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ABSTRACT
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I. INTRODUCTION.

We shall be concerned with the tranverse polarization of the proton
in elastic electron-proton scattering. To this effect, two kinds of experi-
ments have been reported : measurements of the polarization of the recoiling
proton 1_4), the target being unpolarized ; and measurements of the up-down
asymmetry 5) using a polarized hydrogen target., At the same kinematical
conditions the two types of observables have opposite values by time reversal

invariance. In the region of energies and momentum transfers so far explored,

the results of either type of experiments are compatible with zero.

The Born approximation to elastic electron-proton scattering
predicts zero transverse polarization, even in the absence of time reversal
invariance.An effect can first arise through the interference between the one and two
photon exchange amplitudes.To this approximation and assuming time reversal
invariance, assumptions which unless otherwise stated we shall adapt throughout this

paper, the quantity which governs transverse polarization effects is the absorptive

part of the Compton amplitude for off-shell photons scattering from nucleons.

It is well known that the unitarity relation can be used to compute this
absorptive amplitude in terms of physical on-mass-shell intermediate states,
These include the elastic contribution, along with resonances and hadron con-
tinuum contributions. Calculations of the elastic part have been available for
some time, They represent the whole answer to the transverse polarization 6,7,8)
at electron energies below the one pion production threshold. The con-
tribution from the lowest lying nucleon isobars has also been estimated in

particular models 6,7)

. The sum of elastic and resonances intermediate states
is expected to give a good estimate of the whole polarization effect at low
energies, However, at high energies, the effect of the hadron continuum con-

tribution could be very important since inelastic electron-proton cross-sections



are large. We know of no model independent calculations concerning this con-

tinuum contribution.

In this paper we have rigorously bounded, to order «a ~ 1/137 , the
resonance and continuum contributions to the transverse proton polarization.
A similar bound applied to elastic neutrino reactions has been previously
discussed by two of the authors 9). In the electron.case, the bound is given
in terms of the proton elastic form factors and inelastic structure functions.

The latter are known in a sufficiently wide range to draw relevant conclusions.

We have also made a recalculation of the elastic contribution.

The paper is organized as follows : the rest of this section included
for the sake of completeness, lists a collection of well know facts on
T-odd effects, time reversal invariance and unitarity, and their relevance to
the calculation of the effect under discussion. Section II deals with the two
photon exchange amplitude and its contribution to the up-down asymmetry. The
restrictions imposed by parity and time reversal invariance are also studied
in this section. In section III we give the results of the recalculation of the
elastic contribution, and compare them to those obtained by other authors,
Section IV includes the derivation of bounds on the resonance and continuum
contributions to the transverse proton polarization. The results, their compa-

rison with experiment and the conclusions are given in Section V.



I.1. Summary of results on T-odd effects, and application to the up-down

as etry.

Let us call T the T-matrix element describing the transition from an

if
initial asymptotic state i to a final asymptotic state f . If the relation

between the S-matrix and T-matrix is defined as

s = 1+102m* 6 g - o1 (1-1)

then the unitarity condition reads

+ _
Tif - Tif = iaif (1-2)
wherg
_ + 4 (4)
Q=2 Typ Trg (2m " 8 (Zbi-pr) s (1-3)

T

and the summation is extended to all possible on-shell intermediate states [ .-

The amplitude Gif is the absorptive part of the amplitude Tif

with ¥ and ¥ denoting the initial and final states i and f

with spins and momenta reversed, time reversal invariance, implies

ITifI2 = |t .|2 (1-4)

f£4

By T-odd effect in a transition i = f we mean any observable proportional

to the difference of probabilities

lr_|?
TE

2
ITifI - . (1.5)

From the definitions given above,it can be readily seen that, when time rever-

sal invariance applies, the relation between T-odd effects and the absorptive



part of the transition amplitude is

2 2
| = 2m (1, 0.0 - a1 - (1.6)

2
ITifI =

|T
1T

If furthermore, the transition amplitude is proportional to some small coupling

1
137 in our case, then

Eq.(1.6) can be expanded to various orders. To lowest order

constant, like the fine structure constant o =

2 2
ITifl - |T I

=0 R
ir

and as is well known, T-odd effects are absent. In the next order, we get

|Tif|2- |T¢~|2 ), (1.7)

= 21m('.|:if (0}
if

fi

and T-odd effects appear as due to the interference between the Born approxi-

mation to the amplitude Ti (see Fig.l) and the lowest-order contribution to

f
the absorptive amplitude Gfi which arises from two-photon exchange (see

Fig.2) .

