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Abstract

We study the possibility of obtaining noncommutative gravity dynamics from string theory

in the Seiberg-Witten limit. We find that the resulting low-energy theory contains more

interaction terms than those proposed in noncommutative deformations of gravity. The rôle

of twisted diffeomorphisms in string theory is studied and it is found that they are not standard

physical symmetries. It is argued that this might be the reason why twisted diffeomorphisms

are not preserved by string theory in the low energy limit. Twisted gauge transformations

are also discussed.
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1 Introduction

The construction of consistent noncommutative deformations of Einstein gravity has been a

subject of interest for some time (for an incomplete list of references see [1, 2, 3]). Following the

standard procedure to construct noncommutative deformations of gauge and scalar theories

[4], noncommutative versions of the Einstein-Hilbert action have been obtained by replacing

the ordinary product by the noncommutative Moyal product

f(x) ⋆ g(x) = f(x)e
i
2
θµν
←−
∂ µ
−→
∂ νg(x). (1.1)

There are many ways in which these deformations have been implemented. Generically,

noncommutative deformations of gravity lead to a complexification of the metric as well as

of the local Lorentz invariance of the theory which is no longer SO(1,3) but U(1,3) or larger

[2]. This results in theories with hermitian metrics reminiscent of those studied long ago

by Einstein and Straus [5]. These theories are known to contain ghost states [6] (for some

proposal to overcome these problems see [3]).

An unsatisfactory feature of many of the approaches developed so far is that they are phys-

ically ad hoc, since the deformation of general relativity is not based on any general dynamical

principle. Recently, however, a new approach has been proposed in which a deformation of the

Einstein-Hilbert action is constructed based on a deformation of the group of diffeomorphisms

[7, 8] (see [9] for a review). The idea behind it is to replace the diffeomorphism invariance of

general relativity by a twisted version of this symmetry [10], i.e. deforming the Hopf algebra

structure of the universal enveloping algebra of the Lie algebra of vector fields by twisting the

coproduct in the appropriate way (see also [11]). Roughly speaking this amounts to keeping

the action of the diffeomorphisms on the physical “primary” fields unchanged while deforming

the Leibniz rule when taking the action of diffeomorphisms on the product of two fields. This

change have the effect that diffeomorphisms now act “covariantly” on the star-product of two

fields.

Once the deformation of the diffeomorphisms has been introduced a gravity action can be

written with the requirement of invariance under the action of the twisted transformations. As

with other proposals for noncommutative gravity, the deformed Einstein-Hilbert action can

be written in terms of star-products. Nevertheless, unlike other proposals, this construction

has the obvious advantage of being based on an underlying symmetry principle.
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One may wonder whether string theory can reproduce the deformed gravity action pro-

posed in [7, 8] in some limit. It is known that the strict Seiberg-Witten [12] limit results in a

complete decoupling of gravity. This is because in order to retain nontrivial gauge dynamics

on the brane one has to scale the closed string coupling constant to zero in the low-energy

limit. As a result, closed string states decouple at low energies and the resulting theory is not

coupled to gravity.

By looking at the next-to-leading order in the Seiberg-Witten limit it is possible to study

the dynamics of closed strings in the presence of a constant B-field. In this paper we will

study the gravitational action induced by the bosonic string theory on a space-filling D-brane

with a constant magnetic field in the low energy limit. We find that the induced terms for

the interaction vertex of three gravitons on the brane contain terms which cannot be derived

from an action expressed solely in terms of star-products and therefore are not accounted for

in the noncommutative gravity action proposed in [7, 8]. Moreover, these new terms scale

in the same way in the Seiberg-Witten limit as the ones associated with star-products and

we have found no physical argument that allows their consistent elimination to reproduce an

induced gravity action that can be expressed in terms of star-products alone.

We will see that this inability to reproduce a gravity action invariant under deformed

diffeomorphisms can be traced back to the fact that the star-product is not “inert” under the

action of space-time diffeomorphisms. As it will be shown below, the twisted Leibniz rule can

be interpreted as resulting from applying the ordinary Leibniz rule but taking into account

the transformation of the star-product. Hence the invariance of the deformed gravity action

under twisted diffeomorphisms cannot be considered a physical symmetry in the standard

sense, since the transformation involves not only the physical fields but also the star-products.

Thus, string theory cannot provide the deformed diffeomorphisms at low energies since these

transformations do not yield a physical symmetry of the theory.

The present paper is organized as follows: in Section 2 we will review the construction

of the induced gravity action on D-branes in the standard case. After that, in Section 3,

we will summarize the relevant aspects of the construction of the noncommutative gravity

action presented in [7, 8]. We move on in Section 4 to study the gravity action induced on the

brane in the presence of a B-field to the next-to-leading order in the Seiberg-Witten limit.

As advertised, we will find extra terms not present in the field theory construction of the
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noncommutative action. Finally, in Section 5 we will try to understand in physical terms the

mismatch between the string and field theory constructions, before summarizing our results

in Section 6. In order to make the presentation more self-contained, Appendix A contains a

summary of results and definitions concerning Hopf algebras.

2 Brane induced gravity from string theory

We begin by computing the gravitational action induced on the brane in the absence of a

B-field. For simplicity we work here with the bosonic string in the presence of a space-filling

D-brane. The analysis can be extended to superstrings and/or lower-dimensional D-branes

[14].

We carry out the computation by evaluating the correlation functions of three graviton

vertex operators on the disk. These correlation functions induce three-graviton interaction

terms in the gravitational action on the brane. It is important to stress at this point that

we are computing the gravitational action induced on the brane. It is well known that the

graviton amplitudes on the disk contain divergences associated with the coincidence limit of

two or more vertex operator insertions that are usually handled by considering the different

factorization limits including the contributions of Riemann surfaces without boundaries [16].

In our case, however, we eliminate these divergences by adding appropriate counterterms

in the induced action on the brane. Then the divergences in the string amplitudes will be

absorbed in a renormalization of the coefficients multiplying the different terms in the induced

gravitational action. From this point of view the origin of the terms in the induced action is

similar to the way in which λφ3 and λφ4 interaction terms are induced in the Yukawa theory.

We have to calculate the disk correlation function of three graviton vertex operators [17, 18]

Vp =
gs

α′
εµν(p)

∫
d2z∂Xµ∂Xνeip·X(z, z), ε[µν](p) = 0 = ηµνεµν(p), (2.1)

where the symmetric-traceless polarization tensor has to satisfy the transversality conditions

pµεµν(p) and the momentum has to be on-shell, p2 = 0, for the vertex operator to be a primary

field with conformal weight (1,1). Naively, the coupling between three on-shell gravitons (or

gauge fields) vanishes for kinematical reasons. In our case we remain on-shell while continuing

the momenta to complex value, in such a way that the resulting amplitudes give a nonzero

result from which the induced couplings can be read off.
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The relevant quantity to evaluate is the correlation function of three graviton vertex

operators

〈Vp1Vp2Vp3〉D =
g2

s

(α′)3

∫

D

3∏

i=1

d2zi〈〈
3∏

k=1

∂Xµ∂Xνeip·X(zk, zk)〉〉D, (2.2)

where 〈〈. . .〉〉D indicates the correlation function of the corresponding operator on the disk. In

order to carry out the calculation, it is very convenient to rewrite the polarization tensors as

εµν ≡ ζµζν so that the graviton vertex operator can be expressed as

Vp = gs

∫
d2z eiP·X

∣∣∣∣
ζζ

(2.3)

where by the subscript we indicate that only the part linear in ζµζν has to be kept, and Pµ

is defined by

Pµ ≡ pµ − i√
α′

ζµ∂ − i√
α′

ζµ∂. (2.4)

Proceeding in this way the correlation function of three gravitons can be written in a way

similar to the three tachyons amplitude with the momenta pµ replaced by Pµ,

〈Vp1Vp2Vp3〉D =
g2

s

(α′)13
(2π)26δ(p1 + p2 + p3)

∫

D

3∏

i=1

d2zi

3∏

k<ℓ

e−Pk·PℓG(zk ,zℓ)

∣∣∣∣∣
(ζζ)3

, (2.5)

where the delta function and the powers of α′ arise from the integration over the zero modes

of Xµ(z, z) and G(z, w) is the propagator of the Laplacian on the disk

G(z, w) = −α′
(

log |z − w| − log |z − w|
)
. (2.6)

If we use now the momentum conservation together with the on-shell condition for the

momenta, the exponent inside the integral in Eq. (2.5) simplifies to

3∑

k<ℓ

Pk · PℓG(zk, zℓ) = − i√
α′

3∑

k 6=ℓ

[
(pk · ζℓ)∂ℓ + (pk · ζℓ)∂ℓ

]
G(zk, zℓ)

− 1

2α′

3∑

k 6=ℓ

[
(ζk · ζℓ)∂k∂ℓ + (ζk · ζℓ)∂k∂ℓ

]
G(zk, zℓ) (2.7)

− 1

α′

3∑

i6=j

(ζi · ζj)∂i∂jG(zi, zj).
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In order to obtain the terms in the effective action we have to expand the exponential in

Eq. (2.5), exp
[
−

∑3
k<ℓ Pk · PℓG(zk, zℓ)

]
keeping the terms linear in ζµζν . Doing this we

obtain terms with two, four and six momenta that induce interactions in the action that are

associated respectively with terms linear, quadratic and cubic in the Riemann tensor [16] (the

term without derivatives is associated to a “cosmological” term proportional to
√−g).

