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LECTURE I

ONE PHOTON EXCHANGE APPROXIMATION

1. TOTAL ANNIHILATION CROSS-SECTION

1.1 We consider the electron—-positron annihilation into a final state F

e+ // \
( Rey #~
-~
Fig. 1

The cross—section is related to the transition matrix element by

e Lo i m‘: > . _,_" e T e > ™) *
dG(ee=T =Gy (R R) F g 'S [gh;w_)‘—m"‘]'/’-‘ ‘

where m is the lepton mass and SF a symbol including a summation over the

polarizations and a phase space integration for the particles belonging
to F.

The kinematics being indicated on Fig. 1, we define

Ct: FZ*__«-'R, ‘;-—-Cf: sz—.?h*-h_

so that the total cross-section is written as

v
& (e‘e'=> )= - 4

e Lb (3-4m* )] %




with

‘@ (Qw\g(ﬂ i 6 > (3 %pms )l Tl

1.2 In the one photon exchange approximation, the transition matrix ele-
ment is written as the product of the two matrix elements of the electro-

magnetic current

T g T

ANNNANAN \

/

Fig. 2
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where u(k.0_ ) is the Dirac spinor for the electron of momentum k_ and spin O_
v(k_'_p+ ) is the Dirac spinor for the positron of momentum k+ and spin o,-

The electric charge is normalized so that

e* _o. L
A 13
We now define two tensors
N [
mh = m* Z]_ (RS, s) 0 u(&s)“:v(kcs )6%(&6}] 1.2)
2 SE. .

»

c _em . em ¥
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y (1.3)




-3 -

so that the Lorentz invariant quz—mtitytF is simply written as
T 2 po ¥
(C = {Eg (Tn ..‘v_‘ *
. &* p>

Hw
It is straightforward to compute the leptonic tensor Y1 and the result

is simply
lR R‘rﬁh*‘—% } (1.4)

As a consequence of the hermiticity and of the conservation of the

electromagnetic current, we observe the two interesting properties

ey
m - é)r“m =0

. F .
For the hadronic part MIJ\) » because of the conservation of the electro-

magnetic current, we can construct only one Lorentz covariant

, T 7

/ml‘ M(ua = L@ <6+¢2m2) @’L M G)

GF - ,;Zdz %1-2111 @'L (3)
3 &

and the total cross-section takes the final form

Q,m

G (de=F)- ‘9-_0‘2 1 2 5 @M(s)
ToT
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For velativistic electrons and positrons we always have g <<4 and the

total cross-section is simply
—_— 9 o » [
') . LQTC => l‘) = 02’)( i @L M CS) ‘ (1.5)

1.3 The width for the decay of a virtual time-like photon of mass Vs

into a final state F is given by

—_— _ (5 » v
B L (¥=TF ):f.’(_— & ()& (‘i).M(w

i d

where €(q) is the photon polarization four-vector. Using the property

PRI o 2
e, - C":\L y= & =4

we obtain

Vv

and the total cross-section can also be written in the form

v . T@ ArX T (I.6)
G'FcrLe(‘ ‘“’>H)= -5_52:, i C“>\{) .

ONE PARTICLE DETECTED IN THE FINAL STATE

2.1 We study the case where only one particle of mass M and spin J is

detected in the final state, and we call p its energy momentum four vector
— . S 1
'r’> - Z IPJ‘ >.
-r‘
The operator SF is then written as

o o e Ne 0 B Q

4 = T &
© = <fin) F}Q o N
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where Np is a normalization factor (N = % for bosons, N = M for non-

zero mass fermions).

By analogy with the case of inelastic lepton-nucleon scattering we

~S
introduce the hadronic tensor 1~V”

TN SO S @S e T T S e T oty
[ = =2 2 129 @) @R XN @< M el o g
B~ oz %

and the original tensor MF\) becomes
v dat —~
M = (27+1) 2P T .
b e #
In the centre of mass system we have the following kinematics
: -2 —> ' - -
R__-‘:(haﬁv) h{_:("kiﬁc\ ’P:<?’t\
. AN A
Z =R P
where = indicates unit vector.

The invariant differential element d’p/E is written, in the c.m. system,
as

“fli__t.) = <n ’Fcﬁ\EdZ

and the differential cross-section takes the form

| d*s 4 Ak (25+4) 5 ' F
AZdE [:’;)(\‘%Am*)}l/’ S° "
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2.2 Because of the properties of the leptonic tensor m , Or equivalently as
because of the hermiticity and of the conservation of the electromagnetic
current at the hadronic vertex, the tensor iuv can be decomposed on the basis

of two tensors, it is convenient to write
4 -
. 'q, fl 2‘
l =( "'”__Cttt) ’Pﬁ.ﬂw\;LV 8,u) 4(,9[” ’)-V—(S Ll) (1.8)

The two structure functions V, and V, depend only on the two scalars one

can construct
-‘:, 4 . R . 2

We saturate the leptonic and hadronic tensors defining two invariants

I, and I, by

— i [1e%

I BEwm. L eRIGpRY- 58
I= %(Si-@m‘z)

and the differential cross-section is written as
R ,

A6 @ux (2T+4) g

dZ2dE  [scs-4m® )2 & |

o~ o~
T, -\(4 Gut)+ 4, Y, (5.u3

V/\J

Let us use the c.m. system variables

T,.4 %S 2 2221
Lo- 2o 1SCfi 3)%-41113)
_Tz=%cs+«2ml)

For relativistic leptons [(mz/s) << 1] the differential cross-section



takes the simple form

d*c anot (23'+d)
ZdE & l

(" Z‘)’b V@’“)*‘ VCS:”’; (1.9)

Instead of the c.m. energy E of the observed particle one can use the

invariant variable u®? which, in the c.m. system reduces to

2 2 %
W=8+M=-2F\s _-.—‘-g (usMPI|s- (u- M}_ﬂ
+ S ?Zrl myJL 5

and we have

S5 _ nd
424wt ¢ ¢

(2( 4-Z ) V(s " )+V(s u?, )? (1.10)

2.3 The diagonal elements of the tensor iuv are obviously definite posi-

2

tive functions of s, u“ in the physical region. We then obtain inequali-

ties for the structure functions

o~
V, (&4 0 (1.11)
_ o~ . o~
(b9 2y. 4 Ve w? ‘ I.12
t ol L]—V;(%,u >+ 2 L » SO (1.12)

The differential cross-section is then equivalently written as

d¢ | aniGre) | (A 3 L? VotV w et uz)}
dz&t o (1.13)

and the coefficients of 1 - Z? and 1 + Z2 are both definite positive

functions of s and u?.
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2.4 The structure functions V; and ﬁz can be related to partial decay
widths of polarized time-like photons, in the same way as the structure
functions for inelastic lepton scattering can be interpreted in terms of

total cross-sections with polarized space-like photonsl)

_ A
A{" Vbjé U§>P+\) A(x(id-ri)t: E & A

The Lorentz invariant combination 2FT + FL corresponds to the projection

operator

A wo»A LBy q g
5 ety

and we find

- - Z ~
615 2 ci_tr . 4—l~ J ~20(CZ@Y+()fF l‘ A j% {;.}
= dE S JdE -

The transverse virtual photon polarizations are defined in the photon

rest system with the projection operator

A S o
?L(’T p*

and we find
—

—J

fo= 2 (&TH)}':VV

Ao
o G
Tﬁ]

It follows the reciprocal relations

(W) ,..‘_.

v !

o~ —

A Al
B ; J (I.14)

r\-
—tL[E:
. |
J;L&_
|
S
i

L (2341) ¥
N\
V, . A v db
2 {@I+) P ai (1.15)



and
Oj"' 0((22‘&()%"\/3_
diE
. - 2 h\' i
9‘_\1. _201(5251—{)1’.}‘?_ V; + (i\/z
dE (3L = 2

The differential cross-section (I.13) takes the form

djﬁ,: T.L(i (Ci_zl)dﬂ;_ + (i+22):£.r1
dZde 37 ) dE AE

and after angular integration

ds  And § Al g dlr ]
dE 3s% | dE AE

(I.16)

]

(1.17)

(1.18)

The positivity conditions (I.11) and (I.12) become obvious from the

relations (I.16) and (I.17).

THE ELASTIC CROSS—-SECTIONS

A final state F,consisting of a particle of mass M

its antiparticle will be called "elastic" by definition.

and spin J and

The energy E takes the value Vs/2 and the invariant variable u® is

simply M?. The structure functions V; and V, become the product of a

delta distribution 8(u? - M?) by a function of s only.

2

between u“ and E

From the relation
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3.1 Spin zero case (T m , KK , K’K?, etc.)

From the Lorentz covariance, and using the conservation of the electro-

magnetic current, we have
<t j;m(°’}0> —‘-@9‘&;“ ) ch) (1.19)

The electric factor of the spin zero particle is normalized at s = 0 to

its electric charge Q. The structure functions V, and Vg reduce to

V, = 20 - [F@ P
\7.2_ => @)

The angular distribution is of the pure 1 - 2?2 typez)
dS ol 4 % 2 [T 1R
— = = (4- =) (A-22) [F(z)) (1.20)
df  4s -

After integration over Z we obtain the total cross-section

2 A
& . W (1—4_54 ) F(sH)® (1.21)

Tot 33

3.2 Spin % case (NN, AK, I, etc.)

From the Lorentz covariance, the space reflexion invariance and using
the conservation of the electromagnetic current, we can introduce two

electromagnetic form factors

(b F j;'},,-) oy LAY, HORFERAICES R@]|v()

(1.22)
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where F;(0) = Q the electric charge, and F,(0) = Kk the anomalous magnetic

moment of the spin % particle.

The structure functions reduce to

V, = 2M° g(u"—-M*)[— IECS)\Z»r 4-%‘3 H‘;(ﬂ\j

— —_ 2
2 2_ 2y S i y
V:_ = -ZM S(M ™M) Py ‘ 1(3)+ 2(3))

The angular distribution is written as?)

dg —2![0( Mz (A llM Z‘(,( 7 ),F(3)+ = ( )l (4:"2 )- \F("J‘\‘F(b)\zll
dz &

(1.23)
Integrating over Z we get the total cross-section
el M° M %5 LS 2 {Fa+R {?
- AN y = ) .
gror’ z o3 @ 3 llP 444 2(3)“2/%‘\ ()16 § (1.26)

+ - . .
For a final Yy 4 system in pure quantum electrodynamics (Q.E.D.) F; =1

and F, = 0

o> %
-Gy r L gt g 4

=

. 2 ’4e
dZ s (1-4md

In the relativistic limit ?_D_Z_'<< 1 @_ﬂ <<i
s S
2
A%Le‘e"” X (44 22) (I.25)
dz 28
.. 2
GT (Rewpp) = 4 n (1.26)
[}
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3.3 Spin 1 case (pp , KK, WW , etc.)

From the Lorentz covariance, the space and time reflexion invariances,
we can define three independent form factors Fy, F;, and F, normalized
at s = 0 to the electric charge, the magnetic dipole moment, and the

electric quadrupole moment?**) .

