right-handed neutrinos are brought

to thermal equilibrium by inverse decays and by ∆L = 1 scatterings to an abundance
approximately given by

YN1
(z) ≃ Y EQ

N1

(
1 − e−Ksz−Kz2/2

)
. (50)

The lepton asymmetry in flavour β is then given by

Yββ ≃ ǫββ

∫ ∞

0

dz Y EQ
N1

(z′)
(
1 − e−Ksz′−Kz

′2/2
)

gββ(z′)

≃ 0.4
ǫββ

g∗

(
m̃ββ

3.3 × 10−3 eV

)
. (51)

Again, we have checked that this formula fits the numerical results to about 30 %. It has the
dependence on Kββ expected from our inclusion of CP/ in scattering. The anti-asymmetry
∼ −ǫββs/g∗ created during N1 production has the leisure to be partially destroyed by
processes violating β lepton number. The amount of this reduction is controlled by Kββ,
so one expects the final β asymmetry ∝ ǫββKββ, as in eq. (51). Again, this result applies
for Kαα ≫ 10−4.

In the case in which Kαα ≫ 1 for some flavour α and the flavour β suffers a mild
(Kββ ∼ 1) wash-out, the final asymmetry in the flavour β is fitted within 30 % by the
formula

Yββ ≃ ǫββ

g∗

((
m̃ββ

8.25 × 10−3 eV

)−1

+

(
0.2 × 10−3 eV

m̃ββ

)−1.16
)−1

. (52)

This formula reduces to Eqs. (38) and (51) for the weak and strong wash out for the flavour
β, respectively.

4.1.4 Recipe to go from the flavour asymmetries to the baryon asymmetry

The final baryon asymmetry is given by [14]10

YB ≃ 12

37

∑

α

Y∆α
, (53)

where the asymmetries Y∆α
, (∆α = (B/3−Lα)) are conserved by the sphaleron and other

Standard Model interactions. To provide an analytical formulae for the baryon asymmetry,
in the case in which M1

<∼ 109 GeV, it suffices to obtain the asymmetries Y∆α
from our

formulae for the lepton flavour asymmetries Yαα.

10if the sphalerons freeze out before the eletroweak phase transition, 12/37 would be replaced by another
fraction[23] of order 1/3, such as[15] 28/79.
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In this paper, we approximate Y∆α
= Yαα(m̃αα → Aααm̃αα). That is, in our approximate

solutions for Yαα, we replace m̃αα by Aααm̃αα (no sum on α), where the matrix A [8] is
given in eqns (54) and (56). This approximation should be adequate for transforming the
flavour asymmetries, estimated flavour by flavour, into a baryon asymmetry. To see this,
we review the discussion of [8] :

The interactions which are much faster than H , such as gauge interactions, sphalerons,
and some Yukawas, can be approximately taken into account by imposing chemical equi-
librium conditions(see [24, 14] for a more careful analysis). This allows to express the
asymmetries in all particle species as linear combinations of the asymmetries in conserved
quantum numbers. These interactions-in-equilibrium respect the three flavoured asymme-
tries ∆α = B/3 − Lα, which are changed by the interactions of N . So it is the Boltzmann
Equation for Y∆α

that is relevant for leptogenesis, and it is clearly [8] the right-hand-side
of eqn (17):

dY∆α

dz
=

z

sH(M1)

[(
YN1

Y EQ
N1

− 1

)
ǫαα(γD + γ∆L=1) −

Y αα

Y EQ
L

(γαα
D + γαα

∆L=1)

]
.

Yαα on the right-hand-side can be re-expressed as Yαα =
∑

β AαβY∆β
. An ℓα produced or

destroyed in the plasma changes B/3−Lα, but not all the B/3−Lα is in Yαα, so washout
is reduced and the flavoured Boltzmann Equations are coupled.

In the temperature range where the µ Yukawa is in equilibrium, the A matrix is given
as 11 


Yee

Yµµ

Yττ


 =




−151/179 20/179 20/179
25/358 −344/537 14/537
25/358 14/537 −344/537






Y∆e

Y∆µ

Y∆τ


 . (54)

The-off-diagonal elements of A couple the flavoured Boltzmann Equations. We neglect
this effect, estimating that it has little effect on the final baryon asymmetry: since the
off-diagonals of A are small, AαβY∆β

(for β 6= α, not summed) will only make a significant
contribution to the washout of Y∆α

when Y∆β
≫ Y∆α

. In this case, the contribution of Y∆α

to the baryon asymmetry is small, so it is of little numerical importance that our formula
mis-estimated the washout in flavour α.

Thus the recipe to compute the baryon asymmetry in the case in which M1
<∼ 109 GeV

is the following:

1) Compute the Kαα parameters for the three flavours to see which of the three different
previously discussed cases applies;

2) compute the CP asymmetry ǫαα in each flavour, and approximate the asymmetry
Y∆α

using the relevant formualae for Yαα among equations (39), (48), (51), but with m̃αα

replaced by |Aαα|m̃αα (no sum on α).

3) compute the baryon asymmetry

11This disagrees with our previous version[13], where we had taken the u and d Yukawas in equilibrium,
and differs from [8] in that we include strong sphalerons. Our results agree with [24, 14].
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YB ≃ 12

37

[
Yee

(
ǫee,

151

179
m̃ee

)
+ Yµµ

(
ǫµµ,

344

537
m̃µµ

)
+ Yττ

(
ǫττ ,

344

537
m̃ττ

)]
(55)

Figs. 1, 2 and 3 illustrate the differences between the final baryon asymmetry with
flavours accounted for and the result obtained within the one-flavour approximation for
some values of the wash-out parameters and CP asymmetries.

0.01 0.1 1 10 100
z

1.´10-12

1.´10-11

1.´10-10

1.´10-9

Yb

Figure 1: The total baryon asymmetry including flavours (upper) and within the one-flavour
approximation (lower) as a function of z. The chosen parameters are Kee = 10, Kµµ = 30,
Kττ = 30, ǫee = 2.5 × 10−6, ǫµµ = −2 × 10−6, ǫττ = 10−7 and M1 = 1010 GeV.