The only terms that contributes to the Einstein-Hilbert term are those with two momenta

given by

e−
∑3

k<ℓ Pk·PℓG(zk,zℓ)
∣∣∣
(ζζ)3

= − 1

(α′)3

3∑

i,ℓ=1




3∑

(j,a,b)=1

3∑

(m,c,d)=1

(pi · ζj)(pℓ · ζm)(ζa · ζb)(ζc · ζd)

× ∂jGreg(zi, zj)∂mGreg(zℓ, zm)∂a∂bGreg(za, zb)∂c∂dGreg(zc, zd)

+
3∑

(j,a,c)=1

3∑

[m,b,d]=1

(pi · ζj)(pℓ · ζm)(ζa · ζb)(ζc · ζd)

× ∂jGreg(zi, zj)∂mGreg(zℓ, zm)∂a∂bGreg(za, zb)∂c∂dGreg(zc, zd)

+

3∑

(a,j,m)=1

3∑

{a,b,c}=1

(pi · ζj)(pℓ · ζm)(ζa · ζb)(ζc · ζd) (2.8)

× ∂jGreg(zi, zj)∂mGreg(zℓ, zm)∂a∂bGreg(za, zb)∂c∂dGreg(zc, zd)

+
3∑

(a,j,m)=1

3∑

{m,b,c}=1

(pi · ζj)(pℓ · ζm)(ζa · ζb)(ζc · ζd)

× ∂jGreg(zi, zj)∂mGreg(zℓ, zm)∂a∂bGreg(za, zb)∂c∂dGreg(zc, zd)

]

,

where we have used the notation (a, b, c) to indicate a sum where all the three indices are

different and b < c, [a, b, c] to denote that all three indices are different and in addition b > d

and {a, b, c} that the three indices are different without any further constraint. We have

also indicated that the propagators have to be regularized in the coincidence limit for the

expression to be finite.

A calculation of the corresponding integrals gives the following expression for the term

with two momenta [16]

〈V1V2V3〉p2 = A
[
(p3 · ε1 · p3)(ε2 · ε3) + (p1 · ε3 · p1)(ε1 · ε2) + (p2 · ε1 · p2)(ε2 · ε3)

+ 2(p1 · ε3 · ε2 · ε1 · p2) + 2(p2 · ε1 · ε3 · ε2 · p3) + 2(p3 · ε2 · ε1 · ε3 · p1)
]
, (2.9)
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where the coefficient A is given by4

A = − g2
s

(α′)3

∫

D

3∏

i=1

d2zi

∣∣∣(∂2G12 − ∂2G32)∂1∂3G13

∣∣∣
2

. (2.10)

This integral has divergences associated with the coincidence limits of two or more insertions

which, by conformal invariance, are related to the factorization limits containing closed string

amplitudes. These divergences can be regularized in a way compatible with both conformal

invariance and target-space general covariance [16]. In our case, as explained above, these

divergences will be reabsorbed in a renormalization of the coupling constant.

In constructing the induced graviton interactions on the brane we have to be careful in

normalizing the graviton field properly. In particular, because the disk amplitude with two

graviton vertex operators is nonvanishing [16] and scales as gs, we have to reabsorb powers

of the string coupling constant in the definition of the graviton field in such a way that the

quadratic term in the effective action is independent of gs. Therefore we take the following

correspondence between the graviton wave function hµν(x) and the polarization tensor εµν(p)

g
1
2
s (α′)7

∫
d26p

(2π)26
εµν(p)eip·x −→ hµν(x). (2.11)

With this normalization, it is easy to see that the perturbative expansion can be written as

an expansion not in powers of the closed string coupling, gs, but of the so-called open string

coupling constant, go = g
1
2
s . Then, the gravitational constant κ scales as

κ ∼ g
1
2
s (α′)6 = go(α

′)6. (2.12)

Notice that this scaling with the string coupling constant is different from the one that emerges

in the string low energy effective action, κ ∼ gs(α
′)6. The reason behind is of course that,

strictly speaking, here we are not computing the low energy effective action but the gravity

action induced on the brane at low energies.

Taking into account the previous discussion, the corresponding term in the effective action

induced by the part of the amplitude represented by (2.9) can be computed from

∆S2 = (α′)26

∫
d26p1

(2π)26

d26p2

(2π)26

d26p3

(2π)26
(2π)26δ(p1 + p2 + p3) 〈Vp1Vp2Vp3〉p2, (2.13)

4To avoid cumbersome expressions we have factored out explicitly the momentum conservation delta func-
tion (α′)−13(2π)26δ(p1 + p2 + p3).
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leading to the following induced term in the Lagrangian

∆L2 = −2κ
(
2hσµ∂µh

αβ∂βhασ + hµσhαβ∂σ∂µh
αβ

)
. (2.14)

This term can be obtained from the Einstein-Hilbert term LEH = 1
2κ2

√−gR in the weak field

expansion near Minkowski space-time, gµν = ηµν + 2κhµν .

The terms with four and six momenta induce contributions to the action containing higher

powers of the curvature tensor. With four momenta we find the following tensor structure

〈V1V2V3〉p4 = B
[
(p1 · ε2 · ε3 · p1)(p2 · ε1 · p3) + (p2 · ε3 · ε1 · p2)(p3 · ε2 · p1)

+ (p3 · ε1 · ε2 · p3)(p1 · ε3 · p2)
]

(2.15)

where the coefficient B is given by

B = −2
g2

s

(α′)3
Re

∫

D

3∏

i=1

d2zi

∣∣∣(∂2G12 − ∂2G32)
∣∣∣
2[

(∂1G12 − ∂1G31)(∂2G13 − ∂3G23)∂2∂3G23

+ (∂1G12 − ∂1G31)(∂2G13 − ∂3G23)∂2∂3G23

]
(2.16)

and we assume that the divergences arising from the coincidence limits have been properly

regularized. As in the previous case, this amplitude induces a term in the effective action

that can be computed as in Eq. (2.13) with the result

∆L4 = −8a4α
′κhµν∂µ∂σhαβ∂α∂βh

σ
ν , (2.17)

where a4 is a numerical constant. As explained in [16], a term of this type arises from the

weak field expansion of a piece in the effective action quadratic in the curvature tensor,

α′a4

2κ2

√−gRµν,σλRµν,σλ.

Finally we analyze the term with six momenta. From the calculation of the disk amplitude

we get

〈V1V2V3〉p6 = C(p1 · ε2 · p1)(p2 · ε3 · p2)(p3 · ε1 · p3), (2.18)

with

C = − g2
s

(α′)3

∫

D

3∏

i=1

d2zi

∣∣∣(∂2G12 − ∂2G32)
∣∣∣
2∣∣∣(∂3G23 − ∂3G13)

∣∣∣
2∣∣∣(∂1G31 − ∂1G21)

∣∣∣
2

. (2.19)
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Following the same procedure as above, it can be seen that this part of the three-graviton

amplitude induces the following term in the effective action

∆L6 = 8a6(α
′)2κ∂µ∂νh

αβ∂α∂σhλν∂λ∂βh
µσ. (2.20)

Again a6 is a new dimensionless coupling. This piece of the induced action is the leading term

of a6(α′)2

2κ2

√−gRµν
αβRαβ

σλR
σλ

µν in the expansion around flat space-time.

Putting together the previous results (2.14), (2.17) and (2.20) we conclude that open

strings induce a three-point graviton action which reproduces the weak-field expansion of the

induced action

Sind =
1

2κ2

∫
d26x

√−g
[a0

α′
+ R + a4α

′Rµν,σλRµν,σλ + a6(α
′)2Rµν

αβRαβ
σλR

σλ
µν + . . .

]
.(2.21)

Terms containing higher powers of the curvature tensor do not contribute to the three-graviton

amplitude. In the spirit of induced gravity, the divergences contained in the integrals in Eqs.

(2.16) and (2.19) are absorbed into the renormalized couplings a0, κ, a4 and a6.

3 Noncommutative gravity

Einstein’s General Relativity, including the cosmological constant term, can be derived by

requiring general covariance and that the action contains only up to two derivatives of the

metric. In the case of noncommutative gravity a similar approach has been advanced in [7, 8]

where local diffeomorphisms are twisted. In the following we review some basic aspects of

this approach and study the corrections to the standard gravitational action in the weak field

expansion around flat space-time. The extra couplings between gravitons depending on the

noncommutativity parameter θµν are the ones we will try to obtain from string theory in

Section 4.