The angular distribution is written as

‘ig.: éﬂﬂ(li—éﬁl)}lg(l Z)i‘ f'(s))a-_—— ll‘(ﬂr} (4*2) 2 C’)ﬂ
N l AgMm*

(1.27)
and for the total cross—section we obtain
; 2% (2
Wy _AMTTS G 5 (F6 = KeR
%m-._s_(- ESRRLERE (Bl = 1% )) 1.98)

3.4 General case

From the Lorentz covariance, the space and time reflexion invariances,
the number of linearly independent electromagnetic form factors for a
spin J particle is 2J + 1, and these form factors are normalized, at s = 0,

to the static moments of the spin J particles).

The angular distribution measures only two positive functions E(s)
and M(s),where E(s) is the sum of the squares of the moduli of the
electric form factors with E(0) = Q? the square of the electric charge,
and M(s) is the sum of the square of the modulus of magnetic form factors

with M(0) = [(J + 1)/3J]].12 the square of the dipole magnetic moment.

For integer spins, the angular distribution is given by

.'5)

,:_lE - th( @dfi) (i l@Hl wﬁ(i‘-z_:‘\lt,ﬁ <i+:22 (3)1
d? [ !
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and for half-integer spins we have

«gl_E; ol “(2JH) M2
42 a?

iyl X4 _ o '
(a- 1 gp_ S EGyr (522 M6,

4, INELASTIC TWO-BODY FINAL STATES

We give two examples of two body final states which are not of the

"elastic" type.

4.1 Pseudoscalar meson (M°) -- Photon (y) final state

From Lorentz covariance and space reflexion invariance we introduce

only one form factor

7 M°

X virtval ()

@

\}’(R

Fig. 3

' 0 m C:;' o 3)
<M i) Jplrloy= e :n‘c vy s 9 R, 5 (1.29)

o

where Yﬁa is the pseudoscalar meson mass introduced so that G(s) is

dimensionless.

A straightforward calculation gives

de _ rto( PR (4Tz){G o |* (1.30)
d2 G - i)
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¢ ‘2 m"
Tor(ee >N ) = “n‘;( (A- IGWCS’l (1.31)

The form factor G(s) at s = 0, describes the 2y decay mode of the pseudo-

scalar meson M°.

T, Choe

Fig. 4

S'

<K( leM> G“"<)ékog€‘?¢

and the decay width is given, in terms of the coupling constant by
M o F !
[(M29)- T M Gyo) (1.32)

Equation (I.32) can be used to rewrite the cross-sections (I.30) and

(I.31) into the form

4G o (M (M —>2.'0') A m. 2 Nos@) \
= = - A+Z (1.33)
4z 2 m? ¢ M )( Gryex(e)
+ - 4 %RQ( l (M =>26 A m,, G{qu (3 )
gm(ee =>MY) = 3 m3 @-3) Conele) (I.34)
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4,2 A§° or L%\ final state

From Lorentz covariance, space reflexion invariance, and the conser-

vation of the electromagnetic current, we have only two electromagnetic

form factors
5° (¥:2)

Y oetual (3)

NANANAANNNN-

A (,2)

Fig. 5

o T » —5“ 0
<pFT1 = et I e R o by o

The structure functions V; and ﬁz reduce to

o T ( < 5 o 4R S in .2
V, (s, W) => g(u—mﬁ)ZMﬂ g_lﬁ(e)\+(M2+Mﬂ)2\€(‘-’)\ }

(\\/;(s,m Sy 5[4 - (=] £ 6 Lol

and for the angular distribution we obtain the expressionz)

| %
ot / Mt My 2, (Mat M 1727, _ /Mg=Ma)?
fzﬁ%’é{g I I el I

S sj .
()
+M\)z 2

< - .
U+2H 2 e
¥ (ME*M,\)L - g ‘

(I.35)
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which in the limit MZ = MA = M reduces to equation (I.23) with f; > F;

and £, > F,.

MULTIPION FINAL STATE

5.1 Let us consider a final state with n7T mesons. The quantum numbers

J-: /_i_ C":“i Q: (j G:(*iX

and we have the selection rules:

a) nn’ are forbidden by C conservation (for 2m°, TCP is enough);
b) n even G = +1 so that I = 1;
¢c)n odd G = -1 so that I = 0.

+ - . .
5.2 1In the particular case n = 2 we have a T T system with total iso-
topic spin I = 1. We can construct only one Lorentz covariant (p:p_)u,

and we introduce one electromagnetic form factor Fﬂ(s).

+ - . . . .
5.3 For n = 3 we have a ™ 7 m’ system with total isotopic spin I = 0.

. . vV p O
Again we can construct only one Lorentz covariant € P, P_ po, and we

Uvpo
define one electromagnetic form factor F,..

5.4 For n = 4 we have two possible states of total isotopic spin, I =1
matnm, and THrn0m0. Quasi two body states can be wr®, ¢n°, p%e, o*p~,
but the p°p? state is forbidden by TCP in the one photon exchange approxi-
mation. We can construct three linearly independent Lorentz covariants, an

and therefore define three electromagnetic form factors.

5.5 We now consider the case n = 3 of a mtm™ % system but the generali-
zation to a final state with three spin zero particles of total intrimsic
parity -1 is straightforward (KKT, etc.). From Lorentz covariance and space

reflexion invariance we define one electromagnetic form factor

4G %( j‘w(tc) \c' £ /Py \» ’P{ 9/% \GFC) 92 B
- Ay )" it . >‘.__ ’._VHL (Tn;\{’—. 4'*,"%)

tu.:f'ﬁ‘ My
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where M is the particle j mass and S5 a scalar variable defined by

&= - R4 4= bt v

In the centre of mass system, we use the energies E;, E;, and E; of the

produced particles,

gd= EE(,. E=E4+E2*E3

and the differential cross-section takes the formz)

Qg CYZ 4 IETX';;IQ I,Fr(‘ - C ‘2

—

\E Jlf 42”( S (mym,my Y

(1.36)

After integration over the Dalitz plot, we obtain the total cross—section

flhqu \rfU:ALQ,Lg)MLAAEL (1.37)
'rvyrz).m3 D(s)

where the integration domain D(s) is defined by the condition that p;,

P2, and ps are sides of a triangle.

POLARIZATION OF THE SPIN % PARTICLE
DETECTED IN THE FINAL STATE

6.1 Let us go back to the hadronic tensor avoiding now the summation

over the polarization of the observed particle p

. S@p= \ 2_1 5 (2@ g(q P~ )< f'lJ (o)l><?:' l\) co)\0>

The spin-independent part Tuv is decomposed as previously (I.8) with two

structure functions V; and V,.
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The spin-dependent part §uv is linear in the spin % particle polariza-
tion. We introduce a space-like unit pseudovector Su orthogonal to the

energy momentum p

St S $=0

and we construct a four vector nu linear in S

Y § AF
m, - l\éfl— Eee P q S (1.38)

. no
Because of the symmetry character of the leptonic tensor M , we have to

consider only the symmetric part of Suv' Using Lorentz covariance, space
reflexion invariance,and the conservation of the electromagnetic current,

we can write

_Lg e (P (P~ )‘ﬂ) x(Su) (1.39)
B oM }

Let us remark that in the case of inelastic lepton scattering, the corre-

sponding structure function Y vanishes when time vreversal invariance

holds®).
Now saturating the leptonic and hadronic tensors
o - '\.
e v { 2 T 2
,Th l}*l’ = )..4. \’d. (3;“ ){—.lz'vz_(slu )

’T’\‘WS‘&: L Y (s,u?

" where the invariant L is given by

3 ’ i k-R AL s s R
L‘ﬂszpwm s L Pk ) ELL R PS
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. . _}
In the centre of mass system we introduce a unit vector, N, orthogonal

to the reaction plane

- —» : —
Rxp = kpl{a-22 N

and the invariant L has the simple form

“
“N

Y 2z & R ospo A
L:— % N ‘22 \“ZL ;E;:‘ ML 4‘ ("" 3 )

For relativistic electrons (Tﬂz/s) << 1, and the differential cross-section

has the expression

2 — =
dg 2/!0( ((i ZJ—V(SQZJ+V(3%1 (3 N>)£ Cli‘r_Z—Zchu)}
5} M* 2M
dii\: (140
In addition to (I.11) and (I.12) we have the positivity condition®)
.
}« Ny 4y M3 2
VCs ul){ V(S ){- 2 \fz(s,u. g CP ) s\((s,uﬂ‘
2 2 Ga) 2M*
(1.41)

6.2 For "elastic'" reactions like nucleon-antinucleon, hyperon-antihyperon

production, the structure function Y has the form
~ - — — %
(o> - aSeies) Tnft 6 T ]
and we obtain the angular distribution with a polarized fermion?) .

CXLHT AR ) |F B 28 Too) |
S

)
_3N 227:.14 -3? [} Im[F_(ﬁ)F;Ey]
204 =

D—ID—
LSAFy

(1.42)
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where

6.3 Analogous expressions can be derived for "inelastic'" reactions

like AZ° production

O ' _ — S
Y - -2 Sy M In 6 6]
b Rl

and the angular distribution is written as

—

GT oo %

;0 )| fe e M‘; e

4% _ WO Mg e Ma )2 [2- [MyeMy) ﬂ”— _ <ME—MA>“J <
: | - ==

where
WCLs)-{?Cs)r : )ﬁ(s) ﬁ(s)z,ﬁ(s)fg(@
DISCUSSION

7.1 The one photon exchange approximation has not yet been carefully
tested experimentally for time-like photons,and our assumption is based
on elastic and inelastic lepton scattering data,where there is no evi-

dence for the presence of a multiphoton exchange.

7.2 When only one particle is detected in the final state the angular
distribution for e'e” annihilation reactions is a linear function of Z?,
and we have given a physical interpretation of the (1 - Z2) and (1 + Z2)
coefficients in terms of the virtual photon polarization. The same result

obviously holds for any two body final state.

£ @I T zz{“ £ LmL&‘(s)?(s)]}
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7.3 1In the case of a multiphoton exchange the angular distribution is a

polynomial in Z

e M=z N
4 S (€e = p+l) -l 2" C)h Cﬁluz) Z~
AZ A (XI m=o

where N is the maximum value of the spin exchanged between leptons and

hadrons.

The coefficients of odd powers in Z (n = 2j + 1) correspond to
interferences between C = -1 and C = +1 contributions, whose dominant
part must be respectively 1y and 2y exchange on the basis of an order

of a argument.

A detailed discussion of multiphoton exchange in lepton scattering
has been given by A. Martin and the author7), using in fact the anni-

hilation channel.

7.4 Finally, the cleanest test for the 2y exchange is certainly to search

for final states forbidden by TCP in the ly exchange, like for instance,

1%, nn, p°0°%, ww, ¢¢, etc.