0.01 0.1 1 10 100
z

1.´10-14

1.´10-13

1.´10-12

1.´10-11

1.´10-10

Yb

Figure 2: The total baryon asymmetry including flavours (upper) and within the one-flavour
approximation (lower) as a function of z. The chosen parameters are Kee = 5×10−2, Kµµ = 10−2,
Kττ = 10−3, ǫee = 2.5 × 10−6, ǫµµ = −2 × 10−6, ǫττ = 10−7 and M1 = 1010 GeV.

4.2 Only the tau Yukawa coupling in equilibrium:

(109 <∼ M1
<∼ 1012) GeV

This case is realized when the mass of the lightest right-handed neutrino M1 is larger than
about 109 GeV, but smaller than about 1012 GeV12. Interactions mediated by hτ are in

12In the case in which M1 is around 109 GeV off-diagonal terms may be relevant. However, they are
quickly damped away as soon as M1 becomes larger than 109 GeV [13].
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Figure 3: The total baryon asymmetry including flavours (upper) and within the one-flavour
approximation (lower) as a function of z. The chosen parameters are Kee = 10, Kµµ = 30,
Kττ = 10−2, ǫee = 2.5 × 10−6, ǫµµ = −2 × 10−6, ǫττ = 10−7 and M1 = 1010 GeV.

equilibrium, but not those mediated by hµ. The off-diagonal entries of the matrix Yτβ

all vanish and the muon and electron asymmetries are indistinguishable. The problem
of finding the total baryon asymmetry reduces to a case of two flavours, the lepton ℓτ ,
and ℓ̂2, the non-τ components of the lepton into which N1 decays. At tree level, ℓ2 =
∑

α=e,µ λ1αℓα/
(∑

α=e,µ |λ1α|2
)1/2

. One can therefore define two CP asymmetries, ǫττ and

ǫ2 = ǫee + ǫµµ, and the corresponding wash-out parameters Kττ and K2 = Kee + Kµµ for
the two asymmetries Yττ and Y2 = Yee + Yµµ. One then solves this set of equations as
we described in the previous subsection depending upon the magnitude of the wash-out
parameters Kττ and K2.

The recipe to compute the baryon asymmetry in the case in which (109 <∼ M1
<∼ 1012)

GeV is the following:

1) Compute the Kττ and K2 parameters to see whether they are either both larger than
unity, or both smaller than unity, or one larger and the other smaller than unity;

2) compute the CP asymmetry in each of the two flavours, and the B/3 − Lα asym-
metry Y∆α

using the relevant formulae among equations (39), (48), (51), replacing in these
formulae m̃ββ by |Aββ|m̃ββ (no sum on β), where in this case the A matrix[8] is 13

(
Y2

Yττ

)
=

(
−417/589 120/589
30/589 −390/589

)(
Y∆2

Y∆τ

)
. (56)

3) compute the baryon asymmetry

YB ≈ 12

37
(Y2(ǫ2, 417m̃2/589) + Yττ (ǫττ , 390m̃ττ/589)) . (57)

In this case, the first row, second colomn element of the matrix (56) is ∼ 30% of the
diagonal elements, so the approximation of neglecting off-diagonals is less good than in the

13This differs slightly from results in [8, 14] because we consider the case where the c Yukawa and strong
sphalerons are in equilibrium
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T <∼ 109 GeV case. Again, our results apply if ∆L = 2 scatterings are negligible, see eq.
(49).

4.3 No charged Yukawa couplings in equilibrum: M1
>∼ 1012 GeV

This case is realized when the mass of the lightest right-handed neutrino M1 is larger
than about 1012 GeV. Interactions mediated by all charged lepton Yukawa couplings
are out of equilibrium and all flavours are indistinguishable. The problem of find-
ing the total baryon asymmetry reduces to a case of one flavour, the lepton ℓ̂1 =
∑

α=e,µ,τ λ1αℓα/
(∑

α=e,µ,τ |λ1α|2
)1/2

. One can therefore define a single CP asymmetry,

ǫ1 =
∑

α ǫαα, and the corresponding wash out parameter K =
∑

α Kαα. The corresponding
Boltzmann equations read as those in Eq. (11). Only in this case the commonly used for-
mulae reported in Section 2 hold with the eventual inclusion of the effects from the ∆L = 2
scatterings.

5 General analysis of leptogenesis in the two right-

handed neutrino model

In this section we will concentrate on the see-saw model with two right-handed neutrinos
(2RHN). Oscillation experiments indicate that two new mass scales have to be introduced,
in order to account for the solar and atmospheric mass splittings. These two mass scales
could be associated to the masses of two right-handed neutrinos, therefore a see-saw model
with just two right-handed neutrinos can already accommodate all the observations. An
additional motivation to consider the two right-handed neutrino model is that it corre-
sponds to some interesting limits of the complete see-saw model with three right-handed
neutrinos, namely when the mass of the heaviest right-handed neutrino is much larger
than the masses of the other two, or when the Yukawa couplings for the first generation of
right-handed neutrinos are much smaller than for the other two generations.

The two right-handed neutrino model depends on many less parameters than the com-
plete see-saw model and the theoretical analysis of leptogenesis becomes much more man-
ageable, while preserving the key features of the model with three right-handed neutrinos.
In the basis where the charged lepton Yukawa coupling and the right-handed mass ma-
trices are diagonal, the model is defined at high energies by a 2 × 3 Yukawa matrix and
two right-handed neutrino masses, M1 and M2. This amounts to eight moduli and three
phases. On the other hand, at low energies the neutrino mass matrix is defined by five
moduli (two masses and three mixing angles) plus two phases (the Dirac phase and the
Majorana phase). In particular, since the mass matrix is rank 2 in this model, the lightest
neutrino mass eigenvalue automatically vanishes and only two possible spectra may arise:

• Normal hierarchy: m1 = 0 , m2 =
√

∆m2
sol , m3 =

√
∆m2

atm

• Inverted hierarchy: m3 = 0, m1 =
√

∆m2
atm − ∆m2

sol , m2 =
√

∆m2
atm
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The only Majorana phase corresponds to the phase difference between the two non-
vanishing mass eigenvalues. Therefore, the number of unmeasurable parameters in the
2RHN model is reduced to three moduli and one phase.