3.1 Deformed diffeomorphisms

As already explained above, the starting point in the approach of [7, 8] is the deformation of

diffeomorphisms by twisting. In General Relativity, infinitesimal diffeomorphisms are gener-

ated by vector fields ξ(x) = ξσ∂σ. Their action on the physical tensor fields T
(p)
(q) (x) of type

(p, q) is given by

T ′
(p)
(q)(x + ξ) = T

(p)
(q) (x), (3.1)

8



where T ′
(p)
(q)(x) represents the transformed tensor field. By expanding to linear order in ξ the

transformation of T
(p)
(q) (x) can be written in terms or its Lie derivative as

δξT
(p)
(q) (x) ≡ T

(p)
(q) (x + ξ) − T

(p)
(q) (x) = −LξT

(p)
(q) (x), (3.2)

or in components

δξT
µ1...µp

ν1...νq
(x) = −ξα(x)∂αT µ1...µp

ν1...νq
(x) + ∂αξµ1(x)T α...µp

ν1...νp
(x) + . . . + ∂αξµn(x)T µ1...α

ν1...νq
(x)

− ∂ν1ξ
β(x)T

µ1...µp

β...νq
(x) − . . . − ∂νq

ξβ(x)T
µ1...µp

ν1...β (x). (3.3)

In addition, the infinitesimal diffeomorphism generated by ξ acts on the product of two tensor

fields T
(p1)

1 (q1)
(x), T

(p2)
2 (q2)

(x) via the Leibniz rule

δξ

[
T

(p1)
1 (q1)

(x)T
(p2)

2 (q2)(x)
]

= δξT
(p1)

1 (q1)
(x) T

(p2)
2 (q2)

(x) + T
(p1)

1 (q1)(x) δξT
(p2)

2 (q2)(x). (3.4)

In a theory deformed by replacing standard products by the Moyal star-products (1.1)

the application of the Leibniz rule (3.4) shows that the product of two tensor fields does not

transform covariantly, i.e. unlike in the case analyzed above T
(p1)

1 (q1)
(x) ⋆ T

(p2)
2 (q2)

(x) does not

transform as a tensor of type (p1 + p2, q1 + q2). This means that a noncommutative gravity

theory based on replacing standard (commutative) products by star-products will fail to be

invariant under diffeomorphisms.

This fact, however, does not necessarily mean that there are no other transformations

leaving invariant the action of the deformed theory and that, in the limit θµν → 0, reduce

to the standard diffeomorphism invariance. There are in principle two possible ways to find

the deformed transformations. The first one is to deform the action of infinitesimal diffeo-

morphisms (3.2) on the fields in such a way that, using the Leibniz rule, the deformed action

remains invariant. This is analogous to how gauge invariance gets deformed to star-gauge

invariance in gauge theories on noncommutative spaces.

A second alternative is to keep the transformations (3.2) intact but to deform the way

it acts on products of fields. In [7, 8] a twist of the standard diffeomorphisms has been

constructed to achieve precisely this. The idea behind it is the realization that the universal

enveloping algebra of vector fields has a Hopf algebra structure (some basic facts about Hopf

algebras, as well as the notation used here, are summarized in Appendix A). In particular,

for an infinitesimal diffeomorphism generated by ξ 6= 1, the coproduct ∆(ξ) can be defined
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to be5

∆(ξ) = ξ ⊗ 1 + 1 ⊗ ξ, (3.5)

while ∆(1) = 1 ⊗ 1.

In fact, the choice of the coproduct determines the way the algebra of diffeomorphisms

acts on the products of fields. For a given vector field ξ, the action on the product of two

tensor fields T
(p1)

1 (q1)(x), T
(p2)

2 (q2)(x) is given by [cf. Eq. (A.16)]

δξ[T
(p1)

1 (q1)(x)T
(p2)

2 (q2)
(x)] ≡ µ

{
∆(ξ)

[
T

(p1)
1 (q1)

(x) ⊗ T
(p2)

2 (q2)(x)
]}

. (3.6)

Using the coproduct (3.5) the standard Leibniz rule (3.4) is retrieved.

Equation (3.5) is not the only possible choice for a coproduct to define a Hopf algebra

structure in the algebra of infinitesimal diffeomorphisms. In particular it is possible to intro-

duce the twist operator

F = e−
i
2
θµν∂µ⊗∂ν , (3.7)

in terms of which a new twisted coproduct is defined as

∆(ξ)F = F (ξ ⊗ 1 + 1 ⊗ ξ)F−1. (3.8)

The twist operator (3.7) enters also in the definition of the star-product of two fields

T
(p1)

1 (q1)(x) ⋆ T
(p2)

2 (q2)
(x) = µ

{
F−1

[
T

(p1)
1 (q1)

(x) ⊗ T
(p2)

2 (q2)
(x)

]}
≡ µ⋆

[
T

(p1)
1 (q1)(x) ⊗ T

(p2)
2 (q2)(x)

]
, (3.9)

which is just a more sophisticated way of writing Eq. (1.1).

It is important to stress that the twist does not change the action of infinitesimal diffeo-

morphisms on the fields, that it is still given by (3.2). The effect of the twist is to change

the coproduct and consequently the action of diffeomorphisms on the product. By using

Hadamard’s formula

eABe−A =

∞∑

n=0

1

n!
[ A, [A, . . . [A︸ ︷︷ ︸

n

, B] . . .]], (3.10)

5In the case of infinitesimal diffeomorphisms, the identity 1 correspond to the diffeomorphism generated
by a vanishing vector field
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the twisted coproduct (3.8) can be written in powers of θµν as

∆(ξ)F = ξ ⊗ 1 + 1 ⊗ ξ (3.11)

+

∞∑

n=1

(−i/2)n

n!
θµ1ν1 . . . θµnνn

{
[∂µ1 , [∂µ2 , . . . [∂µn

, ξ] . . .]] ⊗ ∂ν1∂ν2 . . . ∂νn

+ ∂µ1∂µ2 . . . ∂µn
⊗ [∂ν1 , [∂ν2, . . . [∂νn

, ξ] . . .]]
}

.

This twisted coproduct defines the action of the Lie algebra of vector fields on the star-product

of two fields as

δξ

[
T

(p1)
1 (q1)(x) ⋆ T

(p2)
2 (q2)

(x)
]
≡ µ⋆

{
∆(ξ)F

[
T

(p1)
1 (q1)

(x) ⊗ T
(p2)

2 (q2)(x)
]}

= δξT
(p1)

1 (q1)(x) ⋆ T
(p2)

2 (q2)(x) + T
(p1)

1 (q1)(x) ⋆ δξT
(p2)

2 (q2)(x)

+

∞∑

n=1

(−i/2)

n!
θµ1ν1 . . . θµnνn

{
[∂µ1 [∂µ2 , . . . [∂µn

, δξ] . . .]]T
(p1)

1 (q1)
(x) ⋆ ∂ν1∂ν2 . . . ∂νn

T
(p2)

2 (q2)
(x)

+ ∂µ1∂µ2 . . . ∂µn
T

(p1)
1 (q1)(x) ⋆ [∂ν1 , [∂ν2, . . . [∂νn

, δξ] . . .]]T
(p2)

2 (q2)(x)
}

. (3.12)

The interesting thing of this choice of the coproduct is that unlike the standard Leibniz rule,

Eq. (3.12) guarantees that the star-product of two tensor fields of type (p1, q1) and (p2, q2) is

a tensor of type (p1 + p2, q1 + q2). Therefore the star-product transforms “covariantly” with

respect to twisted diffeomorphisms.

3.2 The deformed gravity action and its weak field expansion

Once the deformation of diffeomorphisms has been carried out, it is possible to proceed with

the construction of the deformed gravity action. In [7, 8] a gravity action is presented and

shown to be invariant under deformed diffeomorphisms. In D-dimensions this action reads6

S⋆EH =
1

2κ2

∫
dDx

[
(det ⋆ e a

µ )Ĝµν ⋆ Rµν + c.c.
]
. (3.13)

Here Ĝµν denotes the star-inverse of Ĝµν , i.e. Ĝσν ⋆ Ĝµσ = δµ
ν . In terms of the vielbein e a

µ

the deformed metric is given by

Ĝµν =
1

2

(
e a

µ ⋆ e b
ν + e a

ν ⋆ e b
µ

)
ηab = gµν −

1

8
θα1β1θα2β2(∂α1∂α2e

a
µ )(∂β1∂β2e

b
ν ) + . . . , (3.14)

6Following the notation of Refs. [7, 8] we denote by Ĝµν the deformed metric and by gµν its commutative
limit θµν → 0. For other quantities, we denote the deformed ones with a hat.
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and the star-determinant of the vielbein is defined by

det ⋆e
a

µ =
1

D!
ǫµ1...µDǫa1...aD

e a1
µ1

⋆ . . . ⋆ e aD
µD

. (3.15)

The other ingredient of the deformed Einstein-Hilbert action (3.13), the Ricci tensor, is defined

in terms of the deformed Riemann tensor

R̂ λ
µν,σ ≡ ∂ν Γ̂

λ
µσ − ∂µΓ̂ λ

νσ + Γ̂ α
νσ ⋆ Γ̂ λ

µα − Γ̂ α
µσ ⋆ Γ̂ λ

να (3.16)

by R̂µν ≡ R̂ σ
µσ,ν . In turn, the deformed Christoffel symbols Γ̂ σ

µν can be computed from the

metric Ĝµν and its star-inverse by

Γ̂ σ
µν =

1

2

(
∂µGνα + ∂νGµα − ∂αGµν

)
⋆ Ĝασ. (3.17)

As shown in [7, 8] the deformed action (3.13) is invariant under the deformed algebra of dif-

feomorphisms, δξS⋆EH = 0, acting on the fields in the way defined in the previous subsection.