We discuss now the application to the up-down asymmetry in elastic
electron proton scattering. For definiteness we shall consider the case where
the proton target is polarized along the normal to the scattering plane which
we take as the Z-axis and work in the center of mass (C.M.)system, at fixed

energy and momentum transfer. The up-down asymmetry is defined as

t !
_ N-N
g = 1 i s (1.8)

N+ N

where N1 and Nl are the number of events corresponding to the configura-
tions shown in Figs. 3a and 3b. In terms of transition amplitudes we have

(summation over unspecified spin indices is understood)



N oo | T, (8,8") ? = |, |?
and

N o | Tl(i?,ﬁ') 12 .

Consider now the T-matrix describing the transition I » T (see Fig.4). We

have

| T, GREO= > .
if

- o
Since T, (-k,-k') and T (E;?') are related, up to a phase, by a rotation of
| i P y

m around the Z-axis, the asymmetry (Eq.1.8) is proportional to

ITiflz- IIMVIZ and thus is a T-odd effect. Applying Eq.(1.7) we have to first
if
order in q
ImT, G_,
g —iA (1.9)
|75 ¢l

i.e.,, the up-down asymmetry is proportional to the absorptive part of the two-~

photon exchange amplitude.

So far we have only considered the case where the target’
proton is polarized. One can also discuss the degree of polarization E of
the recoil proton with respect to the normal, when the target proton is not
polarized. As is well known, time reversal invariance implies that in the same

kinematic configurations
g=-% . (1.10)

This constitutes an interesting test of time reversal invariance. Throughout

this paper we shall however assume the validity of time reversal invariance.
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()

I1.2. Kinematics and Notation

We are dealing with the process
e(k,0) +p(p,A) = e(k',0') + p(p',A") s (1.1D)

where k,p,k' and p' denote the 4-momenta of the corresponding particles and
o,\,0' and A' their spin projection along the normal to the scattering plane.

The latter is defined as follows

g¥-= é HVPe Pk ke , (1.12)

where ¥ 1is a normalization invariant, which is positive, and such

that
8.8 = -1
In the laboratory frame
3- K x k'
[k x &'|

We shall denote by m and M the electron and proton masses

and by s and t the usual invariants

2

s = (p+k)? , t = (k-k') (1.13)

Often, we shall refer to the absorptive part of the two-photon exchange diagram

(*) Our metric and Dirac matrices are those of J.D. Bjorken and S.D. Drell

textbooks, ref.l0 .



shown in Fig.2 and the following notation will be used :
qg=%k - k' ; q =k-4 ; q2=k'—,€, s (1.14)

where £ 1is the energy-momentum of the intermediate electron (£2==m2) . With
P denoting the total energy-momentum of the intermediate hadronic state, we

define further invariants

E,Z - WZ
2 2 2 2 2 2
Q =-q = -t 3 Q]. - - q]. 3 Q2 = = q2 (1.15)

P-9; = le and P-4, = Mvz

Useful relations between invariants and the various C.M. angles which we shall

need are the following :

2

q2 = - SE:MEl— (1-cos®) (1.16)

' 2s
2 2

2 _ (s-M")(s-W") (1.17)

9,27 " 2s (1-cos®, ,)
where 8 1is the C.M. scattering angle in k+p = k'+ p' H
61 is the C.M. scattering angle in k+p = 4 + TP R (1.18)

62 is the C.M. scattering angle in k'+p'= 4 + P 5

and we have neglected the electron mass.

The angles 0, 91 and 92 , which are visualized in Fig.5, satisfy the triangular

relation
cosf, = cosbeosf, +sinbsinf,cosp . (1.19)

We shall denote the matrix elements of the T-matrix describing the



transition of Eq.(1.11)

= o,
Tie ® T)\.O',)\'O"(k’k ) ?