The most general Yukawa coupling compatible with the low energy data is given by:

λ = M1/2Rm1/2U †/v, (58)

where m = Diag(m1, m2, m3) is the diagonal matrix of the light neutrino mass eigenvalues
(which has m1 = 0 for the normal hierarchy and m3 = 0 for the inverted hierarchy),
M = Diag(M1, M2) is the diagonal matrix of the right handed neutrino masses, U is the
leptonic mixing matrix, and R is an orthogonal matrix that in the 2RHN model has the
following structure [26]

R =

(
0 cos θ̂ ξ sin θ̂

0 − sin θ̂ ξ cos θ̂

)
(normal hierarchy), (59)

R =

(
cos θ̂ ξ sin θ̂ 0

− sin θ̂ ξ cos θ̂ 0

)
(inverted hierarchy), (60)

with θ̂ a complex parameter and ξ = ±1 a discrete parameter that accounts for a discrete
indeterminacy in R. In consequence, the elements of the neutrino Yukawa matrix read:

λ1α =
√

M1(
√

m2 cos θ̂ U∗
α2 + ξ

√
m3 sin θ̂ U∗

α3)/v,

λ2α =
√

M2(−
√

m2 sin θ̂ U∗
α2 + ξ

√
m3 cos θ̂ U∗

α3)/v, (61)

for the case with normal hierarchy and

λ1α =
√

M1(
√

m1 cos θ̂ U∗
α1 + ξ

√
m2 sin θ̂ U∗

α2)/v,

λ2α =
√

M2(−
√

m1 sin θ̂ U∗
α1 + ξ

√
m2 cos θ̂ U∗

α2)/v, (62)

for the case with inverted hierarchy. The three moduli and the phase that are not de-
termined by low energy experiments are identified in this parametrization with the two
right-handed masses M1 and M2, and the complex parameter θ̂.

Notice that we have included all the low energy phases in the definition of the matrix
U , i.e. we have written the leptonic mixing matrix in the form U = V Diag(1, e−iφ/2, 1),
where φ is the Majorana phase and V has the form of the CKM matrix:

V =




c13c12 c13s12 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

s23s12 − c23s13c12e
iδ −s23c12 − c23s13s12e

iδ c23c13


 , (63)

so that the neutrino mass matrix is M = U∗Diag(m1, m2, m3)U
†. It is straightfor-

ward to check that the Yukawa coupling eq.(58) indeed satisfies the see-saw formula
M = λT Diag(M−1

1 , M−1
2 )λv2.

The flavour CP asymmetries can be readily computed in terms of low energy data and
the unmeasurable parameters M1, M2 and θ̂ substituting the expression for the Yukawa
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coupling in eq.(21). In the limit M1 ≪ M2 we obtain for the case with normal hierarchy
the following result:

ǫαα ≃ 3

8πv2

M1

m2| cos2 θ̂| + m3| sin2 θ̂|
[(m2

3|Uα3|2 − m2
2|Uα2|2) Im sin2 θ̂ +

+ξ
√

m2m3(m3 + m2) ReU∗
α2Uα3 Im sin θ̂ cos θ̂ +

+ξ
√

m2m3(m3 − m2) ImU∗
α2Uα3 Re sin θ̂ cos θ̂], (64)

and analogously for the case with inverted hierarchy, with the changes in the labels 3 → 2
and 2 → 1.

We will analyze numerically the predictions for the baryon asymmetry taking flavour
properly into account, as described in Section 3, and also for comparison following the
conventional computation ignoring flavour, as described in Section 2. We will perform this
analysis both for the case of normal hierarchy and inverted hierarchy, fixing the atmo-
spheric and solar mass splittings and mixing angles to the values suggested by oscillation
experiments, ∆m2

atm ≃ 2.2 × 10−3 eV2, ∆m2
sol ≃ 8.1 × 10−5 eV2, θ23 ≃ π/4 and θ12 ≃ π/6,

respectively [25]. The remaining parameters in the leptonic mixing matrix are fixed to
θ13 = 0.1, δ = π/4, φ = π/3. In general, the results are not very sensitive to the value of
θ13. On the other hand, the aspect of the plots does depend on the precise value of the
phases δ and φ, although our main conclusions remain valid.

We will show our results for different values of M1, to cover the possibility that only
the tau Yukawa interaction is in equilibrium (M1

>∼ 109 GeV) or that the tau and the muon
Yukawa interactions are in equilibrium (M1

<∼ 109 GeV), and for different values of the

complex parameter θ̂, restricting ourselves to the region |θ̂| < 1. We will also fix ξ = 1,
although the results for the case ξ = −1 can be read from our results by changing θ̂ → −θ̂,
as can be checked from eq.(64).

In Fig.4 we show the result of the calculation of the baryon asymmetry in the complex
plane of θ̂ when the mass spectrum presents a normal hierarchy, following the calcula-
tion that takes flavour properly into account (left plots) and following the conventional
calculation ignoring flavour (right plots). In the upper plots we show the results when
M1 = 108 GeV, so that the tau and muon Yukawa interactions are in equilibrium, whereas
in the lower plots we take M1 = 1010 GeV, so that only the tau Yukawa interaction is in
equilibrium. It is apparent from these plots that the proper treatment of flavour in the
Boltzmann equations is necessary in order to calculate correctly the baryon asymmetry.14

The differences between the correct analysis of leptogenesis, taking flavour into account,
and the conventional analysis are more acute along the axes Imθ̂ = 0 and Reθ̂ = 0, and
around the values of θ̂ that correspond to texture zeros in the Yukawa coupling. The
corresponding values of θ̂ are indicated in the plots with a red star, when |λ13| ≃ 0, and
with a blue cross, when |λ12| ≃ 0 (a texture zero in the (1,1) position appears at |θ̂| > 1).