Our main goal is to decide whether the deformed Einstein-Hilbert action (3.13) follows

somehow from string theory, and the way in which we will do it is by comparing (3.13) to the

terms in the gravitational action induced on the brane in the presence of a constant B-field.

Since the string theory calculation proceeds by evaluating scattering amplitudes of gravitons,

it is convenient to write the deformed gravity action in a weak-field expansion around flat

space-time by writing

gµν = ηµν + 2κhµν . (3.18)

In the case of the vielbeins the weak field expansion is implemented by7

e a
µ = δ a

µ + 2κτ a
µ , (3.19)

where τ a
µ is related to the graviton field by

τ a
µ =

1

2
ηabhµνδ

ν
a. (3.20)

As above, we fix the gauge invariance by taking the transverse-traceless gauge, hµ
µ = 0,

∂µhµν = 0.

7In the Euclidean case this relation can be obtained by noticing that in matrix notation g = eeT . In
addition, the real matrix e can be written as the product of an orthogonal and a symmetric matrix, e = SO.
Therefore g = S2 and S is given by the square root of the metric. Then in the weak field expansion
S = 1 + 1

2
(2κh) and, fixing the gauge freedom to O = 1, we find that S = e ≡ 1 + (2κ)τ .

12



Moreover, in order to eventually compare with the string theory calculation presented in

Section 4 in the weak field expansion (3.18) we will consider only the leading terms in the

expansion in the noncommutativity parameter θµν . Using (3.14) and (3.19) we find for the

deformed metric

Ĝµν = ηµν + 2κhµν −
κ2

32
θα1β1θα2β2∂α1∂α2h

σ
µ ∂β1β2hνσ + O(κ3, θ4), (3.21)

whereas for its inverse there is also a linear term in θµν

Ĝµν = ηµν − 2κhµν + κ2
[
4hµσh ν

σ − 2iθαβ∂αhµσ∂βhµ
σ

− 3

8
θα1β1θα2β2(∂α1∂α2h

µσ)(∂β1∂β2h
ν

σ)
]

+ O(κ3, θ3). (3.22)

In the case of the star-determinant of the vielbein det ⋆e
a

µ , as it also happens in the case in

Einstein gravity, the only term contributing to the three-graviton amplitude is the leading

one, det ⋆e
a

µ = 1 + O(κ, θ).

With these ingredients we can proceed to compute the leading θ-dependent terms in the

three-graviton amplitude. Because the action (3.13) is real the first correction to the Einstein-

Hilbert action has to contain two powers of the noncommutativity parameter. Hence, for

dimensional reasons, we find that the first nontrivial contribution to the three-graviton vertex

contains two powers of θ and six derivatives. Collecting all the terms of this type we find that

the leading correction to the three-graviton vertex is

∆θLEH =
1

2κ2

[
Ĝµν(2)Rνµ + gµνR̂(2)

νµ + Ĝµν(1)R̂(1)
νµ

]∣∣∣∣
h3

+ total derivatives,

where by the superindex (k) we denote the terms with k powers of θµν and the subindex h3

indicates that we are keeping only the terms with three graviton fields. Using the expressions

given above for the different terms and after a long but straightforward calculation we find

the sought term to be

∆θLEH =
1

2
κθνγθηρ

(
2hσµ∂µ∂ν∂ηh

αβ∂β∂γ∂ρhασ + ∂γ∂ρh
µσhαβ∂σ∂µ∂ν∂ηh

αβ
)

+ terms vanishing on-shell. (3.23)

In our analysis we are going to ignore those terms in the action that are zero by applying

the equations of motion. The reason is that ultimately we want to compare this result with

the induced gravity action obtained from the string theory amplitudes. Since string theory
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only allows the computation of on-shell scattering amplitudes, any term in the effective action

vanishing on-shell cannot be accounted for. In order to compare with later results, we can

rewrite this term in momentum space as

∆θLEH = − κ

12
(p2 µθ

µνp3 ν)
2
[
2p3 σp2 λh

σβ(p1)hβη(p2)h
ηλ(p3) + hσλ(p1)p2 αp2 βhσλ(p2)h

αβ(p3)
]

+ O(pi · pj). (3.24)

We notice that the term in brackets has the same tensor structure as the standard Einstein-

Hilbert terms for three gravitons, Eq. (2.9). The reason is simple. Since we are expanding

around flat space, the kinetic term in the graviton action Lkin = 1
2
hµν(−∇2)hµν is invariant

under Lorentz transformations. In the absence of noncommutativity this symmetry would

be preserved by all the terms in the weak-field expansion of the Einstein-Hilbert Lagrangian,

unlike in our case where the presence of θµν breaks that symmetry. However, in the terms

computed we find that the only source of Lorentz violation is the overall factor (p2 µθµνp3 ν)
2

while the rest of the expression, not containing any power of θµν , has to preserve Lorentz

invariance. As we know, there is only one term with this property that contains two momenta

and three graviton fields, and this is precisely the three-graviton vertex of the Einstein action

given in Eq. (2.9).

4 Induced noncommutative gravity and the Seiberg-

Witten limit

We now turn to the question of whether the term (3.23) can be obtained in some low energy

limit of string theory. As in Section 2 we restrict our attention to the case of the bosonic

string on a D25-brane. Graviton interactions on lower-dimensional branes have been con-

sidered in [13]. Applications of the Seiberg-Witten map to the study of induced gravity on

noncommutative spaces have been studied in [23].

In the Seiberg-Witten limit [12] the low-energy limit α′ → 0 is taken while keeping fixed

the open string metric Gµν , the noncommutativity parameter θµν and the gauge coupling

constant gYM. This limit can be implemented by introducing a control parameter ǫ → 0 an

scaling α′, the closed string metric gµν and the closed string coupling constant gs according

to

ǫ
1
2 α′, ǫ gµν and ǫ

1
2 gs, (4.1)
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where we have assumed that the B-field has maximal rank r = 24.

From the scaling of gs we see how closed string states decouple in the Seiberg-Witten

limit. The resulting low-energy field theory is not coupled to gravity and no gravity action

can be obtained in this low-energy limit. Nevertheless, the gravitational couplings can be

studied by considering terms which are subleading in the Seiberg-Witten limit, i.e. terms in

the action which scale with positive powers of ǫ in the limit ǫ → 0. Since we are interested

in reproducing the θ-dependent terms in the three-graviton interaction vertex, the relevant

string amplitude to compute is the disk with three graviton vertex operators insertions. The

most important change with respect to the standard calculation presented in [16] is that now,

due to the presence of the B-field, the disk propagator has the form

〈Xµ(z, z)Xν(w, w)〉D = −α′
[

1√
ǫ
gµν

(
log |z − w| − log |z − w|

)

+
√

ǫ(−Θ2)µν log |z − w|2 + Θµν log

(
z − w

z − w

)]
, (4.2)

where we have introduced the dimensionless noncommutativity parameter Θµν = 1
2πα′ θ

µν .