If particle-antiparticle conjugation is a good symmetry of the
electromagnetic interactions of hadrons, final states which have C = +1

like m°n, pw, p°¢, and wd can proceed only via a 2y exchange.
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LECTURE II

VECTOR MESON DOMINANCE MODEL

VECTOR MESON DOMINANCE MODEL

1.1 We present the vector meson dominance (VMD) model in the form of

the vector meson-photon analogye), using a direct coupling between the
2

vector meson and the photon of strength e ‘Ezv

£

Y

Fig. 6

The coupling constant fV is dimensionless, and we do not discuss the

problems of gauge invariance for such a couplingg).

The matrix elements of the electromagnetic current between two

arbitrary states, A and B, are assumed to be well represented by the sum

of the vector meson contributions

¥ $ ¥

< v
o, =
/\ v
R »

Fig. 7

A B
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2

em < 4 m,
B | :) (> |A> = ;ZJ ~
< w2 v Q W,()-s

<ff§l ;]- (e) )‘¥;>

(II1.1)

where wv(s) - s is the vector meson inverse propagator.

The matrix element ( BIJX(0)|A ) describes a vector meson reaction
amplitude with an off mass shell vector meson of mass Vs. We will discuss
in the next section the extrapolation problem in the general case. For
time-like photons, the vector mesons can be produced as physical unstable

particles. The resonance region associated with p, w, and ¢ is
500 < Vs < 1100 MeV

and in that domain the VMD model is really an isobaric model, the variation,
with energy of the matrix elements of the electromagnetic current, being

essentially due to the vector meson propagator as in a Breit-Wigner theory.

1.2 Assumption H; (coupling constant fV)

The vector meson-photon coupling constants fv are independent of the
photon mass vs. They can be obtained from storage ring experiments, where

they are measured for on mass shell vector mesons.

If this strong form of H; turns out to be wrong, a weaker form can
be the following: fV is a smooth function of s identical for all the pheno-

mena induced by virtual photons having the same s.

1.3 Assumption H, (Mass extrapolation)

The extrapolation in the s variable of the V =+ F amplitude, from an

on mass shell vector meson to an off mass shell vector meson, is smooth.

We immediately have a difficulty with the current conservation relation

written as

q.<B1J [A> = q|<1’>1q |A.>
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where § is the unit vector in the photon momentum direction. Clearly,
>
H, is incompatible with the current conservation relation, because |q|/qo

is not a slowly varying function of s.
We then have two types of ambiguities:

a) For the choice of the current components where the VMD relations

can be used with the smoothness assumption Hj,;

b) For the choice of the scalar variables to keep fixed in the mass

extrapolation.

+ = oy e . . .
For e e annihilation reactions in the laboratory system the photon

momentum E is zero, so that
<FlIJ, @lo>=0

It is then natural to apply the VMD relations with H, to the matrix ele-

ments of the space components of the current,

For inelastic lepton-scattering (space-like photon), or for lepton-
: ->
antilepton pair production (time-like photon), the photon momentum q is
not zero in the laboratory system, and the ambiguity a is not so easily

overcome .

In the helicity frame of reference, the transverse photon amplitudes
are associated to the transverse space components (orthogonal to ) of the
current, and we will use the VMD relations with the smoothness assump-
tion H, for the matrix elements of these two components. The longitudinal
photon amplitude can be related to the space component § °* 3 or to the
time component J;, but we have, in addition, to introduce a kinematical
factor depending on s because of Lorentz invariance. It makes a big
difference to apply the VMD relations with H, to one of these matrix ele-

ments, including or not the kinematical factors.

There is no ambiguity of type b for a two-body final state, where

the only possible scalar variable is s.
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1.4 Assumption Hj;

The virtual or real photon and the physical vector mesons have the

same polarization in a given frame of reference.

On the basis of kinematical and dynamical arguments, the helicity
frame seems to be the most convenient for the VMD relations with assump-

tion H,.

LEPTON-ANTILEPTON ANNIHILATION CROSS-SECTIONS

2,1 The interesting quantity is the tensor MJL defined in equation (I.3),
v > CY . —om — ¥
Mo = S, (B 5 @-Pe)<FL I ) 10D<FIT, e lo

Using the fundamental VMD relation (II.1l), we obtain

- _ ; 2 %
i — . ml % m . 6 ___V‘ . S V *
M= 2 & —l 5 —2—] § @ey$ CRAGINNC ¢T3 1>

2,2 Let us restrict ourselves to the case of total cross—sections, for
which the relevant quantity is Gﬂbﬁx and define the overlap function of

vector meson amplitudes by

F - .
<\ . 4 Vi‘ ’_V; o v
Z’vf): -*é & &% - <RI 6 S <FLT @ld> g

The diagonal terms of 2F on mass shell are related to the partial decay

widths by

—

53y o, s

Vv
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if F is a physical decay state for the vector meson V. The set of

functions Zs v (s) can be considered as matrix elements in the 3-dimensional
space of theznéutral vector mesons. In the same space we introduce an
inverse propagator matrix W(s), whose diagonal elements in the physical

basis are the functions Wv(s).
The unitarity property of the S matrix implies the following relations:

a) For the diagonal part of I

T . A Y
— Im W= 20 2 ()

Y
where the summation is extended over all physical states. In

particular, using (II.2), we obtain

o . 2 M
lim V(/v<m" )= mv \v (11.3)

where FV is the total vector meson decay width.

b) For the non-diagonal part of ¥ we obtain a Bell-Steinbergerg’lo)

type relation

T
(I1.4)

~ * .
LW 6)-W o) 5S¢
= ~W @KV IVS> =% >
. v 2\ - )
20 v, A T Y%V
Let us notice that when strong and electromagnetic interactions

are taken into account, the physical states IV > are not ortho-

gonal, so that relation (IL.4) is not empty.

. + - . . .
2.3 The total cross-section for the process e e - F is then given in

terms of the matrix I by
*
2 R i~ 2 R "
L - 1
G (eewr) AL Sida My L T | ST
v

et VHO SRR ‘Pvi W;‘(%)-'b ‘P‘{L V(/:/).(a)-‘.i wY




_28_

In order to obtain a more symmetrical expression, it is convenient to
introduce the matrix I associated with an electron-positron state. In

the one-photon exchange approximation,

b 6.
V (ar) . L (P-5-)

e e

L (.8,

Fig. 8

the amplitude for the decay of an off mass shell vector meson of mass Vs

into a lepton-antilepton pair is given by

] u .
<W JTIV) = ée— ]_ Vé;(’&):} -.éi er. (a"}) (I1.5)

v

where u (p_) 1is the lepton free Dirac spinor;

(p,) 1is the antilepton free Dirac spinor;
eu(q,A) is the vector meson polarization vector.
The kinematics is indicated on Fig. 8.
The function ZQE (s) is computed from the expression (II.5)

VoV

-—

W
Z ("”)—Z‘“b( ’m"‘ m,,,_ (11.6)

Vlvl 56 '@v‘ 'C *

. . + - . .
and the final result, for the total cross-section Otot(e e > F), is simply

__.‘eg

g (e)‘e‘=> F) _ /_\;3__ 2 2.. VI\I‘(% ) Z.t ‘iz\h
Tor iy~ x
[_Uff (o)~ 3]’_\”,, (s;--]
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As a consequence of equations (II.2) and (II.6), we obtain

- 2
I” CV=‘> (4 ) = I i—- ) w, (11.7)
5 17

up to terms of order (mQ/mV)“ that one can obviously neglect.

2.4 1In the particular case where only one vector meson contributes, the

total cross-section is simply written as

Yo A
A3 2*Tlu@’) Z"V (s)

or ) I MLS)~‘5 \
At s = mé, using (II.2), we have
e‘\’e-, 2 1 F - ] s 2 (\( F
ZV U"v)=mvl Uﬂe@') Zjvgmv):mv Vat )
V

For the inverse propagator, using (II.3) and the definition of the reso-

nance mass
. FR 3 ‘ .\"I
VV} (my)=m, -1,
Formula (II.8) reduces to
A Mlvade) TV>F)

-~

by

(II.9)

; {- -~ R B
CQ;N @,eaﬂlaf‘)&mv1 = = .
v v

2.5 The total cross-section for production of a vector meson V is defined

by a summation over the final states F

g Lefej‘> V ) - Z g (Q{’Qp:) V_=> F)
ToC I3 Tor
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From equation (II.8) and the unitarity relation, we have

G (e V)- 2w zee‘(s) -Tm W:,(s)z
Tor S . ) (o) |

or explicitly substituting for ZS;e— (s)
T
—a - = m 3
& (e V)= P @ m, (v=ee) <€ )2, (11.10)
for s 3 & W, (s)-2 \

-1
Let us now assume that the function [Wv(s) - s] satisfies an unsubtrac-

ted dispersion relation

1 1 - T, (&) dE
K=o T W -+ [P B
hink u
At s = 0 we deduce a sum rule
O LT
W, (=) ™ i [Wy(w-£ 1" L

which can be written, using equation (IIL.10), as

mZ 4 fﬂ tGm@*e'QV) d+
— My

L{

-
)

2

va 12

- (I1.11)
mr P(V:) L’*e )

-1
Allowing now one subtraction for the dispersion relation on [WV(S) - s] ,

it is straightforward to derive in a similar way a second Ssum rule

{ 2 2 j g y -=§ V d E
o ‘Li —le(v)] JA i Dwedet ) (11.12)
\y/‘l(o') S M (Vv=se'e™)
o

v
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ELECTROMAGNETIC FORM FACTORS

3.1 The matrix elements of the electromagnetic current
em
<F I e

can be decomposed on a basis of Lorentz covariants ISJ), with scalar

coefficients generally called electromagnetic form factors:
em (é) ,(é)
<F\Jﬁ(o))0>: %: I‘L GXF (8, v )

Here u represents the set of scalar variables independent of s. The same
basis can obviously be used for the matrix elements of the vector meson

current

.

¢

-V —_ W) >
o - S )
<Rl J @l X L0 GG

The vector meson dominance model for the electromagnetic form factors

G(%) is simply written as

&) ~ 4 m? gy
G (B u) = Z.,' e *———"———- . (3;u) (I1.13)
V& Y '?V W, (s)-3 v
(1

The quantity GVF

off mass shell vector meson of mass Vs.

(sju) represents a transition amplitude V - F with an

3.2 1In order to study the implications of the smoothness assumption H,,

we factorize the vector meson amplitudes as follows.

Czé w( ) CP(;)
T (9u ;.,F q- (11.14)
VF J ) - - (S,u)

Let us first formulate a weak form of H,: the coupling constants fé%)

are independent of s. From a strong form of H,, the phase space functions

o ()

F (s3;u) are slowly varying with s.
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In the particular case, where the final state F is a two body state,
the variables u disappear and @;J) must remain essentially constant during
the extrapolation. The strong version of H, seems to agree with experi-
ment for the T meson electromagnetic form factor, but certainly leads to

serious difficulties for the nucleon electromagnetic form factors.