14In particular, the prediction for the baryon asymmetry in the conventional computation is symmetric
under Reθ̂ → −Reθ̂ and Imθ̂ → −Imθ̂, and consequently independent of the discrete parameter ξ. On the
other hand, when flavour is taken into account, the parameter ξ indeed plays a role in the computation of
the baryon asymmetry.
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Figure 4: Baryon asymmetry in the 2RHN model when the neutrinos present a spectrum with
normal hierarchy. In the left plots we show the result of the calculation that takes flavour into
account, whereas in the right plots, the result of the conventional calculation that ignores flavour.
On the top plots we take M1 = 108GeV, so that the tau and muon Yukawa couplings are in
equilibrium, while in the lower plots, M1 = 1010GeV, so that only the tau Yukawa coupling is in
equilibrium. In these plots we have fixed θ13 = 0.1, δ = π/4, φ = π/3 and the remaining neutrino
parameters to their favoured experimental values.

The point in the θ̂ complex plane where |λ1α| ≃ 0 can be derived from eq.(61), being the
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result:

tan θ̂
(α)
0 ≃ −ξ

√
m2

m3

U∗
α2

U∗
α3

. (65)

The reason why in the conventional analysis the baryon asymmetry vanishes along the
axes can be easily understood from the expression of the total CP asymmetry in the 2RHN
model. For instance, for the case with normal hierarchy:

ǫ1 ≃ 3M1

8πv2

(m2
3 − m2

2) Im sin2 θ̂

m2| cos2 θ̂| + m3| sin2 θ̂|
. (66)

Hence, the total CP asymmetry vanishes when Imθ̂ = 0 (i.e. R real) and when Reθ̂ = 0
(since in this case sin2 θ̂ = − sinh2 |θ̂|, and R is again real). This is not necessarily the case
when flavour is properly taken into account, as can be realized from the expressions of the
flavour CP asymmetries, eq.(22).

On the other hand, when the Yukawa coupling presents an approximate texture zero,
the difference stems mainly from the washing-out of the asymmetry. When the spectrum
has a normal hierarchy, the CP asymmetry in the α-th flavour is comparable to the total
CP asymmetry. However, the smallness of the interaction of the lightest right-handed
neutrino with ℓα translates into a weak wash-out of the asymmetry, in stark contrast with
the result of the same analysis following the conventional computation, where the total
CP asymmetry is necessarily strongly washed-out (recall that in the 2RHN model with
normal hierarchy m̃1 ≥

√
∆m2

sol, so K > 1). As a consequence, when λ1α ≃ 0, the
actual prediction for the baryon asymmetry can be around one order of magnitude larger
than previously believed. Interestingly enough, in realistic models strict texture zeros
rarely appear; there are usually subleading effects that produce small entries instead of
strict texture zeros. To be precise, texture zeros normally appear in a basis where the
charged lepton Yukawa coupling and/or the right-handed neutrino mass matrix are slightly
non diagonal. Therefore, the diagonalization of these matricial couplings to express the
Lagrangian as in eq.(1) will lift the texture zero in the neutrino Yukawa matrix, yielding
a small entry instead. Finally, even if the texture zero was strict at the high energy scale,
radiative corrections could lift them.

The differences between the computation of the baryon asymmetry taking into account
flavour or not are even more acute in the case of a spectrum with inverted hierarchy, as
can be realized from Fig. 5. As in the case of the spectrum with normal hierarchy, the
maximum differences arise along the axes Imθ̂ = 0 and Reθ̂ = 0, and around the values of
θ̂ that correspond to texture zeros in the first row of the Yukawa coupling, also indicated
in these plots with a red star and a blue cross 15. The precise value of θ̂ where |λ1α| ≃ 0 is:

tan θ̂
(α)
0 ≃ −ξ

√
m1

m2

U∗
α1

U∗
α2

. (67)

15Notice the proximity of both points, which is due to the maximal atmospheric mixing. Furthermore, as
θ13 approaches zero, the two points collapse into one, which reflects the fact that in the limit with θ13 = 0
and θ23 = π/4, there is an exact µ ↔ τ symmetry, and imposing λ12 = 0 automatically implies λ13 = 0.
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Figure 5: The same as Fig.(4), but for a spectrum with inverted hierarchy.

Around this value for θ̂, the difference between the conventional calculation (right plots)
and the calculation taking into account flavour can be as large as three orders of magnitude
when M1 = 108 GeV (see upper left plot) or two orders of magnitude when M1 = 1010 GeV
(see lower left plot).

The reason for this huge enhancement is double. First, in the conventional calculation
ignoring flavour, when the spectrum has an inverted hierarchy the total CP asymmetry
goes as ∆m2

sol/
√

∆m2
atm. However, the flavour CP asymmetries go as

√
∆m2

atm, therefore,
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the individual flavour CP asymmetries can be a factor of 20 bigger than the total CP
asymmetry. Secondly, the total lepton asymmetry computed ignoring flavour is strongly
washed-out, since m̃1 ≥

√
∆m2

atm. yielding a suppressed baryon asymmetry. On the
contrary, when there is an approximate texture zero, λ1α ≃ 0, the lepton asymmetry in the
α-th flavour is only weakly washed-out. These two effects combined are the responsible
of the huge enhancement of the baryon asymmetry when the spectrum has an inverted
hierarchy and there is an approximate texture zero in the first row of the neutrino Yukawa
coupling.

6 Texture zeros in the two right-handed neutrino

model

In this section we would like to study carefully the predictions for the baryon asymmetry in
the case that there are approximate texture zeros in the neutrino Yukawa coupling. Texture
zeros commonly arise in model constructions based on the Froggatt-Nielsen mechanism
[27]. The assignment of different charges under an extra symmetry to particles of different
generations, translates into a Yukawa coupling with a non-trivial structure in the effective
theory, once the extra symmetry is spontaneously broken. The assignment of charges could
be such that the resulting Yukawa coupling could have one or several entries which are very
small compared to the others. In some instances, the entry for the Yukawa coupling could
exactly vanish at the high energy scale, although these vanishing entries are usually filled
when the fields are brought to the basis where the charged lepton Yukawa coupling and
the right-handed mass matrix are both diagonal. In addition to this, radiative effects can
also fill these entries.