Once the disk propagator is known, the three-graviton amplitude can be computed using

the same techniques applied in the calculation presented in Section 2, namely

〈Vp1Vp2Vp3〉D = ǫ−
11
2

g2
s

(α′)13
(2π)26δ(p1 + p2 + p3)

×
∫

D

3∏

i=1

d2zi exp

{

−
3∑

k<ℓ

[ 1√
ǫ
Pk · PℓG(zk, zℓ) (4.3)

+
√

ǫPk • PℓH(zk, zℓ) + Pk ∧ PℓK(zk, zℓ)
]
− 1

2

√
ǫ

3∑

k=1

Pk • PkH(zk, zk)

}∣∣∣∣∣
(ζζ)3

,

where G(z, w) is the propagator on the disk,

H(z, w) = −α′ log |z − w|2

K(z, w) = −α′ log

(
z − w

z − w

)
(4.4)

and we have introduced the notation

a • b ≡ aµ(−Θ2)µνbν , a ∧ b ≡ aµΘµνbν . (4.5)

It is also important to keep in mind that the •- and ∧-products contain all the dependence

on the noncommutativity parameter. Notice also that we have factored out all powers of ǫ so
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that we have a good control on the Seiberg-Witten limit. This means that Pµ is now given

by

Pµ ≡ pµ − i

ǫ
1
4

√
α′

ζµ∂ − i

ǫ
1
4

√
α′

ζµ∂. (4.6)

In order to reproduce the first θ-dependent correction in the noncommutative gravity

action (3.13) we need terms containing two θ’s and six momenta. There are multiple ways of

obtaining this term from Eq. (4.3). In particular, bringing down all the terms of the form

(pi ∧ pj)(pk ∧ pℓ)K(zi, zj)K(zk, zℓ) from the exponent, we find the following contribution to

the amplitude8

ǫ−
11
2

g2
s

(α′)13
(2π)26δ(p1 + p2 + p3)(p1 ∧ p2)

2

∫

D

3∏

i=1

d2zi K(z1, z2)
2

3∏

k<ℓ

e
− 1√

ǫ
Pk·PℓG(zk,zℓ)

∣∣∣∣∣
(ζζ)3

,(4.7)

where in the exponential we have to keep the terms with two momenta and three polarization

tensors. Since all the dependence on the noncommutativity parameter is already factored

out, we can use our results of Section 2 to write the amplitude as

Â (p1 ∧ p2)
2
[
(p3 · ε1 · p3)(ε2 · ε3) + 2(p1 · ε3 · ε2 · ε1 · p2) + permutations

]
, (4.8)

with

Â = −ǫ−
5
2

g2
s

(α′)3

∫

D

3∏

i=1

d2zi K(z1, z2)
2
∣∣∣(∂2G12 − ∂2G32)∂1∂3G13

∣∣∣
2

(4.9)

and we have not included explicitly the overall factor implementing momentum conservation,

(
√

ǫα′)−13(2π)26δ(p1 + p2 + p3). We proceed now as in Section 2 by rescaling the graviton

wave function according to (2.11). Using Eq. (2.13) the corresponding induced term in the

action can be computed to be

ǫ
21
2 b2κθνγθηρ

(
2hσµ∂µ∂ν∂ηh

αβ∂β∂γ∂ρhασ + ∂γ∂ρh
µσhαβ∂σ∂µ∂ν∂ηh

αβ
)
, (4.10)

with b2 the dimensionless coupling. This term is precisely of the form found in Eq. (3.24) for

the first θ-dependent correction to the Einstein-Hilbert action. We notice that, as expected,

the induced term is suppressed by an overall positive power of ǫ.

8At this stage one should not worry about the overall negative power of ǫ, since this is only due to the
normalization chosen for the correlation function. As we see below the properly normalized induced term in
the effective action is suppressed by a positive power of ǫ.
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Unfortunately together with the wanted term (4.8) string theory gives us a whole plethora

of other terms which are not found in the noncommutative gravity action (3.13) and that,

moreover, scale the same way as (4.8) in the Seiberg-Witten limit. In particular we can look

at the term obtained from (4.3) by taking down all the terms proportional to pk • pℓ (k 6= ℓ)

from the exponential

ǫ−5 g2
s(2π)26δ(p1 + p2 + p3)(p1 • p2 + p1 • p3 + p2 • p3)

×
∫

D

3∏

i=1

d2zi H(z1, z2)
3∏

k<ℓ

e
− 1√

ǫ
Pk·PℓG(zk ,zℓ)

∣∣∣∣∣
(ζζ)3

. (4.11)

Since we have factored out two momenta and two powers of the noncommutative parameters

we need to keep the terms in the expansion of the exponential that contain three polarization

tensors and four momenta. Again we can go back to Section 2 to write

B̂ (p1 • p2 + p1 • p3 + p2 • p3)
[
(p1 · ε2 · ε3 · p1)(p2 · ε1 · p3) + (p2 · ε3 · ε1 · p2)(p3 · ε2 · p1)

+ (p3 · ε1 · ε2 · p3)(p1 · ε3 · p2)
]
, (4.12)

where now after factoring out (α′
√

ǫ)−13(2π)26δ(p1 + p2 + p3) we have

B̂ = −ǫ−
5
2

2g2
s

(α′)3

∫

D

3∏

i=1

d2zi

∣∣∣∂2G12 − ∂2G32

∣∣∣
2

H(z1, z2)
[
(∂1G12 − ∂1G31) (4.13)

× (∂2G13 − ∂3G23)∂2∂3G23 + (∂1G12 − ∂1G31)(∂2G13 − ∂3G23)∂2∂3G23 + c.c.
]
.

This amplitude induces a term in the action is not present in the weak-field expansion of

the deformed action (3.13) and that furthermore cannot be written in terms of star-products.

The problem however lies in that the new induced term has exactly the same scaling in the

Seiberg-Witten limit, ǫ
21
2 , as the one in Eq. (4.8), so both terms in the effective action are

equally important in the low energy limit.

Actually this is not the end of the story, since there are many other terms which contain

other θ-dependent couplings and that are of the same order in the low-energy limit. These,

for example, include in principle terms proportional to

(pi ∧ εk ∧ pi) ≡ pi µΘ
µνεk νσΘσλpi λ and (pi • εk · pi) ≡ pi µ(−Θ2)µνεk νσpσ

i . (4.14)

Again, these terms scale in the Seiberg-Witten limit with the same power of ǫ as the others
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we have kept9. As in the case of the other term discussed above the induced interactions in

the action cannot be expressed in terms of star-products of the fields.

The result of our calculation is that in taking the low-energy limit of gravitons interacting

with open strings there are terms in the induced effective action that cannot be written only

in terms of star-products. In the end this should not be a surprise, since this is also known

to happen when studying the coupling of open string states to closed strings [21, 22]. In

particular, couplings of the type (4.14) are found in Ref. [21] when computing the coupling

of gauge fields to closed string tachyons.

The bottom line is that the brane-induced low-energy dynamics of closed string theory in

the presence of a B-field is much richer than the one contained in the deformed action proposed

in [7, 8] (as, for that matter, in any other noncommutative deformation of gravity based only

on star-products). In the following we will try to shed some light on the physical reason of

why string theory does not yield the noncommutative deformation of gravity presented in

Section 3.

5 Star-deformed symmetries versus twisted symmetries

In the last section we have seen how string theory is unable to account for any noncommutative

theory of gravity based on star-products, in particular the one proposed in [7, 8]. In spite of all

the caveats to be kept in mind while trying to derive noncommutative gravity from the Seiberg-

Witten limit, it is quite surprising that the situation is so different from the one arising in

gauge theories, where the Seiberg-Witten limit leads to a well-defined noncommutative gauge

theory with gauge invariance deformed appropriately.

In this section we attempt to give an explanation of why string theory does not reproduce

noncommutative gravity. In order to do that we are going to propose an interpretation of the

twisted diffeomorphisms that allows, in our view, a better understanding of the rôle of this

twisted symmetry in field theory.

9In the philosophy of induced gravity it is possible to reabsorb powers of ǫ in the graviton wavefunction in
order that, for example, the two-graviton induced term scales like ǫ0. This changes the overall scaling of the
three-graviton interaction terms containing two powers of θµν from ǫ

21

2 to ǫ3 but does not change the relative
scaling between the different terms.
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5.1 Diffeomorphisms

Let us consider an arbitrary diffeomorphism generated by a vector field ξ(x) = ξµ(x)∂µ. We

consider two fields Φ1, Φ2 transforming under a finite diffeomorphism generated by a vector

field ξ in two different representations R1, R2

Φ′1 = D1(ξ)Φ1, Φ′2 = D2(ξ)Φ2, D1(ξ) ∈ R1, D2(ξ) ∈ R2. (5.1)

If the star-product of the two fields Φ1 ⋆Φ2 transforms in the product representation R1 ⊗R2

then F−1Φ1 ⊗ Φ2 has to transform as

(F−1Φ1 ⊗ Φ2)
′ ≡ [D1(ξ) ⊗D2(ξ)](F−1Φ1 ⊗ Φ2). (5.2)

Inserting now the identity 1 = [D1(ξ)
−1 ⊗D2(ξ)

−1][D1(ξ) ⊗D2(ξ)] we find

(F−1Φ1 ⊗ Φ2)
′ =

{
[D1(ξ) ⊗D2(ξ)]F−1[D1(ξ)

−1 ⊗D2(ξ)
−1]

}{
[D1(ξ) ⊗D2(ξ)](Φ1 ⊗ Φ2)

}

= F ′−1Φ′1 ⊗ Φ′2, (5.3)

where we have introduced the transformed operator

F ′−1 = [D1(ξ) ⊗D2(ξ)]F−1[D1(ξ)
−1 ⊗D2(ξ)

−1]. (5.4)

Actually, by expanding F−1 in powers of the noncommutativity parameter θµν and inserting

the identity, the transformed twist operator can be written as

F ′−1 = e
i
2
θµν [D1(ξ)∂µD1(ξ)−1]⊗[D2(ξ)∂µD2(ξ)−1]. (5.5)

Let us now focus on infinitesimal diffeomorphisms. By writing

D1(ξ) = eδξ,1 , D2(ξ) = eδξ,2 (5.6)

we find, at first order in the generators δξ,1, δξ,2

[D1(ξ)∂µD1(ξ)
−1] ⊗ [D2(ξ)∂µD2(ξ)

−1] = ∂µ ⊗ ∂ν − [∂µ, δξ,1] ⊗ ∂ν − ∂µ ⊗ [∂ν , δξ,2], (5.7)

so the variation of the twist operator δξF−1 = F ′−1 − F−1 is given by

δξF−1 = e
i
2
θµν∂µ⊗∂ν−

i
2
θµν [∂µ,δξ,1]⊗∂ν−

i
2
∂µ⊗[∂ν ,δξ,2]

∣∣∣
δ
, (5.8)
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where the subscript δ indicates that we should only keep the terms linear in δξ,1 and δξ,2.