= -
where k and k' refer to the C.M. system. In this frame of reference it is
useful to choose a system of axis as indicated in Fig.6. As we shall see this
system of axis is very convenient to derive selection rales for the matrix ele-
ments. The asymmetry defined in Eq.(1.9) is then (with summation over o,\'and o')
T
Im , TTo,X'c' G‘X'c',fo n lo,\'c! GX'o',lo
E(s,t) = . Iz = - = |2
to,A'c’ lo,\'c!

(1.20)
A convenient way to rewrite this expression is to use matrix notation for T

and A 1in the spin space of the proton-electron system :

A=t,o=1t; A=t,o=1}; A=44,0=1t ; A=},0=1
Then
1 > = Lo =
Im Tr 11 T (k,k") G (k',k)
-1
E(s,t) = . (1.21)

tr( T ®Ey @ ,ﬁ'))

The first matrix in the numerator contains the information of suming over the
electron spins and subtracting the proton polarizations ; and
2 4,.(4)

G)\voy’)\c(fg',k) = lz_f\ T)\'O"(p""k' = T) T;to_(p+k = T)2m 8 (p+k-p'-k")

(1.22)



II. THE CONTRIBUTION OF THE TWO-PHOTON EXCHANGE TO THE UP-DOWN ASYMMETRY

IN THE ELASTIC SCATTERING OF ELECTRONS FROM POLARIZED PROTONS.

II.1. Selection Rules.

We can impose certain symmetry requirements to the matrix elements
of T and @ .
The unitarity relation (Eq.(1.2)), to lowest order in the electroma-

gnetic interactions, states that T 1is a hermitian operator i.e.,

i) - 2, #* = i ¥*
Txc,xlol(k’k ) (TK'O",)\.O(k ’k)) (T—X'-G',-K-U(k’k )) 3 (2.1)

where the last equality is obtained applying a rotation of ™ around the
X-axis (see Fig.6). The same hermiticity requirements apply to the matrix

elements of G as can be seen from the definition given in Eq.(1.3) .

The operators T and (G are also invariant under parity and time-

reversal . Under the parity operation times a rotation of T around the

Z-axis we have (see Fig.6)

il
2R = o 2(A+0-A"-0")

&,%" (&,k") (2.2)

o\ o o, ata

and similarly for the matrix elements of ( . Under time reversal times a

rotation of T around the Y-axis we have

Do il
T)\O‘,l'o'(k’k ) Txlol’kc(k’k ) (2.3)

and similarly for the (@ matrix. Altogether, the selection rules given in

Eqs.(2.1),(2.2) and (2.3) tell us that T , in the spin space of the proton-
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electron system is a matrix of the type

a 0 0 g
O b £ O

T = (2.4)
o f bv*o

g 0 0 a*

with g and f real. Similarly, we have that

- A 0 0O G -

0 B F O
a = . ; (2.5)
o F B" 0

~ G 0 0 A¥*-

with E and F real. The expression for the numerator in Eq.(1.9) is

Im (Tif Gﬁ) = Im (a A+ b B) . (2.6)

The explicit calculation of a,b ; A and B will be carried out next within

the framework of the Dirac formalism.

I1.2. Explicit Calculations ; Dirac Formalism,

In the Dirac formalism, the T-matrix elements at the Born approxi-

mation are given by the expression

- -ig . _
11 o (pk,p'k") = (1) (1e) T (k',0") Yk, 0) = T(p' , ATV (D)ulp,))
O‘,XO‘ q2+ie

where (2.7)

(q%) = [Fl(q2)+F2(q2)]Y“- o By (@) (pip P (2.8)
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Fl(qz) and Fz(qz) are the proton electromagnetic form factors, with
F.(0) =1 and F, (0)=y =1.793 (2.9)
1 2 P

where nb is the anomalous magnetic moment of the proton.