In the 2RHN model an exact texture zero in the Yukawa coupling fixes the value of
tan θ̂ in terms of low energy data. Namely, if |λ1β| = 0,

tan θ̂
(β)
0 ≃ −ξ

√
m2

m3

U∗
β2

U∗
β3

(normal hierarchy), (68)

tan θ̂
(β)
0 ≃ −ξ

√
m1

m2

U∗
β1

U∗
β2

(inverted hierarchy). (69)

By perturbing the Yukawa coupling around this value of θ̂
(β)
0 it is possible to lift the

texture zero, while still reproducing the observed masses and mixing angles. The R-matrices
that yield a viable Yukawa coupling with an approximate texture zero are:

R =

(
0 cos θ̂

(β)
0 ξ sin θ̂

(β)
0

0 − sin θ̂
(β)
0 ξ cos θ̂

(β)
0

)
−ρeiω

(
0 sin θ̂

(β)
0 −ξ cos θ̂

(β)
0

0 cos θ̂
(β)
0 ξ sin θ̂

(β)
0

)
(normal hierarchy),

(70)

R =

(
cos θ̂

(β)
0 ξ sin θ̂

(β)
0 0

− sin θ̂
(β)
0 ξ cos θ̂

(β)
0 0

)
−ρeiω

(
sin θ̂

(β)
0 −ξ cos θ̂

(β)
0 0

cos θ̂
(β)
0 ξ sin θ̂

(β)
0 0

)
(inverted hierarchy),

(71)
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where ρeiω parametrizes the departure from the strict texture zero in the θ̂-parameter space,
i.e. θ̂ = θ̂

(β)
0 + ρeiω. In the case with normal hierarchy the Yukawa couplings explicitly

read,

λ1α ≃
√

M1

Mββ

[√
m2m3

(
U∗

α2U
∗
β3 − U∗

β2U
∗
α3

)
+ ξρeiωMαβ

]
/v,

λ2α ≃
√

M2

Mββ

[
ξMαβ −√

m2m3ρeiω
(
U∗

α2U
∗
β3 − U∗

β2U
∗
α3

)]
/v, (72)

while in the case with inverted hierarchy,

λ1α ≃
√

M1

Mββ

[√
m1m2

(
U∗

α1U
∗
β2 − U∗

β1U
∗
α2

)
+ ξρeiωMαβ

]
/v,

λ2α ≃
√

M2

Mββ

[
ξMαβ −√

m1m2ρeiω
(
U∗

α1U
∗
β2 − U∗

β1U
∗
α2

)]
/v. (73)

These expressions can be substituted in eqs.(22) and eq.(20) to derive the CP asymme-
tries and the washout factors in the α-th flavour, in the case that |λ1β| ≃ 0. Expanding for
small values of ρ and keeping the lowest order terms we obtain for the case with normal
hierarchy the following CP flavour asymmetries:

ǫαα ≃ −3M1m3

8πv2

1

|Uβ2|2 + |Uβ3|2
Im

[
eiφ/2

M∗
ββ

|Mββ|
∑

γ

ǫαβγ

(
Uα3

U∗
β2 −

m2

m3
Uα2

U∗
β3

)
Uγ1

]
if α 6= β,

ǫββ ≃ −3M1m3

8πv2

|Mββ|√
m2m3

ξρ

|Uβ2|2 + |Uβ3|2
Im

[
U∗

β2Uβ3

(
eiω +

m2

m3
e−iω

)]
, (74)

and the following washout factors:

Kαα ≃ m2m3

m̃∗|Mββ|

∣∣∣∣∣
∑

γ

ǫαβγUγ1

∣∣∣∣∣

2

if α 6= β,

Kββ ≃ |Mββ|
m̃∗

ρ2. (75)

The corresponding formulas for the case with inverted hierarchy are:

ǫαα ≃ −3M1m2

8πv2

1

|Uβ1|2 + |Uβ2|2
Im

[
eiφ/2

M∗
ββ

|Mββ|
∑

γ

ǫαβγ

(
Uα2

U∗
β1 −

m1

m2
Uα1

U∗
β2

)
Uγ3

]
if α 6= β,

ǫββ ≃ −3M1m2

8πv2

|Mββ|√
m1m2

ξρ

|Uβ1|2 + |Uβ2|2
Im

[
U∗

β1Uβ2

(
eiω +

m1

m2
e−iω

)]
, (76)

and

Kαα ≃ m1m2

m̃∗|Mββ|

∣∣∣∣∣
∑

γ

ǫαβγUγ3

∣∣∣∣∣

2

, if α 6= β,

Kββ ≃ |Mββ|
m̃∗

ρ2. (77)
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The predictions for the flavour asymmetries and the washout factors, and accordingly
for the final baryon asymmetry, will depend on the low energy observables and the “texture
zero uplifting” parameters ρ and ω. In some cases, the prediction of the baryon asymmetry
will not depend on ρ and ω, and therefore it could be possible to establish a connection
between leptogenesis and low energy observables [26, 28]. Let us analyze separately the
different possibilites:

6.1 Texture zero in the (1,1) position

The possibility of a texture zero in the (1,1) position is perhaps the most interesting one
from the phenomenological point of view. The postulates that the up and down quark
matrices are symmetric in the first two generations and that they present a simultaneous
zero in the (1,1) position, lead to the renown prediction for the Cabibbo angle λC ≃√

md/ms [29]. The success and robustness of this prediction may suggest we apply the
same rationale to the leptonic sector, and impose a texture zero in the (1,1) position of the
neutrino Yukawa matrix, and perhaps also in the charged lepton Yukawa coupling and the
right-handed neutrino mass matrices.