In order to work out the expression (5.8) we make use of the relation

eA+δA
∣∣
δA

=

∫ 1

0

ds esAδAe(1−s)A = eA

∫ 1

0

dt e−tAδAetA, (5.9)

which together with Hadamard’s formula (3.10) leads to the following expression

eA+δA
∣∣
δA

= eA

∞∑

n=0

(−1)n

(n + 1)!
[ A, [A, . . . [A︸ ︷︷ ︸

n

, δA] . . .]], (5.10)

so δξF−1 can be written as the following formal series linear in δ1,ξ, δ2,ξ

δξF−1 = F−1

∞∑

n=1

(−i/2)n

n!
θµ1ν1θµ2ν2 . . . θµnνn

{
[∂µ1 , [∂µ2 , . . . [∂µn

, δξ,1] . . .]] ⊗ ∂ν1∂ν2 . . . ∂νn

+ ∂µ1∂µ2 . . . ∂µn
⊗ [∂ν1 , [∂ν2 , . . . [∂νn

, δξ,2] . . .]]
}
. (5.11)

Therefore, the transformation of the star-product of Φ1 and Φ2 is given by

δξ[Φ1(x) ⋆ Φ2(x)] ≡ µ[F ′−1Φ′1(x) ⊗ Φ′2(x)] − µ[F−1Φ1(x) ⊗ Φ2(x)]

= µ[F−1δξ,1Φ1(x) ⊗ Φ2(x)] + µ[F−1Φ1(x) ⊗ δξ,2Φ2(x)]

+ µ[(δξF−1)Φ1(x) ⊗ Φ2(x)] (5.12)

= δξ,1Φ1(x) ⋆ Φ2(x) + Φ1(x) ⋆ δξ,2Φ2(x) + Φ1(x)(δξ⋆)Φ2(x),

where we have introduced the notation

Φ1(x)(δξ⋆)Φ2(x) ≡ µ[(δξF−1)Φ1(x) ⊗ Φ2(x)]. (5.13)

Using Eq. (5.8) we can write this extra term explicitly as

Φ1(x)(δξ⋆)Φ2(x) =

∞∑

n=1

(−i/2)n

n!
θµ1ν1 . . . θµnνn

{
[∂µ1 , . . . [∂µn

, δξ,1] . . .]Φ1(x) ⋆ ∂ν1 . . . ∂νn
Φ2(x)

+ ∂µ1 . . . ∂µn
Φ1(x) ⋆ [∂ν1 , . . . [∂νn

, δξ,2] . . .]Φ2(x)
}

. (5.14)

In this calculation we have retrieved the twisted Leibniz rule that was obtained by twisting

the Hopf algebra coproduct by the twist operator F . However, our analysis lead us to a

different interpretation of the twisted Leibniz rule. Instead of thinking in term of a twisted

symmetry we can interpret the deformed diffeomorphisms as the ordinary ones but with
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the additional condition that these act not only on the fields but on the star-product as well,

according to Eq. (5.14). In other words, the twisted Leibniz rule emerges from the application

of the standard one to Φ1 ⋆Φ2 and taking into account the transformation of the star-product

itself

δξ(Φ1 ⋆ Φ2) = (δξΦ) ⋆ Φ2 + Φ1 ⋆ (δξΦ2) + Φ1(δξ⋆)Φ2, (5.15)

i.e., in transforming a star-product of operators we have consider the star-product as a dif-

ferential operator with its own transformation properties. Notice that the transformation of

the star-product depends on the representation of the fields we multiply.

This interpretation of the deformed diffeomorphisms actually allows a better understand-

ing of the results found so far. In particular we see that the deformed diffeomorphisms,

although leaving the deformed Einstein-Hilbert action invariant, are not bona fide physical

symmetries, since they do not act just on the fields, but on the star-products as well. This

prevents the application of the standard Noether procedure to obtain conserved currents. The

same can be said with respect to Ward identities in the quantum theory.

It is interesting to particularize our analysis to the case of linear affine transformations,

where we can recover the results of Ref. [24]. Considering, for simplicity, the product of two

scalar fields Φ1(x), Φ2(x) the linear affine coordinate transformation

δxµ = Bµ
νx

ν + aµ. (5.16)

induce the following tranformation for the scalar fields

δΦ(x) = −Bµ
νx

ν∂µΦ(x) − aµ∂µΦ(x) ≡ (−Bµ
νx

ν∂µ − aµ∂µ) Φ(x). (5.17)

This implies that

[∂µ, δ] = −Bα
µ∂α (5.18)

and, as a result, only the term with n = 1 in Eq. (5.14) survives so we find

Φ1(x)(δ⋆)Φ2(x) =
i

2
θµν

[
Bα

µ∂αΦ1 ⋆ ∂νΦ2(x) + Bα
ν∂µΦ1 ⋆ ∂αΦ2(x)

]

=
i

2

(
Bα

µθ
µν + θασBν

σ

)
∂αΦ1(x) ⋆ ∂νΦ2(x) (5.19)
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The interesting thing about the case of linear affine transformation is that this extra term in

the Leibniz rule can actually be reabsorbed by a simultaneous transformation of the noncom-

mutativity parameter [24]

δθµν = − (Bµ
αθαν + θµσBν

σ) , (5.20)

since in this case the transformation of Φ1(x) ⋆θ Φ2(x) picks up an extra term associated to

the transformation of θµν itself given by10

δθ[Φ1(x) ⋆θ Φ2(x)] ≡ Φ1(x) ⋆θ+δθ Φ2(x) − Φ1(x) ⋆θ Φ2(x)

=
i

2
δθµν∂µΦ1(x) ⋆θ ∂νΦ2(x). (5.21)

This cancels exactly the extra term (5.19) in the twisted Leibniz rule and one is left with

δtotal[Φ1(x) ⋆θ Φ2(x)] ≡ δ[Φ1(x) ⋆θ Φ2(x)] + δθ[Φ1(x) ⋆θ Φ2(x)]

= δΦ1(x) ⋆θ Φ2 + Φ1(x) ⋆θ δΦ2(x), (5.22)

where δ indicates the variation of at constant θµν given by Eq. (5.15). Hence we have recovered

the result of [24] that the star-product is covariant under affine linear transformations provided

the noncommutativity parameter is also transformed. In particular, if one takes affine linear

transformations belonging to the “little group”, i.e. those leaving θµν invariant, the extra

term in the Leibniz rule (5.19) vanishes.

It is important to keep in mind that for this to work it is crucial that in the case of

affine linear transformation the noncommutativity parameter does not pick up any depen-

dence on the space-time coordinates. Of course this is not the case for general nonlinear

transformations of the coordinates, in which case there is no transformation of the (constant)

noncommutativity parameter that allows a covariantization of the Moyal star-product.

5.2 Gauge theories

The situation in gauge theories is somewhat different. It is crucial that in this case we have

in principle the Seiberg-Witten map relating ordinary gauge transformations to their star-

deformation in a well defined series in θµν , in such a way that at each stage the effective

10For the sake of clarity, here and in the remain of this subsection we have indicated by ⋆θ the explicit
dependence of the star-product on θµν .

22



action is invariant in the ordinary sense. Gauge transformations are deformed in such a way

that the star-product does not transform under a star-gauge transformation. This is clear in

the case of an adjoint field Φ on which a finite star-gauge transformations act by

Φ(x) −→ U(x)⋆ ⋆ Φ(x) ⋆ U(x)−1
⋆ , (5.23)

where the inverse is defined in the sense of the star-product

U⋆(x) ⋆ U⋆(x)−1 = U⋆(x)−1 ⋆ U⋆(x) = 1. (5.24)

This identity guarantees the covariance of the star-product under star-gauge transformations.