The corresponding matrix elements of the two=photon exchange absorp-

tive amplitude are given by the expression (Eq.(1.22)) ,

G 'o!, XG( k)= (2 )3 qu u/ﬂ 8s ———5 a(k,0) YA fm) Y ulk', 0! )W (p,X,p sA'),

19
(2.10)

where d{} is the element of solid angle of the intermediate electron in the

overall C.M. system

sz = dcos, dp (2.11)

and

ww(p, ;p'sA) =X < p,le (@ |r > <T|5, 0 ]p',1'> (2m 5(4)(p+q -p) . (2.12)
T

The hadronic tensor Wvu(p,l;p’,k') is the absorptive part of the
Compton scattering of off-shell photons from polarized protons. The pole contri-
bution, I = proton , can be explicitly calculated in terms of the electromagne-
tic proton form factors :

W(Ehee) (p,Asp" A1) = 2m BL(p+a )] W(p, T, (4]) (B DT, () u (o', A1)

(2.13)
The great unknown in our problem is the inelastic I' # p term in Wvu(p,X;p’,K')
In the forward direction, i.e., when p=p' , this term is directiy related to

the proton structure functions measurable in the inelastic electron proton
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(#)

scattering experiments., More precisely

L (1ne1as )(p, AspsA) = Vu(p’ql) + spin dependent terms ; (2.14)

4nM VI
and
W (pra) =-fg - “WEVY §o 2y, L ) | )i, (v 2y
v P29 (gu\) 2 ) 1°v1° % (p 2 qlp, (P 2 Qv 1297
1 4
(2.15)

When p#p' there is no such direct connection between Wvuﬁp,k;p',l') and
empirically known quantities. We shall see in section IV that it is however

(1ne1a&)(

possible to bound the non-forward matrix elements W Asp'sA)  in terms

of the proton structure functions Wl and W2

The connection between the spin-emplitudes introduced in Section II.1

and the Dirac formalism is now quite clear :

2
a =S5 E@, D FuleD T 6D T up,D

-q
2 (2.16)
b =S5 Wk, ¥ ule, ) W (6,1 T (¢)) ulp, 1) ;
-q
S —
A alk, D) YPCm) Y k', 1)
et aw?  |an s 1y (ps1;p's 1) (2.17)
(2m) 4785 2.2 op PP 17 0 o y
B 2 172 u(k, )y (f+m) yu(k', §)

With these expressions, and the definition given in Eq.(1.20) we can write a

rather compact expression for the asymmetry ,

2 2 2
g(s,t) =—=— —1 aw? |, S _E_ VPt gty (2.18)
(2m)~ D(s,t) Mg VP VP

=

/]
!—'N
Na]
NN

(%) Notice that in the forward direction q=0 and q;= q,
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where
D(s,t) = 8 t2(F1+F2)2+2[(S-M2)2+st] (rFi- 4—:{5 FS) ; (2.19)
A, 'y ¢ Ypp YV)+ O(mz) s (2.20)
and
HT -5t = ¥ u(p', AT (qz)y g ulp, M) W (p,A;p',A") . (2.21)
WP TV e M 5 vp ’

In fact,, because of parity conservation and time reversal invariance, in the
sum over spins only the diagonal terms A = A' contribute to the asymmetry.

We have thus, using the electric and magnetic proton form factors

M
! \ = 2 2y OBY '
Hove ~ A/ 37— i¢ W t;p', 1
we ~ ave TA /120 e (A€ 2y Py SY[ vplPstipts 1) +

2
+ va(p,l;p',l)] + MGE(q )(p+p')u[va(p,T;p',T) - va(p,l;p',l)] .(2.23)

From the expression of the leptonic tensor L“Np it can be seen that

MVe _ HVP _ o0 pHVP _ VP _ 2y .
ka sz kvL JZ,VL O(m) ; (2.24)

therefore, to the approximation where terms proportional to the lepton mass are
neglected, it seems worth while to expand the hadronic tensor va(p,x;p',k')
in a basis of fourvectors containing k , £ and k' . More precisely, we
shall expand each vertex < TIJV(O)Ip',A'> corresponding to a specific inter-

mediate state I', in a basis of 4-vectors :

k' , 4, n, n
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where n 1is the normal to the 4-plane defined by k, k' and £ ; i.e.,

M- L -uveo '
n VN € kv kp Zc (2.25)
and
N = 2(k.2)(k".2)(k.k") 5 (2.26)

m'M is in the 2-plane orthogonal to k' and £ , and orthogonal to n , i.e.,
n'H = V%ﬁ [jk“(k'.z)-k'“(k.z)- z“(k.k')] . (2.27)