The flavour CP asymmetries for the case with normal hierarchy can be straightforwardly
obtained from eq.(74), being the result:

ǫee ≃ 3M1m3

8πv2

|Mee|√
m2m3

2ξρ sin θ13 sin(δ − φ/2 − ω),

ǫµµ ≃ −3M1m3

8πv2

√
3

8

m3

|Mee|
sin θ13

[
m2

m3

sin δ +

(
m2

m3

)2

sin(δ − φ) +
4√
3

sin θ13 sin(2δ − φ)

]
,

ǫττ ≃ 3M1m3

8πv2

√
3

8

m3

|Mee|
sin θ13

[
m2

m3

sin δ +

(
m2

m3

)2

sin(δ − φ) − 4√
3

sin θ13 sin(2δ − φ)

]
,

(78)

where Mee ≃ m3e
2iδ sin2 θ13 + eiφm2/4 is the (1,1) element of the effective neutrino mass

matrix (recall that this matrix element is precisely the relevant one for analyses of neutri-
noless double beta decay).

On the other hand, the washout parameters are, from eq.(75):

Kee ≃ |Mee|
m̃∗

ρ2,

Kµµ ≃ 1

8

m2m3

m̃∗|Mee|
(1 − 2

√
3 sin θ13 cos δ),

Kττ ≃ 1

8

m2m3

m̃∗|Mee|
(1 + 2

√
3 sin θ13 cos δ), (79)

with m̃∗ ≃ 3 × 10−3 eV. In view of the present experimental bound sin θ13
<∼ 0.2, it fol-

lows that |Mee| <∼ m2/4 and accordingly Kµµ,ττ
>∼ m3/(2m̃∗) ≃ 20. Hence, when there is

an approximate (1,1) texture zero and ρ is sufficiently small, the muon and the tau CP
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asymmetries are strongly washed-out, while the electron CP asymmetry is only weakly
washed-out.

For the case of an inverted hierarchy of neutrinos, the flavour CP asymmetries read:

ǫee ≃ 3M1m2

8πv2

|Mee|√
m1m2

ξρ

√
3

2
cos ω sin(φ/2),

ǫµµ ≃ −3M1m2

8πv2

3

8

[
∆m2

sol

∆m2
atm

sin φ√
10 + 6 cosφ

+
sin θ13√

3

(
2 sin δ + sin(δ − φ) − 3 sin(δ + φ)√

10 + 6 cosφ

)]
,

ǫττ ≃ −3M1m2

8πv2

3

8

[
∆m2

sol

∆m2
atm

sin φ√
10 + 6 cosφ

− sin θ13√
3

(
2 sin δ + sin(δ − φ) − 3 sin(δ + φ)√

10 + 6 cosφ

)]
,

(80)

and the washout-parameters,

Kee ≃ |Mee|
m̃∗

ρ2,

Kµµ ≃ 1

2

m1m2

m̃∗|Mee|
,

Kττ ≃ 1

2

m1m2

m̃∗|Mee|
, (81)

where in this case Mee ≃ (3m1 + eiφm2)/4. Therefore, it follows that

Kµµ,ττ
>∼
√

∆m2
atm/(2m̃∗), so the muon and tau asymmetries are strongly washed-out,

whereas the electron asymmetry is weakly washed-out.

These formulas can be straightforwardly applied to the recipes presented in subsection
4.1.3, to go from the flavour asymetries to the baryon asymmetry in the different regimes
for M1. We find numerically that when M1

<∼ 109 GeV it is not possible to reproduce the
observed baryon asymmetry; in order to reproduce the data it is necessary M1

>∼ 1011 GeV
so that only the tau Yukawa interactions are in thermal equilibrium. If this is the case,
leptogenesis only depends on observables that are in principle measurable at low energies,
since the electron asymmetry is always negligible compared to the muon asymmetry (recall
that when M1

>∼ 1010 GeV the relevant quantities to compute the baryon asymmetry are
Y2 = Yee + Yµµ and K2 = Kee + Kµµ). Using eqs.(51), (57) and taking into account that
Kµµ ≃ Kττ , it follows that when sin θ13 is large, in the case with normal hierarchy YB ∝
sin2 θ13 sin(2δ−φ), while in the case with inverted hierarchy the relation is more complicated
(it goes roughly as the term propotional to sin θ13 in eq.(80)). On the other hand, when
sin θ13 is small, in the case with normal hierarchy the baryon asymmetry is very suppressed
(it goes as sin2 θ13), while in the case with inverted hierarchy YB ∝ sin φ/

√
10 + 6 cosφ,

being in this case the asymmetry suppressed by ∆m2
sol/∆m2

atm.
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6.2 Texture zero in the (1,2) position

In the case that there is an approximate texture zero in the (1,2) position of the neutrino
Yukawa matrix, the flavour CP asymmetries read:

ǫee ≃ 3M1m3

8πv2

√
3

7

[
sin θ13 sin(δ − φ) −

√
3

4

m2
2

m2
3

sin φ

]
,

ǫµµ ≃ −3M1m3

8πv2

√
m3

m2

√
3

7
ξρ sin(φ/2 + ω),

ǫττ ≃ 3M1m3

8πv2

3

7

[
sin φ +

sin θ13√
3

sin(δ − φ)

]
. (82)

On the other hand, the washout parameters read:

Kee ≃ 1

4

m2

m̃∗
(1 − 2

√
3 sin θ13 cos δ),

Kµµ ≃ 1

2

m3

m̃∗
ρ2,

Kττ ≃ 3

2

m2

m̃∗
. (83)

Therefore, the electron asymmetry and the muon asymmetries are only weakly washed-out,
while the tau asymmetry is strongly washed-out (when M1

>∼ 1010GeV, Y2 would be weakly
washed-out and Yττ , strongly washed-out).