Finally, using equations (II.13) and (II.1l4) with the weak form of
H,, we obtain for the electromagnetic form factors
) _ <(3) 2
& €} o £Y m
L‘Q)'}CL)': LS)L\) _!E
iF - F v f, We)-s

(I1.15)
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LECTURE III

THE RESONANCE REGION

THE 7-MESON ELECTROMAGNETIC FORM FACTOR

1.1 The matrix element of the electromagnetic current between the vacuum

and an T T state is given by Lorentz covariance
—em _
U . .
<R | Do)y = (13«13_7‘* L ()
where the kinematics is indicated on Fig. 9.

P

Fig. 9

The variable s is always defined as s = —(p+ + p_)z.

 meson electromagnetic form factor is

From the TCP theorem, the T
identically zero. Using now the hermiticity property of the electro-
magnetic current, we easily check that Fﬂ(s) is real in the space like

region s < 0.

. + . . . .
The electric charge of the T meson is unity and the normalization

condition at s = 0 follows: F“(O) = 1.
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1.2 The T meson electromagnetic form factor Fﬂ(s) is the boundary value

of an analytic function F(Z).

—_ Lm 7 : . 2
r (3)= P It (srie) S 4ra,
3_<‘an:

-r'-ﬂ CS) = ch)

From now s is a real variable and Z a complex variable. The various

physical regions are defined on Fig. 10.

ens et ¥ -4 eles T~

space-like photons time-1like photons

Fig. 10

The properties of F(Z) are
i) analytic function of Z in the cut Z plane, the cut starting from

from 4m; to + © on the real positive axis;
.. . . . *
ii) Schwartz reflection principle F(Z*) =F (Z);

iii) F(Z) is bounded by a power of |Z|as |Z| + « in all directionms.

A representation of F(Z) equivalent to these three properties ig1?)
N 4
+7o | o (z’Amrcz) 2
_— , -
(@) - S5w)& doe (III.1)
-oo

where S(x) is a real valued tempered distribution whose support is con-

tained in { x| x > a 2 0}.
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1.3 If a > 0, the form factor in the space-like region is exponentially

decreasinglz)

TJ;CSJ s GXF [_-O\FZJ when &=>- 20 (111.2)

and the high energy behaviour in the time-like region is restricted

only by the condition iii).

1.4 When a = 0, we need more assumptions on F(Z) in order to obtain more

information on the form factor Fﬂ(s).

If F(Z) has only a finite number of zeros in the complex Z plane, we
define the polynomial P(Z) with real coefficients having the same zeros

as F(Z) and normalized to unity at Z = 0. The function G(Z) defined by
— —A /-
G(=)=2 (2> F(Z) (111.3)

obviously satisfies the set of properties i), ii) and iii) has
no zero in the complex Z plane and is normalized to unity at Z = 0.

If, in addition, the phase of G(Z) is bounded, we can write for G(Z)

a phase representationls)

SN
(3 (2)- exp . ,G o (I11.4)
LE(E-2)
Am,
or a modulus representationlu)
5 Leo I G (e
G(2). exp ZR-4my) gl Ge) g (111.5)

W Am_'t(t-z‘mi‘)‘/‘.-(t—z_)
L

1.5 The interest of the modulus representation in the actual problem is
that the integral (III.5) involves the modulus of the form factor in the
time-like region as measured in e+e_ > experiments. Unfortunately,
the relation between Gﬂ(t) and Fﬂ(t) involves the unknown polynomial P(t),
but it is possible to deduce from the modulus representation, sum rules

measuring the importance of the zeros!ls1%),
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1.6 In the elastic unitary approximation the phase ¢G(t) is identified

with the phase §;,(t) of the mm-scattering amplitude I = J = 1. The corre-

sponding form of G is called the Omnes function®®)

Zz gg_d (t)

© (2).exp = H
G, () P E(t-2)

. (III.6)
31
P2

Zm,

Experimentally the phase shift §;;(t) is not known, and we must compute

it in a model dependent way.

1.7 A somewhat general method is to write the Tm-scattering amplitude
I=J-=1,

r ;%14(5)

s e G
h (s)- © oo, (3) (111.7)
44 L3

R)

L
where k(s) = %(s - 4m12T)2 is the T meson centre of mass momentum, in the

form

i
_ h44 (3) = li\;—-ii) (I1I.8)
s )

where N(s) has only left-hand cut singularities, and D(s) has only right-
hand cut singularities. In particular, the discontinuity of D across the

right-hand cut is computed from (III.7) and (III.8) to be

T D(s)e — ,\ECS)N@)

We then write a dispersion relation for D(s).

Models built in that way correspond to particular assumptions on the
numerator function N(s) or, equivalently, on the left-hand cut singulari-
ties of the scattering amplitude. The extra information injected in the
calculation is the existence of the p meson resonance of mass mp and

width Fp with the constraints
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!
-1

miy. X A (mry.
gﬁ( s) P) Is u(m!) " T (I11.9)

In the Frazer-Fulco approachls) the left-hand cut is approximated by a
pole at s = -s;, and the dispersion relation for D(s) is written with one

subtraction.

In the Gounaris-Sakurai17) model the N(s) function is assumed to be a
constant, and the dispersion relation for D(s) is written with two sub-

tractions.

The analytic form of h(Z) turns out to be the same in both cases,
and depends on two arbitrary constants that one determines with the

conditions (III.9),

-4
h (2) - (Z-A.m:~){?(23+ a+ b2 (I1I.10)
where
2 X 2 27’ %2
. / 4mg Nt (R-Awgy + 2
_((2)-. A0 - 2 ) LOD ")'_ _ (111.11)
Ut (Z—Amg)/‘—z./"

The phase-shift §;1(s) is given by a so-called generalized effective

range formula

>

. 2
R (>) otn g“Cﬁ.) - RG) 1‘1(3) +rayt bs (I11.12)

—

"

where h(s) is deduced from (III.11l) to be

h <’:5)= 2 kﬁ_(_S_) Lo<j Qk(ﬁ,)" (s (II1.13)
T3 2m,
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The constants a and b are related to the p meson parameters by

3
- a X - H_) h?. h’ -
o= M hg £, L %; § s*j
. - 3 /
k):.u_ Rl hf —_ &..Jii_- + k?: h—y J
A o

where

R, - h(m;) and h$= h(_msf)

The value of s, for which h™*(-s1) = 0, is found to be very large

G 0 2
Si ~ 9.6 10 ]?

1.8 The Omnés function, associated to the Frazer-Fulco—-Gounaris-Sakurai

(FFGS) model, is simply given by

.
L

) n (III.14)
F-4m fE)+a+bZ

Gu QZ): (4 +

w2 IN

Finally, we identify the T meson form factor with the Omnes function, and

the FFGS model gives
i

2 . §

Fls).(4+8) i A — s
r < 3 M=% -+ r_“l{%f{R(S)Lh(f})-hslf(-m?‘S)hfh_IS_ " ”’3’} %%?j E’f
Re (III.15)
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where the constant dp’ interpreted as measuring finite width corrections,

is given by

dq

The numerical value of dp

e R
..2 S}

2
M, M h

R’

m
Rre 571'5, TR

2
m, M,

is computed to be dp = 0.48.

(III.16)

1.9 A systematic analysis of the experiments performed in Novosibirsk and

Orsay has been made by Roos and Pi§ut18), using different parametrizations

of the Omnés function, and disregarding the possibility of zeros of Fﬂ(s).

Unfortunately, the experimental data are not accurate enough to allow a

precise determination of the p meson shape, and it is not possible to

choose clearly the best form for Fﬂ(s).

From the Novosibirsk!®) and Orsayzo) data we get

Orsay Novosibirsk

FFGS FFGS Simple BW
m, (MeV) (773.6 = 5.3) (768 = 10) (754 £ 9)
Fp (MeV) (110.7 5.3) (140 *= 14) (105 £ 20)

Table 1
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Apparently, the Orsay and Novosibirsk data are not in good agreement, and,
in particular, the FFGS model has some difficulty to fit the Novosibirsk

data with a reasonable ¥2.

As a second remark, the small value of the p meson width Pp ~ 110 MeV,
~obtained in Orsay with the FFGS fit, is certainly incompatible with the
large values Fp =~ 130-140 MeV, usually needed in the analysis of p meson
photoproduction experiments. The storage ring experiments are, in principle,
the cleanest way to measure the p meson parameters, but with the present
accuracy of the experiments, the p meson shape cannot be very well deter-—
mined, and the analysis of the data remains strongly model-dependent, so

that the numerical values of the p meson parameters are also model-dependent.

1.10 It is clear that, in the p meson region, terms of order (m: - 5)?

can be neglected, and the formula (III.15) is very well approximated by

L2 Y}
— M <i+d3 ﬁ,»
P (3) o —
m;~s —umg h_f_fﬁ) ‘_2_5
R‘S) VS

Relaxing now the constraint dp ~ 0,48 of the FFGS model, we can fit the

Orsay data with three free parameters, and we get

mp = (776 £ 6) MeV Fp = (127.3 £ 12.5) MeV dp = 1.1 % 0.41 .
The most interesting feature of this fit is the relatively large value
obtained for the p meson width making possible an agreement between
storage ring and photoproduction experiments. More accurate data in the
p meson region and also in the low-energy region are needed to test the

FFGS model and to know what is the correct value of the p meson width.

1.11 The experimental data have also been fitted with phenomenological

expressions of Fﬂ(s) different from the Omnés function. For instance
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Curry and MoffatZI) have constructed a model where Fn(s) is identified

with the Dirac nucleon isovector form factor F,'(s) and has the explicit

form
~ "
’ [ v+ gl —SJ
— S mg Rj m.f
M o(3)- (4% g_ ) ‘
o ml-3 - m, T R(s)
pﬁ
There is a zero on the negative real axis at s = —-so and the authors don't

worry about the wrong threshold behaviour at s = 4 m%. Agreement with

experiment can be achieved with

m_ % 765 MeV I' =~ 112 MeV so ~ 12.8 m? .
o P P

1.12 For completeness we quote the Veneziano-type approach of the meson
electromagnetic form factor and we refer the reader to the specialized

literature.

DECAY OF VECTOR MESONS INTO A LEPTON-ANTILEPTON PAIR

2.1 In the time-like region around the vector meson masses where experi-
ments have been performed the VMD model reduces simply to an isobaric
model. We neglect, for the moment, the interferences between vector meson
contributions (see Lecture VI) and we analyze the data with the formula

(1I1.9)

. 9, [M(mee’) ((VF
< (e*e ST F) = &f ( ) (III.17)

Tot S=my mj {7 i’
14 v

which represents simply the diagram
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<
~N
N, e
- /
AN
N Y
R — f/,@ Id
-
Z-/+ \
s C
/
Fig. 11

Experiments have been performed in Orsay (0) and Novosibirsk (N)

looking at the following final states

F

T o ,N), F=nmm () , F=£k® () KK (O,N .