Similarly, we shall expand < p,liz(O)IT > in a basis of 4-vectors :
k, £,n,m

where m 1is obtained from m' by the substitution k o k' . After expansion
of each vertex into these basis, and summation over all intermediate states

I , we arrive at an expression of the type

e ot =
va(p,k, P'sA ) n, 0, Q) + 1, m, Ry +

+ m¢ n Sy +m'm T, + ... s (2.28)

p A vV o p A

where the terms not explicitely written are such that when contracted with the
leptonic tensor give contributions proportional to the lepton mass (See

Eq.(2.24 )] and we neglect them . Clearly
N eyt

and the same thing for RX s SX and TX . After some algebra, the expression of

the asymmetry we arrive at is as follows



1 21 2
F (W°;6,,0p)
E(s,t) = & == L aw? | a(cosB,)| dp 2 (2.30)
LLEY & PN D(s,t) ) 2 (l-cosel)(l-cosez)
i w2 -1 0

where

2
F(W ;Gz,cp) = MI(QT +Q - T, - Tl) +

t

MZ(R1 + R, + 8

. T+Sl)+iE1(Q1-Q—T

. T+Tl)+

iE2 (R1 - Rl + sT - sl) . (2.31)

The functions Ml’ MZ’ E1 and E2 can be explicitly calculated ; Ml and Mz are

proportional to the magnetic form factor GM(t) ; E, and E, are proportional

1
to the electric form factor GE(t) . In terms of the wvariables 61, 92 and ¢

[see Eq.(1.19)] we have

2 2
Ml = GM(t) . 5'1:2 s+M (1-cosB) [(S-M + cosez) sinf +

4 2\s s
sinB, cosg (l-cose)] -\s sind (1-cos, + 1-cos@,) ; (2.32a)
2.2 2 2
_ Vs | (st s-M )
u, = 6 0) B () (w > cosg) -1 sing,sing ; (2.32b)
s+
El = GE(t) M [(l-cosez)(l—!-cose)- sinf sinezcoscp] : (2.32¢)
E, = GE(t) M sin@ sinf, sing . (2.32d)

As it can be seen from Eq.(2.28), to the approximation where terms proportional

to the lepton mass are neglected, there are only eight components of the hadro-

(#)

nic tensor va(p,)\;p',)\') which contribute to the asymmetry' ’., Another reason

(*) In general, assuming parity conservation and gauge invariance,

va (psA;p'5\A') has eighteen invariant amplitudes.
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to use the expansion indicated in Eq.(2.28) is, as we shall show in Section IV,
that the components QX’ R)\, S)\ and TK can be easily bounded in terms of the spin

independent structure functions W, and W, , Eq.(2.15), of the proton.



IIT. CALCULATION OF THE ELASTIC CONTRIBUTION TO THE UP-DOWN ASYMMETRY.

With w(elas.)
vp

to the up-down asymmetry, Eq.(2.18), can be readily given in terms of the

(p,A;p',\') given by Eq.(2.13), the elastic contribution

proton form factors. We have done the algebraic part of this calculation using

the computer program SCHOONSCHIP developed by Veltman 11). The integration

were performed numerically, using the customary dipole fit for the form

12)

factors

2
GM(q )
1+n

P

) = L (3.1)

[i-q2/0.71(cev/c)2] 2

The results of the elastic contribution to the asymmetry at different ener-
gies and center of mass scattering angles are shown in Figure 7. They are in
exellent agreement with a recent calculation by Hey 8) s, who performed the

integrations analitically. The elastic contribution in the kinematical condi-

tions of the different experiments are contained in Table 1 .
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IV. BOUNDS TO THE UP-DOWN ASYMMETRY FROM INELASTIC ELECTRON SCATTERING

EXPERIMENTS.

In this section we derive rigorous bounds, to order o , for the
inelastic contribution to the up-down asymmetry. We present two types of

bounds : in terms of cross sections and in terms of structure functions.

IV.1. Bound in terms of cross-sections.