We find that when there is an approximate texture zero in the (1,2) position,
M1

>∼ 1010 GeV is necessary in order to reproduce the observed baryon asymmetry. In
the strict texture zero limit, the baryon asymmetry is dominated by the tau lepton asym-
metry and therefore there is a well defined connection between leptogenesis and low energy
observables, YB ∝ sin φ. Despite this connection it becomes more diffuse as we depart from
the texture zero limit, the connection still holds in the region in the vicinity of the (1,2)
texture zero where the baryon asymmetry is enhanced (see Fig.(4) lower left plot).

We find a similar behaviour when the spectrum presents an inverted hierarchy. In this
case the flavour asymmetries are:

ǫee ≃ −3M1m2

8πv2

3

4

[
∆m2

sol

∆m2
atm

sin φ√
10 + 6 cosφ

+
sin θ13√

3

(
2 sin δ + sin(δ − φ) − 3 sin(δ + φ)√

10 + 6 cosφ

)]
,

ǫµµ ≃ −3M1m2

8πv2

√
3

2

ξρ

8

√
5 + 3 cosφ sin(φ/2) cosω,

ǫττ ≃ 3M1m2

8πv2

√
3

4
sin θ13

[
2 sin δ + sin(δ − φ) − 3 sin(δ + φ)√

10 + 6 cosφ

]
, (84)

and the washout factors,

Kee ≃ 1

2

m1m2

m̃∗|Mµµ|
,
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Kµµ ≃ |Mµµ|
m̃∗

ρ2,

Kττ ≃ m1m2

m̃∗|Mµµ|
sin2 θ13, (85)

with Mµµ ≃ m1/8 + 3/8m2e
iφ. Using that |Mµµ| <∼ m2/2, we find that the electron

asymmetry is necessarily strongly washed-out, whereas the muon and the tau asymmetries
are only weakly washed-out (when M1

>∼ 1010GeV, Y2 would be strongly washed-out and
Yττ , weakly washed-out).

For the case with inverted hierarchy, we require again M1
>∼ 1010GeV to reproduce the

observed asymmetry (or even larger, when sin θ13 is small). The baryon asymmetry is
in this case also dominated by the tau asymmetry, except when sin θ13 is very small. In
the case that the baryon asymmetry is dominated by the tau asymmetry, although there
exists a connection between leptogenesis and low energy observables, this connection is too
complicated to be of any practical use. On the other hand, when sin θ13 is very small, there
is no relation whatsoever, since leptogenesis would depend on the unobservable parameters
ρ and ω.

6.3 Texture zero in the (1,3) position

Finally, in the case that the texture zero appears in the (1,3) position, the flavour CP
asymmetries are:

ǫee ≃ −3M1m3

8πv2

√
3

7

[
sin θ13 sin(δ − φ) +

√
3

4

m2
2

m2
3

sin φ

]
,

ǫµµ ≃ 3M1m3

8πv2

3

7

[
sin φ − sin θ13√

3
sin(δ − φ)

]
,

ǫττ ≃ 3M1m3

8πv2

√
m3

m2

√
3

7
ξρ sin(φ/2 + ω). (86)

On the other hand, the washout parameters read:

Kee ≃ 1

4

m2

m̃∗
(1 + 2

√
3 sin θ13 cos δ),

Kµµ ≃ 3

2

m2

m̃∗
,

Kττ ≃ 1

2

m3

m̃∗
ρ2. (87)

Therefore, in this case, the electron and the tau asymmetries are weakly washed-out, and
the muon asymmetry, strongly washed-out. On the other hand, for M1

>∼ 109GeV the
relevant quantity to estimate the washout is K2 = Kee + Kµµ > 1, so in this regime Y2 is
strongly washed out and Yττ is weakly washed out.

Similarly to the case of the (1,2) texture zero, this case requires M1
>∼ 1010 GeV to

reproduce the observations. Furthermore, the baryon asymmetry in the vicinity of the
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texture zero is dominated by the muon asymmetry and hence depends mainly on sin φ.
This behaviour occurs in particular, in the region where the baryon asymmetry is enhanced
in Fig.(4), lower left plot.

The case with inverted hierarchy presents some qualitative differences with respect to
the case with normal hierarchy. When neutrinos have an inverted hierarchy, the flavour
CP asymmetries read:

ǫee ≃ −3M1m2

8πv2

3

4

[
∆m2

sol

∆m2
atm

sin φ√
10 + 6 cosφ

− sin θ13√
3

(
2 sin δ + sin(δ − φ) − 3 sin(δ + φ)√

10 + 6 cosφ

)]
,

ǫµµ ≃ −3M1m2

8πv2

√
3

4
sin θ13

[
2 sin δ + sin(δ − φ) − 3 sin(δ + φ)√

10 + 6 cosφ

]
,

ǫττ ≃ −3M1m2

8πv2

√
3

2

ξρ

8

√
5 + 3 cosφ sin(φ/2) cosω, (88)

and the washout parameters,

Kee ≃ 1

2

m1m2

m̃∗|Mττ |
,

Kµµ ≃ m1m2

m̃∗|Mττ |
sin2 θ13,

Kττ ≃ |Mττ |
m̃∗

ρ2, (89)

with Mττ ≃ m1/8 + 3/8m2e
iφ. As for the case with the (1,2) texture zero, we find that

the electron asymmetry is necessarily strongly washed-out, whereas the muon and the tau
asymmetries are only weakly washed-out (also, in the regime where only the tau Yukawa
interactions are in equilibrium, Y2 would be strongly washed-out and Yττ , weakly washed-
out).

It is important to note that all the flavour asymmetries in eq.(88) have a suppression
factor, with different origins. As a consequence, in the limit of the strict texture zero, the
resulting baryon asymmetry is very small and M1

>∼ 5 × 1012GeV would be necessary to
accommodate observationl data. However, as we depart from the texture zero limit, we
find a huge enhancement of the baryon asymmetry, that can allow right-handed neutrino
masses as low as M1 ∼ 1010GeV, independently of the value of sin θ13. The reason is that
the tau CP asymmetry can become less suppressed, and at the same time the resulting tau
lepton asymmetry can be sizable since the tau asymmetry is only weakly washed-out (on
the contrary, ǫ2 = ǫee + ǫµµ could be comparable to ǫττ , but is strongly washed-out). As a
result, the baryon asymmetry is dominated by the tau asymmetry and hence any connection
between leptogenesis and low energy observables is lost in this region of enhanced baryon
asymmetry.