+ - . . . .
2.2 The m ™ data in the p meson region are analyzed with a particular
model for the electromagnetic form factor Fﬂ(s). The Orsay results with

the FFGS model givezo)
lﬁ(§>=>e*e‘ ) ==( 7-,41' O F ) kev . (I11.18)

The Novosibirsk data are somewhat different and give a lower value for
the partial decay width
B e )
with FFGS (?:w‘ie )= (6.05 £ 0.5) keV
with BW " (p=>e'e )= (5.25 £ 0.9) keV .
2.3 The w meson production is detected through the ﬂ+ﬂ-ﬂ° mode and the

data are fitted with a Breit-Wigner formula whose parameters are taken

from the world average

m, = 783 MeV Fw = 12.2 MeV .
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The value of the branching ratio I'(w - 3ﬂ)/Fw has also been taken from

the world average

(—1<(«U::>~.5'T )
- = 0.90 £ 0.010 .
w
The result is2?)
1, -
| (=>ee) =(1.0 £ 0.18) kev . (111.19)

2.4 Three decay modes of the ¢ meson have been observed in the Orsay
. = L . .
experiments: K°K®, K'K , mm n°. Assuming the other modes to be negli-

gible one obtains23»>2%)

I_1 _/cp = é’e’) = (1.41 * 0.12) keV (III.20)

The total ¢ meson width has been measured:

[

ff = (4.09 T 0.29) MeV (I11.21)

. . = + - -
and the branching ratios for the K°K°, K K and ﬂ+ﬂ 7% decay modes
y

B(¢510)

(30.1 = 4,1)7

B@B=KK) = (49.3 £ 4.4)%

:E) C¢ = 'ﬂ+ﬂ‘ﬂb)

(20.6 = 3.6)7%

In particular the ratio
M (p>KK")
M(p=>KE)

1.64 = 0,23

is in good agreement with the SU(2) prediction corrected for the phase

+ . . .
space (K K" mass difference) and the Coulomb 1nteract10n25)

M(p-KE)

H = 1060. ]
\‘\ (¢=>Fai€;) fFL
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The KfK- mode has also been detected in Novosibirsk and the results are

in very good agreement with the Orsay data2®)

NCEPYD

s

2.5 In the one photon exchange approximation the partial decay widths

(1,42 £ 0.15) keV

(4.1

I+

0.5) MeV ,

I'(v » e+e-) are related to the coupling constants fV by the formula (II.7).

2 .
‘—l<\/=>€4e“)= 2<— mq ﬂ

ERRTEt

From the Orsay data we obtain

4,

" = +
41 1.85 * 0.17 (I11.22)
j2
w
(el
n = i . .
gt 13.9 2.5 (II1.23)
A
thz} = 12,85 £ 1.10 (II1.24)
A;q L] -— L] . .
3. VECTOR MESON DOMINANCE MODEL FOR F _, F_, G
T "K’ “my

The vector meson states p, w and ¢ are defined so that

a) assuming time reversal invariance

b) neglecting the electromagnetic effects
the three coupling constants fV are real and positive.

3.1 7 meson electromagnetic form factor Fﬂ(s)

The p meson contribution to Fw(s) is given, in the VMD model by
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—(8) n? N
NORE LI

4‘ W_—(;—— §ita (3) (1I1.25)

. _ 2, .
On mass shell the decay coupling constant fpﬁﬂ = fpTTTr (mp) is related
to the p - 7T decay width by
2 Y
1 M _Am
| (f—>““) ‘an D¢ (4 ) (I11.26)

41( 13 y

Off mass shell the vertex function fpﬂ“(s) is used to compute the decay
function 2 (2 ﬂ)( )
%

« 2
5 o &W(s) 8 (a- A4l

T Zim iz (I11.27)

On the other hand, the propagator function Wp(s) is analytic in the complex
s cut plane and it satisfies a dispersion relation. The spectral function

is determined by the unitarity condition

Im WS,G) =) 2 (s) (111.28)
7 fy

In practice, only the 2m contribution to the sum (III.28) is taken into
account and we obtain a model-dependent expression for Wp(s) correspond-
ing to a particular assumption on fpﬂw(s). This situation is the reflect
of the corresponding one with the N/D method as explained in the first

section,
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For instance, the Gounaris-Sakurai model assumes, in this language,
the vertex function fpﬂﬁ(s) to be a constant. Two subtractions are then
necessary for writing a dispersion relation for Wp(s) and these two un-

known constants are determined by the p meson parameters mp and Fp.

a) Let us now assume that Fﬂ(s) satisfies an unsubtracted dispersion

relation. The normalization condition Fﬂ(O) = 1 gives the sum rule

~

Im [ (&)

1 ot _ 4
1 —_— dk - (I1I.28)
.l t

-

Arnw

If the sum rule can be saturated by the p meson contribution we deduce,

from (III.25) the relation

j~>~

(I1I1.29)

4;ﬂn(°) hﬁg
-?g vv}(°)

In the zero width approximation Wp(O) = m; and we obtain from (III.29)

the famous universality relation?”)

fyae (03 = ¥

Because of the large p meson width, finite width corrections must be

taken into account, one writes as

r s 23
Wf (o) = Oj ﬂlsj

and the normalization sum rule (III.29) becomes



'E fa (o)
R [ (II1.30)
¥

Unfortunately the parameter a_ cannot be determined in a model independent

way. For instance in the FFGS model where fpﬂﬂ(O) = f we have a_ ~ 1,07.

The Orsay data as given in Table 1 have been analysed with the FFGS
model so that the relation (III.30) is automatically satisfied

2 4\2
‘Cgm«: 2,44 £ 0,43 __f=_-i.‘%SiO,’t~‘4 (I11.31)
4 At

and

2 pun
fy

If now the three parameter fit is used we obtain different values for the

= 4,09

coupling constants

32 a2
! f

1 9,4250,25 1434204 (111.32)
Ay 4

but the relation (III.30) cannot be tested without further information
about the energy variation of the vertex function fpﬂ“(s)
indication given by these last numbers is that fpﬂﬂ(s) is certainly a

slowly varying function of s between s = 0 and s = m’ with a slight tend-

The only

ency to be increasing.

In all what follows we will assume all the vertex functions fVF(s)

to be well represented by a constant in the range s = 0 s = m;, keeping

in mind the possibility of a small variation.
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b) Even if one subtraction in the dispersion relation for Fﬂ(s) is needed
we can obtain a second sum rule

—_~

Im P (E =) 2
f[ il {t( ) Cﬂ} = k*“ (b ) = i% < Y?R :>
m)op
4my

Assuming again the sum rule to be saturated by the p meson contributionm,
we obtain a relation analogous to (III.29) and involving the root mean

square radius of the T meson charge distribution.

'Pm-t / md \; .
, . (i-— \Af;(o)) =

f $ Wylo) ~

L

b ortemt
. <T > (III.33)

In the zero width approximation we obtain the VMD prediction

24
‘a4 >" = \)—Y‘né = 0.64 fermi.
s

The agreement with experiment is not too bad

A

S

v
|

= (0.80 + 0.10) fermi 29)

<

(0.86 * 0.14) fermi 29)

Again the finite width corrections

i
W(O):—e.—.
£ S 'm
(¢
are model dependent. The FFGS model gives e, ~ 0.58 so that finite width

corrections in (III.33) are small in that model.
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3.2 K meson electromagnetic form factors FK(s)

We have two K meson electromagnetic form factors FK+(s) and FKo(s)

normalized, at s = 0, to the K meson charge

Fy+(0) = 1, Fro(0) = 0 .

From isospin invariance and neglecting electromagnetic corrections we can

now introduce two new form factors

sy }F (o3 )

-
]
[ d
~
(2]
-
i
| I |
X
=
-+
>
v
—
l
= *l
<
‘w
N

The p meson contribution to the K meson isovector form factor is given in

the VMD model by

_(¢) [ (L (3)

d4 (NS m Je€ T °

l'r (3) = _5__ v* = - | L () (III.34)
N Afg WS(s)—S -‘ggqn

The normalization condition implies the coupling constant relation

= l’ . . . l—
prK s fpﬂﬂ which holds in the SU(3) symmetry even broken in a parti

cular way (see Lecture V).

The w and ¢ meson contributions to the K meson isoscalar form factor

are given, in the VMD model by

2

1.0 _ | ) v | .
Fr C?J') o ‘pw“ e + &Y“K M
‘ S MORE 1("4 Wy () -3 (1I1.35)
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If the w and ¢ mesons saturate the normalization sum rule, we obtain a

relation analogous to (III.29)

v

(I1I.36)

&c |

foe M G e
W () qc W

|

The zero width approximation is certainly valid for the w meson and
ww(O) =m.
For the ¢ meson the situation is different because of the smallness
of the phase space available in the KK decay modes. Finite width cor-
rections have been computed by Renard®?) in a particular model of the

FFGS type; he finds
t - 2
qu (o) = 0,85 M,

Relation (III.31) becomes

‘E'if'e i 17 Sj«“
f.

(I11.37)

The ¢ meson contribution to Eq. (III.37) can be directly measured from

. + - =
the value of the cross—section 0 (e e > KK) at the ¢ meson mass:

TOT

2 el
Q%n(ee‘>ﬁw)8=m§

;L 2 =
¢ \ ?
T

A AmK )5/&
(" m;
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+,= .
Using the Orsay data for the K K mode we obtain?*)

l Ap&f ke |

mnn—

= ,349X0,025 (III.38)
@'KP

¢

Because of the large experimental and theoretical uncertainties we can,
at this stage, neglect the Coulomb corrections?®) and use the same cou-

. + - =
pling constant in both K K and K°K? modes.

Combining now the experimental results (III.23) and (III.38) we
compute the w - KK coupling constant from the normalization relation

(II1.37)

2
.CW - +0,09

“sR _ 0,44 (III.39)
A}-{ -0,06

The experimental value of the ¢ > KK coupling constant is deduced from

Eqs. (IIL.38) and (III.24)

2

NE_?‘:'E_E - 1,5520,48 (III.40)
4n

In Lecture V we will compare these two values with the predictions

of exact and broken SU(3) symmetry.

3.3 ﬂoy electromagnetic form factors Gﬂd%(s)31)

The form factor GWOY(S) can be split into two terms depending on

the isospin character of the photon
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T4

I=0
G (2)- C»: (s)+ C\' . (3)
nes 12y LS

In the m° -+ 2y decay, because of the Bose symmetry for the two photon
final state, one photon is isoscalar, one photon isovector. It follows

the normalization condition

T=4

I:O
G (o) = CT (o)« 4 @
g 2

hadig

(0) (I11.41)

As has been seen in Lecture I the constant G“OY(O) is related to the

% > 2y decay width by

2 -
P(’l\(°=>21§)= Z—:—x ’mqo lGﬂoG(o)]z (111.42)

The T° state is defined so that GﬂoY(O) is real and positive. Using the

recent experimental value?®?)