Our starting point are the expressions given in Eq.(2.16). We have

2| 2w [<u+m) (#'4m) (1 £ v, 8) Y“]

t
b 2 V2@t k.k')

E(p',T)Tu(qz)u(p, 1) =

2

Vo (a2 +k. k')

2
= &
t

+ ik 8yM + m(k+k')u]3(p',T)I‘“(qz)u(p,T) . 1)

where we have used the short-hand notation

= HvPo
(py Py Py py) =€ P1u P2y P3p Pug

To the approximation where terms of order (J(—E;) are neglegted, we have that

V-t
- _m_ )
a=- b+O(V__t) ; (4.2)
and
Im(aA + bB) = Im a(A-B) + [ (=) , (4.3)
-t
with
e2 4 .
a= (kk'8y) [lM GE(p+p')u— GM(pp'SYu)] (4.4)

V(-t)204p.p")
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and [see Eqgs.(1.22) and (2.5)]

A s T,,(k',p"> DT, (k p~>D
) ’ sw? tt p1s
= dw an 2 . (4.5)
) @’ L T L s DI G 0 D)
(Mim )2 + sP t1 sP
kL)
Clearly
|Im aCa-B)| < |a| (|a|+|B]) (4.6)

and, using Schwartz inequality,

p) Tm(k',p'-o F)Ti*,c,(k,p-vr) <y "13)\0(1<',p'-'1“)l2 Z‘T)\,c,(k,p*r)r
T T T ‘
4.7
The relation between |T|2 and the inelastic cross sections are
Tt

d o (k,p) 2

5 - =5 = = 51,k D) (4.8)
dw” d(cos 91) (4m) s-M T

and similarly for the other spin configurations and k'+p' =T . Again, as can be seen
from the explicit dependence of these cross-sections on the leptonic tensor [see Egs.

(2.17) and (4.5) with k=k' and p=p'] the spinparallel and antiparallel cross-sections
Tt I

differ at most by terms of order O(—m;) . Moreover, the cross-sections ¢ and ©

-t :
are equal. This gllows us to get a bound to the asymmetry in terms of unpolarized ine-

lastic cross-sections . After some algebra we get the result

1 2 /@(s t)
| 8inel. (s,t) | = T (-t)(s=M") m X

s +1 2m do (13 2)
g (1 do (2
dw? d(cos8,) 521% 5 > , (4.9)
dW d(cos®,) dwWw°d(cosH,)
)2 -1 0 1 2

M+m
ki
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where D(s,t) has been defined in Eq.(2.19) ; and

[(sa®)?+st] 6% - —E— [2(s-¥D)+t] 2 &2
_ E " TeM2 M
8(s,t) = 55 5 T T 5% 7~ 5 (4.10)
2 [(s-M)“+ st] Gy +t[t-(1 -—2)‘— — [(s-M) +st]]GM
4M 2M
The factor &(s,t) 1is very close to % . Had we not taken into account the

symmetry properties of the amplitude e+p - e+p and ignored the relation
between parallel and antiparallel cross-sections we would have found

&(s,t) = 2 .

IV.2. Bound in terms of structure functions.

Another way to obtain a bound to the asymmetry is to start with
Eq.(2.30) and bound the functions Qs Rys S and T, . For definiteness, let us

consider the case of Ry from Eqs.(2.12) and (2.28) we have that

Ry = Zaf < pAl3 @7 > < Tlg ) p'x > ¥ (2m*64) (prq-p) (4.11)
T

Applying the Schwartz inequality in the same way as before we have that

|, | = \/m”mv Wpy(p,k;p,X) \/n“nv Wuy(p',l;p',X) . (4.12)

\% A% . e .
Furthermore, since ‘mMn” and n*h are symmetric tensors, only the spin independent struc¢

ture functions of Wpy(p,k;p,k) and Wuy(p',x;p',k) will appear in the bound

*
since their spin dependent parts are antisymmetric in pu , V () . With
W (1) & W, (q%,v,)
i i 11
and (4.13)
= 2 = .
W, (2) =W, (q,v,) i=1,2 ;

(#) See e.g. Doncel and de Rafael, ref,13 .
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|RX| < 4mM \le(1)+i2

and similarly

l, | = smu w1(1)+M—12

s, | = 4mu \lw1(1)+—1§

(p.m, (D) \[W @ +5 (., (2) =% (4.142)
M M
(., W@ +L (w2 = (4.14b)
’ 2 1 M? : 2 ’
(p.) W, (1) \[W, () +5 ("D () =§  (4.140)
M M
(oo, (1) 1, @)+ S o', (2) = T 5 (4,14
pml Mo 1 2 P T ERRETE S A

1
IT)\I < 4mM w1(1)+P

M

in this way the absorptive part of the non-forward off-shell Compton scattering

amplitude from polarized nucleons can be bounded in terms of the proton struc-

W and W

ture functions
1 2

The expression of F(Wz;ez;m) , Bq.(2.31), is such that M

M2 and E2

M2+E

2,0 .
|F(w ,Gz,cp)| <2 )

% Q+T) + M2

alone.