Indeed, given two adjoint fields Φ1(x), Φ2(x), one finds

Φ′i(x) ⋆ Φ′2(x) = [U⋆(x) ⋆ Φ1(x) ⋆ U⋆(x)−1] ⋆ [U⋆(x) ⋆ Φ1(x) ⋆ U⋆(x)−1]

= U⋆(x) ⋆ Φ1(x) ⋆ [U⋆(x)−1 ⋆ U⋆(x)] ⋆ Φ2 ⋆ U⋆(x)−1

= U⋆(x) ⋆ [Φ1(x) ⋆ Φ2(x)] ⋆ U⋆(x)−1 = [Φ1(x) ⋆ Φ2(x)]′, (5.25)

where the prime indicates the gauge transformed field. At the infinitesimal level, this means

that the star-gauge variation of the star-product of two operators O1 and O2 can be computed

using the standard Leibniz rule

δgauge(O1 ⋆ O2) = (δgaugeO1) ⋆ O2 + O1 ⋆ (δgaugeO2). (5.26)

Using the language introduced above we can consider that the star-product is invariant under

star-gauge transformations, i.e. δgauge⋆ = 0. A very important consequence of this deforma-

tion of gauge invariance is that it implies a restriction on the possible gauge groups which are

reduced to U(N).

A second alternative [19, 20] consists of keeping the gauge transformations undeformed

δωΦ = iTωΦ and then twist the coproduct as in Eq. (3.8)

∆(Tω)F ≡ F(Tω ⊗ 1 + 1 ⊗ Tω)F−1 = Tω ⊗ 1 + 1 ⊗ Tω

+

∞∑

n=1

(−i/2)n

n!
θµ1ν1θµ2ν2 . . . θµnνn

{
[∂µ1 , [∂µ2 , . . . [∂µn

, iTω] . . .]] ⊗ ∂ν1∂ν2 . . . ∂νn

+ ∂µ1∂µ2 . . . ∂µn
⊗ [∂ν1 , [∂ν2, . . . [∂νn

, iTω] . . .]]
}
. (5.27)
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This results in a deformation of the Leibniz rule. In the case of adjoint fields11,

Φ(x) −→ U(x)Φ(x)U(x)−1, (5.28)

the extra terms in the twisted Leibniz rule reflect the fact that

Φ′i(x) ⋆ Φ′2(x) = [U(x)Φ1(x)U(x)−1] ⋆ [U(x)Φ1(x)U(x)−1]

6= U(x)[Φ1(x) ⋆ Φ2(x)]U(x)−1. (5.29)

Interestingly, unlike the case of star-gauge transformations, there is no restriction on the

possible gauge groups that can be twisted.

Actually we can be more general by repeating the analysis performed above for the dif-

feomorphisms this time applied to gauge transformations. The covariance of the star-product

of two fields Φ1, Φ2 transforming respectively under finite gauge transformations in two rep-

resentations R1, R2 as

Φ′1 = U1Φ1, Φ′2 = U2Φ2, U1 ∈ R1, U2 ∈ R2 (5.30)

leads to a transformation of F−1 to F ′−1 given by

F ′−1 = e
i
2
θµν(U1∂µU

−1
1 )⊗(U2∂νU

−1
2 ). (5.31)

Writing now U1 = eiT
(1)
ω , U2 = eiT

(2)
ω we can write the variation of F−1 under a gauge

transformation as

δǫF−1 = F−1
∞∑

n=1

(−i/2)n

n!
θµ1ν1θµ2ν2 . . . θµnνn

{
[∂µ1 , [∂µ2 , . . . [∂µn

, T (1)
ω ] . . .]] ⊗ ∂ν1∂ν2 . . . ∂νn

+ ∂µ1∂µ2 . . . ∂µn
⊗ [∂ν1 , [∂ν2 , . . . [∂νn

, iT (2)
ω ] . . .]]

}
. (5.32)

This expression produces again the extra terms in the twisted Leibniz rule (5.27). As in the

case of diffeomorphisms discussed above, the twisted Leibniz rule can be thought of again as

resulting from the noninvariance of the star-product δω⋆ 6= 0 under standard, i.e. non-star,

gauge transformations

δω(Φ1 ⋆ Φ2) = [iT (1)
ω Φ1] ⋆ Φ2 + Φ1 ⋆ [iT (2)

ω Φ2] + Φ1(δω⋆)Φ2, (5.33)

where the product Φ1 ⋆ Φ2 transforms now in the product representation R1 ⊗R2. The star-

product is invariant only in the case of global transformations, for which [∂µ, iTω] = 0. It is

in this case that the standard Leibniz rule is retrieved.
11Now we consider the standard inverse U(x)−1U(x) = U(x)−1U(x) = 1.
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5.3 Discussion

Our analysis of gauge transformations in noncommutative theories shows that, in extending

gauge symmetries to the noncommutative realm one is faced with a choice. Either gauge

transformations are deformed in such a way that the standard Leibniz rule is satisfied or

one keeps the gauge transformations as in the commutative case at the price of giving up

the Leibniz rule. In the latter case the new rule to compute the gauge variation of the star-

products of fields can be seen as resulting from a twist in the Hopf algebra structure of the

universal enveloping algebra of the Lie algebra of the gauge group extended by translations.

The obvious advantage of deforming gauge transformations into star-gauge transforma-

tions is that gauge symmetries acts then only on the fields in a similar way as in the commu-

tative theories. In this sense star-gauge symmetry is a bona fide physical symmetry, it can be

implemented in the quantum case leading to Ward identities.

On the other hand, if ordinary gauge transformations are retained and a twisted Leibniz

rule is introduced, the situation is not so clear. In this case the noncovariant nature of the

star-product under “undeformed” gauge transformations has to be taken into account in order

for the action to be invariant, which amounts to replacing the ordinary Leibniz rule with the

twisted one. This means that, unlike the previous case, now the transformations do not act

only on the fields. As a consequence this is not a physical symmetry in the usual sense and

it is not clear whether Noether charges and Ward identities can be derived.

Let us consider the case of U(N) noncommutative gauge theories. What makes these

theories special is the fact that the same action

S = − 1

4g2

∫
d4x tr [Fµν ⋆ F µν ], Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]⋆ (5.34)

is invariant both under U(N) star-gauge transformations and U(N) twisted gauge transfor-

mations. In Ref. [19] a conserved charge was found, given by

jµ = i[F µν , Aν ]⋆, ∂µj
µ = 0. (5.35)

The fact that the action (5.34) has both types of invariances makes the physical interpretation

of this current unclear. Indeed, the current (5.35) can be obtained from (5.34) using the

standard Noether procedure with respect to the “global” transformation δAµ = i[ω(x), Aµ]⋆

and setting ω(x) to a constant at the end of the calculation. The resulting conservation law
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is consistent with star-gauge invariance. Namely,

δ⋆ωjµ = i[F µν , ∂νω]⋆ + [[F µν , Aν ]⋆, ω]⋆ (5.36)

which applying the equations of motion, ∂νF
µν = −i[F µν , Aν ]⋆, gives

δ⋆ωjµ = i∂ν [F
µν , ω]⋆, ∂µ(δ⋆ωjµ) = 0. (5.37)

In the case of twisted gauge transformations, in the absence of a Noether procedure valid

for twisted symmetries, the only way to obtain the current (5.35) is as an integrability condi-

tion for the equations of motion. In the U(1) case jµ is nevertheless invariant under twisted

gauge transformations, δωjµ = 0, while for U(N) the transformation of the current is given

by

δωjµ = i∂ν [F
µν , ω] + i[ω, ∂νF

µν + i[F µν , Aν ]⋆], (5.38)

also compatible with current conservation after applying the equations of motion, ∂µ(δωjµ) =

0. As discussed above, the action of the twisted gauge transformations can be seen as the

action of ordinary gauge transformations acting not only on the fields but on the star-products

as well.

Because of the simultaneous presence of both types of symmetries in the action (5.34) it

is not easy to decide whether the origin of the conserved current in noncommutative gauge

theories is star-gauge invariance or twisted gauge transformations. One possibility is that in

this case star-gauge invariance plays the rôle of a custodial standard symmetry that forces

not only that the low energy action is expressed exclusively in terms of star-products but

also the existence of conserved currents and Ward identities. If this is the case twisted gauge

transformations might play only an accidental rôle in the dynamics of noncommutative gauge

theories. Of course, our discussion only applies to U(N) noncommutative gauge theories. In

the case of other gauge groups we are left only with twisted gauge transformations as the

invariance of the theory since star-gauge transformations cannot be implemented.

In the case of noncommutative gravity the apparent absence of a star-deformed version

of diffeomorphism invariance might be at the heart of the difficulties in obtaining a noncom-

mutative gravity action from string theory. Comparing with the case of noncommutative

gauge theories it seems that in the case of gravity there is no symmetry of the standard type
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that plays the custodial rôle that star-gauge symmetry might be playing for gauge theories.

Apparently twisted symmetries by themselves are not handled by string theory so well as

standard symmetries acting only on the fields.

6 Conclusions and outlook

In this paper we have studied the possibility of obtaining noncommutative gravitational dy-

namics from string theory by studying the Seiberg-Witten limit of the graviton interactions

induced by a space-filling brane in bosonic string theory. In particular our main interest

is to investigate whether string theory can provide some ultraviolet completion of recently

proposed noncommutative deformations of gravity based on the invariance under twisted

diffeomorphisms [7, 8].