1+

= .
1 ('l‘(°=>2\6‘> = (11.7 = 1.2) eV (III.43)

we obtain

Gn"x( © ) = (4.56 + 0.23)1072, (IT1.44)

In the VMD model, the form factor Gﬂoy(s) is assumed to be well described

by the sum of the vector meson contributions
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ﬂu
//
¥ v
/\/\/\/\/\/\/V I T IN MT l A AP EM — 4_41(
¥
Fig, 12
The coupling constants fVﬂoY are defined by
R - vt t v § S
L IH | ‘V>.= e - ‘th Pv e, Pd (III.45)

rLu

where ey and €Y are the polarization four vectors for the vector meson

and the photon. The V - 7w’y widths are computed to be

2
2 3

2
[T (Ve 6)—3—; WCVM (\m" \@ e ALY (111.46)

v

The isovector and isoscalar form factors GioY(s) are given, in the VMD

model by

]

m.
1o i
G (‘5 g (I11.47)
'g V[g(s) -3
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+ (III1.48)

'Pu; vﬁg(Q}'s' 425 VV;(s)*s

T:0 ) 2
G (2)= ﬁwmb Mo ‘g’"a" My
il

. I= . .
In fact the isovector part G“oi(s) is proportional to the T meson electro-

magnetic form factor Fﬂ(s)

T=2 e _
G (sy- 5 P (s
1y m

sun

and the normalization condition at s = 0 gives the sum rule

:P5 e G (o (1I1.49)

Squaring this relation and introducing the convenient kinematical factors

we immediately deduce the relation between partial decay widths

m 3
-1 . __"b B "._, .
' <€ﬁ>ﬂ 3) ) i/mr \2 <i b h-)fz \ l (T[ >'26‘)
= o 3
Pleeny W ey am )R M
NGl

With the experimental value (IIIL.43) for the 1% life-time we predict

[_' - 0 -4
G) i =(XE}10,9) [0 (II1.50)

" (g = ttar)
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to compare with the experimental upper 1imit33)

[ (pr=s) -
TCPYTY exp < ko D

The coupling constant fpon is computed from (III.44) and (III.49) to be

2
0,443t 0,003 wilh ‘Cﬂ'ue?,ii
4n

{

g

il

(II1.51)

n?
.Yf o = 0,426+ 0,009 with 43’1" = 2,4%
§e = 4n

Let us now study the isoscalar part. If the w and ¢ contributions

saturate the normalization sum rule we obtain the relation

2 v 2
‘r(aﬂ»(j My ‘Csz‘mozs g ] G o (c)

+ _— =

£ W0 £ Woie

(I11.52)

Again we introduce finite width corrections for the ¢ meson contribution

and the relation (III.52), using the experimental result (III.44) becomes

gw*["&{_ 1)1_:],“? <

¥ _(2,28%0,i2)10 (I1I.53)

&iu '(2#
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The radiative decay width of the w meson has been experimentally measuredsq)

\—1<w~.~=> (T°?Y) = (1.1 % 0.2) MeV

from which we determine up to a sign the waOY coupling constant

£,

RHS X = 0.39 * 0.04

Therefore the w contribution to Eq. (III.48) can be computed from the

+ - . . .
measured W > WOY and w > e e partial decay widths. The result is

[ far |

fo o

= (2.95 * 0.41)10° 2

Comparing this value with the right-hand side of Eq. (III.53) we
choose a positive sign for the coupling constant fwﬂoY and the ¢ meson
contribution turns out to be of opposite sign and very small compared to

the w one as expected from the quark model (see Lecture V)

2
‘](j‘fi"_b’ = (-0.55 * 0.38)10" 2

“C;z

Using for f¢ the Orsay data (III.24) we can estimate a range of values

for the radiative decay width of the ¢ meson

-¥~ . ~0.070 * 0.0048 I11.54
# ey ( )

(10-200) keV (I1I1.55)

()
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The only experimental information we have is an upper limit35)

PW"’“"KJWP < 45 kel

compatible with the prediction (IIL.55).
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LECTURE IV

SUM RULES AND HIGH-ENERGY BEHAVIOUR

SPECTRAL REPRESENTATIONS

1.1 The trace of the tensor Muv defined in Lecture I (I.3) and the total
cross—-section for electron-positron annihilation into hadrons are related
to the spectral function pe'm'(s) defined in the Kallen-Lehman representa-
tion value of products of components of the electromagnetic current.

More generally, for a comserved current we have36>37)

~03 ( olfy - A . +
<ol J L (@) J ¢ o)\o>_) OIS 44 L] AGese)de

o

<o u"_y@c), ;Y%ﬂ\o>,. f »z"}e)y_gw_ 100,) 06 dy
<olT(3 (x) JP(o))]o> }’? (&) &a“““ 4 o ] A (= k) dd

. - %,
+1 9.9, %) J Toae

where the invariant distributions A+(x;t), A(x3t) are defined by their

four—-dimensional Fourier transform
+
VARG @(hd%(kﬁiz)
. P4
A (R)t/\:_o?ln, é(hu)g(‘RH:)
A (hy by dim :

Es0t  RIeb—te
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e.

The precise relation between p * and the total cross-section

G(e+e_ - hadrons) is?)

. 3.2 om
C€+6-=>haclvoas\ = m ? (s (Iv.1)
Tor ’ ]

1.2 Schwinger terms®®)

From the properties of the invariant distribution A(x,t) it is
straightforward to prove the existence of Schwinger terms in the equal
time commutator of a time component of the current with a space component

(k = 1,2,3)

{

R e Q <, mt
Lo|[J @, Jﬁm],o} 1 ot %A&JJ@_&Q&

The last integral is called the vacuum expectation value of the Schwinger
term — or the Schwinger term itself if it is a c-number. Using the

relation (IV.1l) we have

o~

(’?ema ?i{;é&) dt = 4 -, t EOVCQ"e-.:)haJPons)dt (1v.2)
16 m«

1.3 Vacuum polarization?)

The photon propagator Duv(q) is the vacuum expectation value of the
time-ordered product of two components of the electromagnetic field AU(X)°
It can be written as the sum of the free field propagator and of a gauge

invariant correction

Ce\\_ Jo  _ [39»* QJ@ ]ﬂ(s)

54-18 3+08

where q? + s = 0.
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1.4 Muon anomalous magnetic moment *?)

The hadronic contributions to the muon anomalous magnetic moment

U = z(g}J 2) due to vacuum polarization corrections are also given as

an integral over the e’ e annihilation total cross-section

QO

-1 (hadrons) = _:!__._- G (e*e}) hadrons) Kt‘( t)oif:

4 Tet
| 4ita (IV.4)

where the weight function Kﬁz)(t) is the second order vertex function

explicitly known“O)

@ 32 ,
| «§ Y oq(avy) -9+ 3 | vy 2l L
Kﬂ“f(ggg 2- 3\+(\+3\/4f3> . 4_3%L53§

where

.\,.
0}
X

We retain the two interesting properties of Kﬁz)(t)

@
K‘l‘ (b): _O_..(
T
(&Y
(/\ ”5) i ft_ for large t .
E
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1.5 Charge renormalizationg)

The bare, ep, and renormalized, e, electric charges are related by

and the correction § eg can be computed in terms of the spectral function

pe.m.

)
2 em
<;€,, 2 ? (t) dl:
e’ E*

The hadronic contributions to the charge renormalization take the form

(s o

Ce? A .
€ (hadrons) = - G:ro-r ( @e = hadrons) db (1V.5)

1.6 Convergence of the integrals

We have written a set of integrals involving the total cross-section
for electron-positron annihilation into hadrons O’TOT(S) and we try now to
discuss the question of convergence of these integrals. We can distinguish

three classes of integrals

Class Example Type
[oe]
A Schwinger term { t GTOT(t)dt
[ee]
B Charge renormalization f 970 (t)dt
9 T

. . 1
C Vacuum polarization t OTOT(t)dt

o Y

Table 2
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For instance, in pure quantum electrodynamics the total cross-
sections behave like 1/s for large s and therefore we have divergences
of the linear type for A, of the logarithmic type for B, and convergence

for C.

The same situation occurs in composite models of elementary particles
as for instance the quark model“l). But we can construct models where
the three classes of integrals A, B and C are convergent. A detailed
discussion of the various field algebra theories has been given by Gatto

in his Daresbury talk?) where the reader can refer for more details.

2. VECTOR MESON DOMINANCE MODEL FOR SPECTRAL REPRESENTATIONS

. + -
We replace the total cross—section GTOT(e e - hadrons) by the sum

of the vector meson contributions, neglecting the interferences

G (e thadrons) L DG (fe>V)  av.e

ToT whg v Tor

2.1 Schwinger term

If the function [Wv(s) - s] 7! satisfies an unsubtracted dispersion
relation, the Schwinger term is finite and using equation (II.11) we define

a finite width correction parameter Xy by

2 jtg_ror(ee?)\/)au'
o L S B

Wy A o eee)

The Schwinger term c®'™ is then written as

Cem DY CV (1.7)
v
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" and each vector meson contribution is given by

2

.V m
_ 3 @®m F(V»e‘e‘),; e, Y (1V.8)

Y >2

Y

Using

x =0.93, X x, = 1.15

]
=
-

and the Orsay data (III.22), (III.23) and (III.24), we obtain

cP = (23.96 + 2.16)1073 Gev? (1V.9)

c? = (3.50 + 0.63)1073 Gev2 (1V.10)

c® - (7.40 * 0.53)10"% Gev? (IV.11)
so that

e.m.

(34.9 + 2.3) 10732 Gev?

(@]
]

2.2 Charge renormalization

If the function [Wv(s) - s]—l satisfies a dispersion relation, with
at most one subtraction, the hadronic contributions to the charge re-
normalization are finite in the VMD model and, using Eq. (II.12), we de-

fine a finite width correction parameter Yy by

22 | JG (eée‘_-:)'v')di:
Tmy N/ A e o7
:jvz . ‘;-WV@)>= o i P
W ™ 196 (Vo e'e’)
\ v J A __m____

v
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The charge renormalization is then written as

ge:- (hadrons) = Z g_e: (V \
e voe

and each vector meson contribution is given by

(v ete)
Rl 3y S g,
ea. O( mv ,{?vl
Using
Yy = 0.95, y,=1, Vo = 1.075

and the Orsay data we get

2
<°_§° (@) = (3.75 £ 0.34)107°
el

?
%f° (w) = (0.52 * 0.09)10™2

C)I

e
%_ef ($)= (0.61 + 0.05)10"3

ez
so that
1
%~e° (h&dt‘(}ns).—. (4.88
el

2.3 Muon anomalous magnetic moment

+ 0.35)10 % .

43)

(1Iv.12)

(1Iv.13)

(Iv.14)

(Iv.15)

(Iv.16)

The VMD model computation ofa.u (hadrons) defined in Eq. (IV.4) gives

the result

q  (hadrons) = (6.5 + 0.5)107° .
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The theoretical prediction including 2nd, 4th, 6th terms is given by"”)

d

in very good agreement with the most recent experimental value*®)

= -8
U th (116587 + 2)10

= -8
Qu exp = (116616 * 31)107° .