1° E1 and

are real. With the definitions given in Eqs.(4.14) we have

2 o~ - ~e 2. .

and, from Eq.(2.30), the bound to the inelastic contribution in terms of the

proton structure functions is

a -t

s +1 Y 2T
aw? d(cos®,) | dp

(M+mﬂ)2 -1 0

Fw’30,,0)

(1—cosel)(1-cos92)

85001 (5500 <

ine

B -
‘/1- £ t2(F1+F2)2+ 2 [ (s-M%)%+ st] (Fi- —ti Fg)
v ' oy

(4.16)

The numerical estimates of this bound as well as on the bound in terms of cross

sections Eq.(4.9), are discussed in the next section.
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V. NUMERICAL RESULTS AND CONCLUSIONS.

In this section, we first sketch the way we use the experimental
information on inelastic electron-proton scattering as input to our calcula-
tions. We then present the numerical results which we obtain, and compare them
with the experimental situation. We also comment on the theoretical meaning

of these results and their implications upon future experiments.

V.1l. Data handling.

The input needed to evaluate our bounds is the inelastic electron-

(*) V, Q2 plane.

proton scattering cross section in a certain domain of the
At each laboratory energy E of the incident electron, this domain is the
inside of a triangle (see Fig.8) defined by two fixed straight lines :

w? = (M+mn)2 R Q2== 0 , and a moving one : Q2==4E(E-v) . In figure 8 we have
drawn the moving edge (dotted line) for the energies at which £ has been mea-

sured,

The region presently covered by inelastic scattering data13’14)is the

dashed-area of figure 8 . For E = 15 GeV and 18 GeV , it leaves unknown a
large part of the triangle domain. However, at these energies, the photon
propagator suppresses the high Q2 contribution very strongly. Reasonnable
extrapolations show, that to an accuracy of about 0.2% , the contribution
to the bound comes only from the part of the domain with Q2< 7 (GevV/e).
Keeping only this part of the domain, the experimental region where extrapola-

tion is needed exists only for E = 18 GeV and is small. Reliable estimates of

(%) 1In this section V.1 , Vv and Q2 refer either to Vp Q% or vz, Q% -
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the bounds on & for E > 18 GeV should however avait new results on inelastic
electron-proton scattering. In the resonance region we made a simple fit to the
inelastic cross-section consisting on a succesion of linear expressions actually
lying above the date. These slightly overestimate the resonance contribution
which is relatively small at high electron energies. In the 'deep inelastic re-
gion" (W2> 4M2) we used the fit of Nachtmann 16). The precise value of

R = O‘S/cT is of no importance as long as it is small, and we used R = 0.2
throughout. The main source of uncertainty are the errors on the experimental

14,15)
a

dat . We believe the precision of our bounds to be of the order of 107%.

V.2. Comparison with experimental results and discussion,

For specific values of E and Q2 , we have computed the elastic
contribution to the asymmetry and bounded the inelastic contribution. We can
thus confine the asymmetry & between an upper and a lower limit. The résults
of the calculations and the nine experimental points so far reported arer
listed in Table I an‘d plotted in figure 9. These results were obtained using
the bound in terms of cross-sectioné discussed in Section IV.1 . It turns out
that this simple bound is the best., The more sophisticated approach discussed
in Section IV.2 leads to a sum of four terms proportional to Ml’ MZ’ El’ and
E, [see Eq.(2.31)] . The partial bounds on each of these terms are given in
Table I . The corresponding total bound on §, which is also given in Table I,
is smaller than the sum of the four partial ones because it has been obtained
[see Eq.(2.32)] . This total bound,