7 The case of R real

In Section 5 it was discussed that there are two situations where the differences between
the computation of the baryon asymmetry taking into account flavour or not are maxi-
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mal, namely when there is an approximate texture zero in the neutrino Yukawa matrix,
and when the matrix R is real. The case with R real physically corresponds to the class
of models where CP is an exact symmetry in the right-handed neutrino sector. The rea-
son for this can be more easily understood working in the basis where the charged lepton
Yukawa coupling and the right-handed mass matrix are diagonal, so that the neutrino
Yukawa matrix is the only coupling in the leptonic Lagrangian that violates CP. More
specifically, the neutrino Yukawa coupling can be written in its singular value decom-
position, λ = V †

RDiag(λ1, λ2, λ3)VL. Hence, the CP violation in the right-handed neu-
trino sector is encoded in the phases in VR, that can be extracted from diagonalizing the
combination λλ† = V †

RDiag(λ2
1, λ

2
2, λ

2
3)VR. On the other hand, using the parametrization

of the Yukawa coupling in eq.(58), this same combination of matrices can be written as
λλ† = M1/2RmR†M1/2/v2. Comparing the two expressions it is apparent that R is real if
and only if VR is real, i.e. when there is no CP violation in the right-handed sector.16

In this limit the flavour CP asymmetries and the baryon asymmetry depend exclusively
on the phases of the left-handed sector, that are in turn uniquely determined by the low
energy phases. Consequently, in this limit the leptogenesis mechanism is tightly connected
to the low energy phases. This connection is more apparent from the expression of the
flavour CP asymmetries in the parametrization eq.(58):

ǫαα ≃ 3M1

8πv2

Im
(∑

β

√
mβR1βU

∗
αβ

)(∑
β

√
m3

βR1βUαβ

)

∑
β mβR2

1β

=
3M1

8πv2

∑
β

∑
γ>β

√
mβmγ(mγ − mβ)R1βR1γImU∗

αβUαγ∑
β mβR2

1β

. (90)

This discussion suggests that the observation of low energy CP violation would consti-
tute an important hint to the leptogenesis mechanism. In a general case with R complex,
the low energy phases in the leptonic mixing matrix could stem from the phases in the
left-handed sector, in the right-handed sector, or in both sectors. In any of the cases, and
barring unnatural cancellations, a baryon asymmetry is necessarily generated through the
mechanism of leptogenesis, as long as at least one of the lepton Yukawa interactions is
in equilibrium (corresponding roughly to M1

<∼ 1012 GeV). This result only follows when
flavour is correctly taken into account in the Boltzmann equations. In previous analyses of
leptogenesis ignoring flavour, the observation of low energy CP violation did not automat-
ically imply the existence of a baryon asymmetry, since the possibility existed that the low
energy phases could stem exclusively from the left-handed sector and hence be irrelevant
for leptogenesis.

16Furthermore, it can be checked that there is mixing in VR if and only if there is mixing in R, and that
mixing in any 2 × 2 block in R translates into mixing in the same block of the matrix VR.
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8 Conclusions

Thermal leptogenesis is an attractive and minimal mechanism to make the baryon asym-
metry of the Universe. The asymmetry is commonly calculated by solving a Boltzmann
equation for the total lepton asymmetry (one-flavour approximation). In a previous pa-
per [13] we studied the impact of lepton flavours (charged lepton Yukawa couplings) on
the Boltzmann equations (one for each lepton flavour) and discussed the phenomenological
implications for leptogenesis.

It may be counter-intuitive that flavour matters in leptogenesis, since Yukawa couplings
are a small perturbative correction. We have shown that flavour effects are relevant when
the interaction rates mediated by the the charged Yukawa couplings are faster than the
typical timescale for leptogenesis. The charged Yukawa rates may be dropped from the
Boltzmann equations provided the latter are written in the flavour basis, where the charged
Yukawa couplings cannot change the flavour of the asymmetries. This implies that one
should solve Boltzmann equations for each flavour.

The final value of the baryon asymmetry depends on the CP asymmetry in each flavour
α and on the washing out by the lepton number α violating processes. Taking into account
these flavour dependent washing out factors generically enhances the baryon asymmetry
with respect to the usual one-flavour approximation, in the limit of strong washout.

In this paper we have provided analytical approximations for the final baryon asymmetry
with flavours accounted for. These depend on the temperature of leptogenesis, and can be
obtained following the procedure of section 4.1.4, or of the end of section 4.2. We also
included CP violation in the ∆L = 1 scatterings relevant for N1 production.

In the two right-handed neutrino (2RHN) model, we have compared our results ob-
tained with flavoured Boltzmann equations against the usual one-flavour approximation,
to illustrate the big impact that flavour has on leptogenesis. We have found that there are
two situations where the differences between the treatment of leptogenesis taking flavour
properly into account and previous analyses, that ignored flavour, are maximal. The first
one arises when the neutrino Yukawa coupling present approximate texture zeros in the
first row, so that the CP asymmetry in that flavour is only weakly washed-out. As a
consequence, we have found that thermal leptogenesis in the 2RHN model can produce
the observed baryon asymmetry for masses of the lightest right-handed neutrino smaller
than previously believed, namely 1010 GeV for the case with normal hierarchy and 5×1010

GeV for the case with inverted hierarchy (to be compared with 1011 GeV and 1013 GeV,
respectively, from the conventional computation ignoring flavour). The second situation
corresponds to the limit in which CP is an exact symmetry in the right-handed neutrino
sector. In this case, the conventional computation would yield an exactly vanishing baryon
asymmetry, whereas the computation that takes flavour into account could predict a sizable
baryon asymmetry.
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