ELECTROMAGNETIC SUM RULES

3.1 The electromagnetic current can be decomposed as a sum of its iso-

topic spin components

Je.m. = 3% + _L_Ja .
H U /3

In the SU(3) language
Ji corresponds to an isovector particle of the octuplet

Jﬁ corresponds to an isoscalar particle of the octuplet.

For the special function p®°™* we have the decomposition

olll, 1 1
pSeMe = o33 §p88 + — (p%% + p83y |, (Iv.17)
V3

The last term corresponds to an electromagnetic contribution and it will
be neglected in this section (see Lecture VI). The spectral functions

p3% and p®® are associated with total cross-sections for e+e_ annihilation
into hadronic states of definite isotopic spin, respectively I = 1 and

I=0.

3.2 First Weinberg sum rule®)

From the Gell-Mann commutation relations for the current components
of the SU(3) vector components and some additional technical assumptions
Weinberg has derived a spectral function sum rule which it is convenient

to write in the form

{:Q? C€+QA=>I=’UJ& -3 tG (QE'=> .o \dE (1Iv.18)

ToT Tor
b o
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In the Schwinger term language the first Weinberg sum rule is simply

written as
c33% = 88 (1v.19)

B B

where C* is defined from pa by an equation analogous to (IV.2). The
VMD model for the Schwinger terms has been computed in the previous sec-
tion

C33 = Cp CBB = 3(Cw + ch)

and we obtain a sum rule for the partial decay widths I'(V -»> e+e_)

(1v.20)

X ¢ m, K (Q =€ )=z3 \ogw m, P( woce )+ :ep m, P@ge’e )]

which, in the zero width approximation (xV = 1) is known as the Das-Mathur-

Okubo sum rule“7).

A good way to compare the sum rules with experiment is to introduce

the dimensionless parameter §

M
—
1

1] - [1 = o]
1]+ [1

where [I] is the isotopic spin I contribution to the sum rule. From the

i
=
]

]
o
L1

Orsay measurements we obtain with and without finite width corrections

8, = (-15.5 £ 6)1072 6;, = (-7.3 % 6.1)1072 (1v.21)

3.3 Charge renormalization sum rule*®>49)

From the Sugawara model®?) one can derive a spectral function sum

rule
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T VdE =36 (ete - T 1d
Erof(e e =>T<A) 4k T‘o'r(e e =>1.c)dk (IvV.22)

o o)

which implies the equality of the isovector and isoscalar contributions

to the charge renormalization.

Using the VMD model (IV.13) we obtain a second sum rule for the
partial decay widths I'(V + e+e_)

g, (" (pwc'e) . 3|y »l"(coﬂe*e‘)i_g (“'(?'5=>efe‘)

i © oy,

(1v.23)

From the Orsay measurements we obtain with and without finite width cor-

rections

§g = (+4.7 * 6.3)1072 ag = (+9.2 % 6.4)1072 .  (IV.24)

3.4 Sugawara sum ru1e5°)

The sum rules (IV.20) and (IV.23) cannot both be exact sum rules and
in the framework of the Sugawara model the first Weinberg sum rule must
be corrected with a specific factor corresponding to a particular break-

ing of the SU(3) symmetry. Relation (IV.13) becomes

_— = =, (1Iv.25)
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Using a Gell-Mann-Okubo formula for the vector meson octuplet we have

2 b3 2 2 L
m .M =i<4 —m
3 § mts 3 m\(" f)

and instead of the Das-Mathur-Okubo sum rule we obtain the Sugawara sum

rule

—_ - R
_ ’ S 1 3m
mfl [f=>€e) :5,'%7“3 (co_-aa,e)+ m¢r(¢,>eej'4m, o (1v.26)
o ¥
The comparison with the Orsay data gives
8g = (2.9 * 6.6)1072 §g = (+11.1 £ 6.7)1072 . (IV.27)

3.5 Discussion
In the framework of the VMD model and assuming to be correct
a) the Orsay experimental data

b) the finite width corrections

we have obtained a 2% standard deviation effect for the first Weinberg
sum rule and a good agreement with experiment for the charge renormaliza-

tion and the Sugawara sum rules.

The first Weinberg sum rule is associated with a current type mixing
between w and ¢ whereas the charge renormalization and the Sugawara sum

ua).

rules are both associated with a mass type mixing On the basis of

the present calculations the mass mixing model is favoured.

Nevertheless we must keep in mind that the VMD has not been tested
in the time-like region and high energy contributions to the sum rule

integrals can change our conclusions.
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4. STRUCTURE FUNCTIONS 61 AND 62

4.1 We consider the three related processes

e +p->e +T I

e’ + e p +T 1I
+ -

' e +e +p III

where p is a particle of mass M and I' an arbitrary multi-particle state

of effective mass W.

We use the one photon exchange approximation and we call q the photon

energy momentum four vector.

In the q?, W? plane the physical regions for reactions I, II, III -

are shown in Fig. 13.

It will be useful later to introduce the dimensionless parameter w

corresponding to the slope of a straight line passing by the point O

2 _ M2
w=1+w_2._1/£_.
q

For the reaction I l1<uw
II O<w<l1
III w<o .



|~

NN O N NN

| //,///,// s /.///// S S ST SS

+
=~

1(47

€ P=>ep

Fig. 13
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4.2 The structure functions defined for the processes I, II, III are, in
general, independent. Going from space-like photons to time-like photons
we have to cross the q? cut and the possible branch points in the q? plane
forbid the analytic continuation of the structure functions from one region
to another region51’52).

4.3 Nevertheless in some specific models such singularities are not im-
portant at high energy and the analytic continuation can be performed.

To make precise the relations one obtains, in that case it is convenient
to work with the variables W? and w. We first define new structure func-

tions

a) space-like photons 1 < w , 2 >0
2 - . N ‘
T Vw2 S (W
- 2
V;_ [ﬂzlwz)iqy:(w'w)

b) time-like photons 0 < 1<w , q®>=-5 <0

~ ~
Zgﬁzv,(s,w’)-acji(wfw)

V, (o U = F (W

When the analytic continuation in q? or w at fixed W? above its threshold

is legitimate we have

]

(1Iv.28)

le (W) :-—C;_ (W60 ) (1V.29)
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In particular from the positivity conditions
Fo(W?,w) 20 for w>1, Fa(W2,w) 20 for O0<w<1

and the condition (IV.29) implies that F2(W?,w) must change sign at w = 1.

4.4 1In the high—energy limit the angular distribution at fixed w for the

annihilation process
+ -
e +e »>p+T

is given by

d?,g - Y O( (QJ-H) 0 S WO EF (W Q,\(/\«-Zz)f(};(“ﬁwﬂ (1Iv.30)
82 Ji 43 2 )

If the structure functions F1,2(W2,w) admit a non-trivial Bjorken limit

(see for instance Bjorken's lectures)

(Iv.31)

,@tm CI\—!: ) . C’\;
W-;OO ‘_):,a(w,(h): \X‘z(w)
w +|xed

oq . . + - .
the annihilation cross-section for the process e e - p + I' behaves like

a point structure cross—section

le AZ 2

Sy on T @5, S
W fixea d2 ‘lw 28 7‘

w C\f(@)(i Y+ Q&n )} (IV.32)
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4.5 1In the Drell-Levy-Yan model of partonsss) we have the two properties

a) analytic continuation from the space-like region to the time-like
region (IV.28) and (IV.29).

b) scaling of the structure functions at high energy (IV.31).

Combining both properties
Fi1(w) = Fa(w)  Fa(w) = -Fo(w) .

Another interesting property is the relation between the angular distri-

bution (IV.32) and the parton spin.

a) 1if the parton spin is zero, the photon has a longitudinal pola-
rization in the high-energy limit and the angular distribution has the
form 1 - z®> (I.18).

b) if the parton spin is %, the photon has a transverse polariza-
tion in the high-energy limit and the angular distribution has the form
142> (I1.18).

HIGH-ENERGY MODELS

5.1 Preliminary results from ADONE in Frascati indicate a relatively
copious production of four charged particles and perhaps of‘two charged
particles in the region 1.5 GeV < Vs < 2 GeV. An order of magnitude for

2 54) Obviously the angular and

the cross-section is about 10732 cm
energy distributions of the emitted particles have not been measured and

we must remain very cautious about the interpretation of the ADONE results
before being sure, for instance, that the radiative corrections have been

correctly computed.

5.2 The VMD model discussed in Lecture II makes definite predictions about
the high—-energy behaviour of the annihilation cross—sections in terms of
the vector meson propagator if the smoothness assumption Hp remains cor-

rect at high energy.

For instance the T meson electromagnetic form factor has been mea-

sured in Orsay at the ¢ meson mass

]Fﬂ(mé)[z = 1.84 + 0.46 .

This value agrees with the extrapolated FFGS model.
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Recently efforts have been made to look for high mass vector mesons
as predicted by theoretical models. No experimental evidence has been
found yet for these new particles which, if they exist, will modify the

predictions of the simplest VMD model with only p, w and ¢ mesons.

5.3 We now pay some attention to the two-jet production mechanism which
receives serious support from strong interaction data. Let us begin with

some kinematics for the process

+ -
e +e T + 712

Fig, 14
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The total energy momentum four vectors of the multiparticle systems I';

and I'> are called p: and p2. We define the two effective masses

2 2 _ 2 2 _
u1+p1—0 u2+p2—0.

Only the effective masses and the jet direction are observed. In the one
photon exchange approximation the differential cross—section has the struc-

ture

AE  aud b
A2 42 dur 8 (3 )

(r P AG ) B i

(1Iv.33)

)
)

where the centre of mass momentum p is a function of s, u;, uz, given by

( [S = U‘ﬁ%)‘](s - (Ug- 1)23]5%

4
/P'zﬁ)

In the particular case where I'; is a single particle state with mass M
and spin J the structure functions A and B reduce to the functions V; and

V2 defined in Lecture I

-A.éﬁ,uf,tl;\ => g[u:— M?) (2344 ) 4 _V;(«‘,; U3
. 2M® o
Bla,u &) =>S (0 -M) @3+ A NCE 4§ )
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If now I'y is a particle of mass M; and spin J,and I'; an antiparticle
of mass M, and same spin, the structure functions are completely factorized

in the three variables with Dirac delta distribution for u; and u»

Rls.u2,u) 55 WM (UE M2 (2T1) AL(s)
%)
BLS i/l‘ Y )__)%LU M )S(U M")(QJ-i-i) b(s)

where a(s) and b(s) described the electromagnetic vertex 1-2-y. In the

elastic case, for instance, we simply have (see Lecture I):

Spin 0 : a(s) = |F(s)|? , b(s) =

spin § ¢ a(s) = -[Fa(s)|? + == [F2(s)|® , B(s) = 3[Fi(s) + Fa(s)|? .
4M

5.4 In the Cabibbo-Parisi-Testa model®3) the two jets are assumed to be

induced by partons of spin 0 and/or %. The structure functions are fac-

torized following

Rla,u?,uly= U3y @(uZ)(2T+1)A(s)
Bis ol up) = Q(uly ¢ (23+3) BGs)

where p(u?) is the parton propagator spectral function. At high energy

the parton electromagnetic structure is assumed to be point-like.