The conclusion of our work is that, in the case of gravitational interactions, string theory

contains much richer dynamics than those codified in terms of star-products. We have found

that the gravitational action induced on the brane in the presence of a constant B-field in the

Seiberg-Witten limit cannot be expressed in terms of star-products alone, unlike the action

for noncommutative gravity proposed in [7, 8].

The consequences of this result are still to be fully understood. In particular it would

be very interesting to clarify the rôle played by twisted symmetries in the context of string

theory. In the case of noncommutative gauge theories string theory provides in the Seiberg-

Witten limit a theory which in addition to star-gauge symmetry also has a twisted invariance.

So far it has not been possible to decide whether this twisted invariance plays a fundamental

dynamical rôle in string theory or whether it should be regarded as an accidental symmetry

additional to star-gauge invariance which would play a custodial role ensuring the existence

of conserved currents and Ward identities.

There are several ways in which one can expect to find twisted symmetries in the context

of open strings in the Seiberg-Witten limit. In particular in this limit strings become rigid

rods with variable length and their gauge theory Fock space description is similar to that

of open strings, in the sense that it is the product of two copies associated with the Hilbert

space at each endpoint, H1 ⊗H2. Since while propagating these rods sweep the background

magnetic flux, it can be expected that gauge transformations are twisted due to the presence

of the background field. Open string field theory in the presence of constant B-fields might
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be specially suited to study this issue in detail [25].
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Appendix A. Hopf algebras: a summary of useful formu-

lae and definitions

Our aim in this Appendix is to summarize basic facts about Hopf algebras and to introduce

the notation used in the paper. A more detailed introduction to the subject of Hopf algebras

and quantum groups can be found in standard reviews (for example, [15]).

Coalgebras. The concept of a coalgebra is in a sense “dual” to that of an algebra. If an

algebra A is endowed with an associative product, a coalgebra C is a vector space over a field

K together with a coproduct ∆ which is a bilinear map

∆ : C −→ C ⊗ C. (A.1)

In general, for any element a of the algebra the action of the coproduct ∆ can always be

written as

∆(a) =
∑

i

a
(1)
i ⊗ a

(2)
i , (A.2)

where the superscript indicates the “copy” of C in C ⊗ C to which the element belongs. In

addition, the coproduct is required to be coassociative, i.e. for all a ∈ C

(∆ ⊗ I)∆(a) = (I ⊗ ∆)∆(a). (A.3)
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In more concrete terms, this means that if ∆(a) is given by Eq. (A.2)

∑

i

∆(a
(1)
i ) ⊗ a

(2)
i =

∑

i

a
(1)
i ⊗ ∆(a

(2)
i ). (A.4)

In the same way that an algebra can contain a unit element e, a coalgebra might include

a counit. This is a map e : C −→ K that satisfies

(I ⊗ e) ◦ ∆ = I = (e ⊗ I) ◦ ∆. (A.5)

Bialgebras. A bialgebra B is a vector space over a field K that is at the same time an

algebra and a coalgebra. In addition the product and the coproduct must be compatible.

This means that for all elements a, b ∈ B

∆(a · b) =
∑

i

(
a

(1)
i · b(1)

i

)
⊗

(
a

(2)
i · b(2)

i

)
= ∆(a) · ∆(b), (A.6)

where ∆(a) =
∑

i a
(1)
i ⊗ a

(2)
i and ∆(b) =

∑
i b

(1)
i ⊗ b

(2)
i .

Hopf algebras. A Hopf algebra is a bialgebra A together with a linear map S : A −→ A

called the antipode which for all a ∈ A with ∆(a) =
∑

i a
(1)
i ⊗ a

(2)
i satisfies

∑

i

a
(1)
i · S

(
a

(2)
i

)
=

∑

i

S
(
a

(1)
i

)
· a(2)

i = (e ◦ e)(a). (A.7)

Examples. The simplest one is the Hopf algebra associated with a group G. Given this

group we can always define the group algebra KG over a field K as the algebra of lineal

combinations of elements of G with coefficients λ ∈ K and with the product

(λ1g1) · (λ2g2) = (λ1λ2)(g1g2), ∀λ1, λ2 ∈ K g1, g2 ∈ G, (A.8)

where on the right hand side of the equation we use the product of K and G. This algebra

has the unit element e = I, where I the identity element of G.

Actually, the algebra KG has also a coalgebra structure given by the coproduct defined by

∆(g) = g ⊗ g, g ∈ G. (A.9)

It is straightforward to show that this coproduct is coassociative. In addition the counit e is

defined by e(g) = 1 where 1 is the identity of the field K. Bilinearity of the coproduct and the
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linearity of the counit determines the map for any element of KG. Moreover, the coproduct

(A.9) is actually compatible with the product, so KG is in fact a bialgebra. This structure

can be extended to a Hopf algebra by the antipode map S defined by

S(g) = g−1, ∀g ∈ G, (A.10)

which satisfies indeed the property (A.7).

The second instance of Hopf algebras that we are going to study is the universal en-

veloping algebra of a Lie algebra. Let L be a Lie algebra over a field K with generators ξi

(i = 1, . . . , dimL). The universal enveloping algebra U(L) associated with L is the algebra

generated by ξi with the identification

ξi · ξj − ξj · ξi ∼ [ξi, ξj], i, j = 1, . . . , dimL, (A.11)

where [a, b] denotes the commutator operation in the Lie algebra.

Given ξ ∈ U(L) the mapping

∆(ξ) =

{
ξ ⊗ e + e ⊗ ξ ξ 6= e

e ⊗ e ξ = e
(A.12)

defines a coassociative coproduct compatible with the algebra product. A counit e is defined

by

e(ξ) =

{
0 ξ 6= e
1 ξ = e

. (A.13)

This shows that U(L) is endowed with a bialgebra structure. This is actually extended to a

Hopf algebra by the antipode map

S(ξ) =

{
−ξ ξ 6= e
e ξ = e

, (A.14)

which can be easily seen to satisfy the condition (A.7).

The action of a Hopf algebra on an algebra. For the applications of Hopf algebras as

twisted symmetries we need to define its action on an algebra A. Roughly speaking we want

to define a map α : H ⊗ A −→ A with the property that for every ξ, ζ ∈ H , a ∈ A

α(ξ · ζ ⊗ a) = α[ξ ⊗ α(ζ ⊗ a)], α(e ⊗ a) = a, (A.15)
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where e ∈ H is the unit element.

If H was just an algebra this would be the end of the story. However H has a Hopf

algebra structure as well, so additional conditions are imposed involving the coproduct and

the counit. If we denote now by µ the product map on the algebra A, µ(a ⊗ b) = ab for

a, b ∈ A these conditions are

α(ξ ⊗ ab) = µ ◦ α[∆(ξ) ⊗ (a ⊗ b)], α(ξ ⊗ 1) = 1 ◦ e(ξ), (A.16)

with 1 the unity element of the algebra A and the action of the map α is extended to

α[(ξ ⊗ ζ) ⊗ (a ⊗ b)] = α(ξ ⊗ a) ⊗ α(ζ ⊗ b). (A.17)

As an example we can consider the action of the universal enveloping algebra of a Lie

algebra, U(L) on an algebra A. Since the coproduct ∆ is given by Eq. (A.12), we have for

a, b ∈ A, ξ ∈ U(ξ)

α[∆(ξ) ⊗ (a ⊗ b)] = α(ξ ⊗ a) ⊗ b + a ⊗ α(ξ ⊗ b).

Therefore Eq. (A.16) reads

α(ξ ⊗ ab) = µ ◦ [α(ξ ⊗ a) ⊗ b] + µ ◦ [a ⊗ α(ξ ⊗ b)]. (A.18)

This identity is nothing but Leibniz’ rule giving the action of an element of the Hopf algebra

ξ on the product of two algebra elements a and b.

Twisting. Of course the coproduct given in Eq. (A.12) is just one among all the possible

choices for a coproduct satisfying the appropriate conditions. Other possible coproduct can

be obtained from this one by twisting. This means that given a invertible element F ∈
U(L) ⊗ U(L), a new Hopf algebra structure can be defined using the twisted coproduct

∆F(ξ) ≡ F∆(ξ)F−1 = F(ξ ⊗ e + e ⊗ ξ)F−1, (A.19)

and the twisted antipode

SF(ξ) ≡ uS(ξ)u−1, (A.20)

where u is defined by

u ≡ µ[(I ⊗ S)F ] =
∑

i

f
(1)
i S(f

(2)
i ). (A.21)
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In writing this last expression we have used the decomposition

F =
∑

i

f
(1)
i ⊗ f

(2)
i . (A.22)

Of course not every twist operator F gives rise to a well defined twisted Hopf algebra. In

particular one should make sure that the new coproduct ∆F preserves coasociativity (A.3)

and is compatible with the counit e (A.5). This respectively is guaranteed if F satisfies the

following conditions

(e ⊗ F)(I ⊗ ∆)F = (F ⊗ e)(∆ ⊗ I)F

(I ⊗ e)F = (e ⊗ I)F = e. (A.23)
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