exploiting the reality of E Ml’ and M

1’ EZ’ 2
however, comes out slightly larger than that obtained in terms of cross-sections,
At present, all experimental results are compatible with zero ;
however their errors are often large compared to the intervals allowed by the
bounds (see Fig.9). To be definite, let us adopt as a criterium for a measu-
rement of the asymmetry to add usefully to our bounds, that its error bar be

about three times smaller than the interval allowed by the bound, Within this
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criterium we must conclude that only the three SLAC experimental points

and the Daresbury point at 3 GeV are definetely more stringent than the
bounds. Considered in this way we believe that the bounds obtained in this pa-
per give a hint to the standard of precision that future experiments on the
up-down asymmetry should attain to be useful. For this reason we have drawn in
figure 10 level curves of the bound in the range O < Q2< 2 (GeV/c)2 and

0 <E <18 GeV . As mentioned before, at higher energies the needed experimen-
tal input is not yet available and for Q2> 2 (GeV/c)2 the bound is too large

to be of interest anyway.

As can be seen in figure 10 the bound rises quickly with Q2 . At
first sight, one may think that this is due to the fact that the bound lacks
the correct kinematical behaviour. More precisely, in the backward and forward
directions the asymmetry should vanish, whereas the expression we
get for the bound behaves only as Q2 and consequently does not go to zero in
the backward direction(*) . But in fact the lack of correct kinematical beha-
viour is certainly not the only reason for the quick rise of the bound with Q2

Indeed, E in Eq.(2.32d) contains a factor sin® which survives the majoriza-

2
tion procedure to bound the term proportional to E2 in Eq.(2.30), yet this"
bound reaches more than 100% at E = 18 GeV . It seems therefore that the
quick rise of the bound on & with Q2 is mostly due to the point-like

structure of the inelastic electron-proton scattering cross-section.

(¥) 1In that respect, we should like to point out that we have not been able
either to get bounds with the proper kinematical constraints or to prove

that this cannot be done.
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On the other hand, experimental results point to low values
of & . This, most probably, means that strong phase cancellations occur which
the bound cannot reflect . There could be cancellations for
exemple between the various terms in the expression of & given in Eq.(2.30) :
one possibility is suggested by the near equality of the bounds to the terms
proportional to M1 and M2 or E1 and E2 (see Table M) which could interfere
destructively. Cancellations may also occur in the sum over intermediate

states which would make the use of the Schwartz inequality a bad tool to obtain

bounds.

An alternative possibility is that the bound is approximately satu-
rated and that the two photon exchange contribution to & 1is indeed large. In
this case one expects higher order terms in the perturbation expansion to
become relevant and the smallness of the empirical asymmetries would then

indicate that cancellations occur with these higher order terms.
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FIGURE CAPTIONS

Fig.1l One photon exchange contribution to elastic electron proton scatter-

ing.

Fig.2 Two photon exchange contribution to elastic electron proton scatter-

ing.

Fig.3 Center of mass configurations for elastic electron proton scattering:
(a) the target proton is polarized upwards,

(b) the target proton is polarized downwards.

Fig.4 Center of mass configurations corresponding to the transition ampli-
- > >
tudes : Tl(—f,—k') in (a), and Tl(k,k’) in (b) .

Fig.5 The center of mass angles 0 , Gl.and 62 defined in Eq.(1.16) .

Fig.6 System of axis in the center of mass system used to derive selection

rules, The x and y axis bisect the angles defined by the particle momenta.

Fig.7 Elastic contribution to the up-down asymmetry in percent as a
function of the C.M. angle 6 . The numbers on the curves indicate the

laboratory energy of the electron beam,

Fig.8 The triangle domain in the Vv , Q2 plane where inelastic electron
scattering data are needed. The dotted lines : Q2 = 4E(E-V) repre-
sent the moving edge of the triangle ; the shaded area is the region

presently covered by experimental points.

Fig.9 Comparison between experimental points and the allowed domain for § .
The experimental results are presented from left to right in the same

order as in Table I .

Fig.10 Level curves for & in the area O <E <18 GeV , 0 < Q2< 2(GeV/c)2 .
The values of £ are given in percent along the corresponding curve.
The points where experiments have been made are indicated as follows :

O Frascati, A Orsay, O Stanford, W Daresbury, @ Slac.
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