Spin 0 parton a(s) = Q2 b(s) = 0
Spin % parton a(s) = -Q? b(s) = ng

where Q is the parton electric charge.

Retaining only spin O and % partons the differential cross—section

at high energy becomes



J3G
d2407au>

where j €

ting over

we obtain
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~‘Z®(§(,\ZZQ+ 22‘@1 up) QU
" \ )36‘ (447 2 ?( RIYCHY.

0 and j € % mean partons of spin O and % respectively.
Z, uf and ug with the normalization condition

~

j §> (u2) dun’= 4

the total cross section

2
G(eeshaémn«s)_t?‘_o( (ZQ +4)J622
or 35 lge ° gey )

which behaves like a point structure cross—section.

(Iv.34)

Integra-

(Iv.35)

Starting from the recent ADONE results the authors speculate about

+ _+ .
the possibility that m , K and other spin zero charged mesons are partons.

The direct consequence of this last assumption is a strong depression of

the production of bosonic states with an odd number of T mesons as com-

pared with those with an even number of T mesons.

test the model.

Experiment will quickly
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LECTURE V

SU(3) SYMMETRY AND THE w—-¢ MIXING

1. GENERALITIES

1.1 Notation
The vector meson states |p >, |w >, |¢ > are defined so that
a) 1in the absence of electromagnetic mixing

b) with time reversal invariance,

the three vector meson-photon coupling constants fp, fw’ fcb are real and

positive by convention.

1.2 In an exact SU(3) symmetry the particles are associated to the weights
of irreducible representations. But we know that the symmetry is broken
and this implies a non-degenerate mass spectrum for particles belonging
to a given representation and also the possibility of configuration
mixing.

We call as ¢g and w1 the I = Y = 0 weights of the vector meson octu-

plet and singulet representations

¢s € 8 w e 1.

We use the vector meson propagator language in order to define the physi-
cal states ¢ and W as the eigenstates of the propagator matrix W. In

this particular case, the widths of the vector mesons are small compared

to the masses and the matrix W reduces essentially to the hermitian squared
mass matrix R. It follows that the linear transformation in the two-
dimensional space ¢g, w1 which diagonalize R is orthogonal, the mixing

parameter real and the eigenstates ¢ and w are orthogonal.

Assuming time reversal invariance, the condition of reality of the

mixing parameter is simply
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M. ljw - mcf Pq

" = 0,026 K 4
mz2 — My

We then introduce a mixing angle 95¢)

'Qﬁ = C%aéq ?é% — Swm 6 OQL

W = Jmb 5253 + (o0 © Loy

with the reciprocal formulae

G - (58 4 + 8O w

/2

[0y :"&n@)st + w0 w

The physical states ¢ and w are defined as the eigenstates of the squared
mass matrix and the mixing angle 6 is given in terms of the physical

vector meson masses by a Gell-Mann - Okubo formula

2 1 2 T A2 2 .2 2
th*_ mg=5mg=5)_&aem¢+ Smlﬂmw] (V.1)

The solution of (V.1l) located in the first quadrant is

6 = 40.2°

If the mass formula is written for the inverse squared masses®?) we ob-

tain a different mixing angle O.
inv

6. = 28.6° .
inv

Both values will be used later in the comparison with experiment.



_83_

1.3 Quark model

The neutral non—-strange vector mesons are defined in the quark model

?L - Emi -hﬂaﬁz_ 515 = E:%’rﬁa%—?nga Wy= a4 ) Z’\'ﬁg Hh
F ’ it I

With the "ideal" mixing angle eq
q J ) 1V

the physical particles are given by

b= -89 wa= 14,79,
= 312 1
| iz

6, « 352
1.4 The relation between SU(3) symmetry and electromagnetic interactions
is part of the lectures of Professor Joos and we discuss here only a few
applications strongly connected with storage ring experiments. For a

more systematic study we refer to specialized books58) .

2. DECAY OF VECTOR MESONS INTO A LEPTON-ANTILEPTON PAIR

2.1 SU(3) symmetry

In the SU(3) theory of electromagnetic interactions the electromag-

netic current is assumed to be the U spin scalar of an adjoint representa-

tion.

Therefore the unitary singlet w; is not coupled to the photon

(y —w1) =0 (V.2)
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and we have a relation between the two octuplet members ¢g and p

1
(y - ¢8) =— (y - p) . (v.3)
° /3

Unfortunately because of the large mass differences between vector mesons
(especially p and ¢) and because of their instability some ambiguities

remain concerning the precise meaning of these SU(3) relatioms.

To be more general let us introduce a finite width correction factor

o . . .
z., and a mass term my where 0 is an arbitrary integer. We then apply the

A
SU(3) symmetry to the quantities

and we obtain from (V.2) and (V.3)

BB B+ (06 %, 2O

ud Sind T; =d I;
(?oa Q t;p T ot w B P

one can solve for F¢ and Fw in terms of Fp

F = — 6 F
¢ = cos 0

Fw - L sin 6 F
/3 p

Now eliminating the mixing angle 6 we have a sum rule

b -

?g =9 LF;*‘ Faj ] (V.4)
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The VMD model for the first Weinberg sum rule corresponds to the particu-
lar choice (IV.20)

and we have a current mixing model®548),

The VMD model for the charge renormalization sum rule corresponds to

a different choice (IV.23)

Zy=V¥y» =0
and we have a mass mixing model®5%8),

2.2 It is usual to introduce an auxiliary mixing angle eY defined by
tan GY = f¢/fw
and directly related to experiments by

m¢ l_‘ ((D =>6E- )
m, [ (P =€¢)

.2
—'\—O n é‘) =
Y
The relation between GY and 6 1is simply

< . . /'m. v i
+11ﬂ @\r = {—aVl Q —sé \ —f
m. 2B

w

so that, for instance, in the mass mixing model we have‘GY = 0 in the zero

width approximation.

2.3 Comparison with experiment

We compute the partial decay widths T'(w - e+e_) and T'(¢ ~ e+e—) with,
as an input, the experimental value of I'(e »> e+e—) = (7.4 £ 0.7) keV and

we also predict the angle eY.
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+ - + -
T(w>ee) | T(d>ee) tan? 6
keV keV Y
_ )
Current §) = 40.2 0.94 + 0.09 | 0.88 = 0.08 1.39
mixing
. =29.6°] 0.52 £+ 0.05 | 1.16 + 0.11 0.58
inv
_ o
Mass S = 40.2 0.99 + 0.10 1.68 £ 0.16 0.77
mixing
. =29.6°] 0.55 = 0.05 | 2.21 * 0.21 0.32
inv
Experiment 1.0 £ 0.18 | 1.41 * 0.12 | 0.92 * 0.17
Table 3
The models with a mixing angle einv = 29.6° 59) seem to be excluded

on the basis of the w meson data, independently of the type of mixing
because of the small w - p mass difference. The mass mixing model seems
to fit more nicely to the Orsay data and this conclusion is obviously
identical to that obtained from the study of the electromagnetic sum

rules.

STRONG DECAY OF VECTOR MESONS

3.1 SU(3) symmetryss)

We consider the strong decay of the vector mesons into two pseudo-
scalar mesons. From the point of view of SU(3) symmetry we have the

transition
1 ® 8 >~ 8 ® 8

In the exact symmetry there is only one reduced matrix element because

of the generalized Pauli principle

(L
8 > 8
a
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and in particular the transition 1 D 1 is forbidden because of particle-
antiparticle conjugation invariance. In the broken symmetry there exists,

to first order, three independent ways of breaking

(8)

O 8 > 8

- a
(1

B 1 > s,
(8) _

Y 8 - (10 - 10)

. 3 3 - = I/ .
The universality relation prK 2fpTTTT is preserved by the o and B type

of breaking and in order to save this equality, also given by the VMD
model, from now on we take Y = 0. The coupling constants of interest are’

then given by

2
”i?gﬂﬁ 412 2

T —— (14 )

Ly A

—z .

b L2

_QK*KH B _3_ go (A_%)?.

Ay L Ay

; o, ,
_‘gﬂi = E f_o Cos @ (l—d)<ﬂ-—‘3 fan @)

AR 4 Aw
‘q:zmcﬁ 8 ‘Cuoz £lv;f Q @.—o()z (i-t-(‘sﬁ{“()h (-}Jz
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The comparison between SU(3) prediction and experiment is made using the
physical masses in the phase space factors and assuming the p meson

width to be given by

T(p+mm) = (127.3% 12.5) MeV .

3.2 K¥>K+1 decay

The exact SU(3) symmetry predicts a K* width of 36 MeV whereas the

experimental value is3*)

TK* > K + ™ (50 + 1) MeV .

xp

We introduce a first order breaking of the symmetry and the breaking

parameter 0 is computed to be
o==0,101 = 0,034 (V.5)

3.3 ¢>K + K decay

Again the exact SU(3) symmetry prediction is in disagreement with
experiment. We first use the value (V.5) for a to compute the coupling

constant f¢Kﬁ assuming B = 0. The result is

2
f| =
KR - 1058 £ 0.12

in very good agreement with the Orsay result

2
£° -
KK -
4T exp 1.55 £ 0.18 .

If now we allow a non zero value for B, e.g. a second type of SU(3)

breaking, we observe that B must be small and compatible with zero

{3 fau B - 0.009 ¢ 0.067 .
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3.4 w > KK transition

-The decay w - KK is not energetically possible and we cannot have a
direct comparison between theory and experiment. Nevertheless, it is

useful to compute the coupling constant fwKR in order to compare with

other predictions. Using only the o type breaking we obtain

2
fwKK

47

=1.13 £ 0.09
in very bad disagreement with the VMD model prediction (III.34)

2
£RK + 0.09
m VMD = 0.11 7 o2

The inclusion of a second type of breaking cannot reduce the discrepancy
and we are faced with a serious difficulty which one can express in the

following equivalent way. Consider the quantity Q defined by

£ - £ -

Q= WKK , 1.17 KK 4.5
F f
w ¢

which in the VMD model must be zero if the w and ¢ mesons saturate the

isoscalar K meson electric charge. As explained in Lecture III the ¢

contribution and the coupling constant fw are deduced from the storage

ring experiments. We now use for fwKﬁ the a-type broken SU(3) prediction
fwKK = tan 6 f¢Kﬁ and the result is

Q = 0.191* 0.053,

showing a 3.5 standard deviation effect.

It is not obviously possible to determine, on this simple case, the

origin of the discrepancy and we have the choice
a) the SU(3) symmetry even broken is not reliable;
b) w and ¢ mesons do not saturate the K meson isoscalar charge;

c) fw and f¢ are not constants in the extrapolation.



_90_

RADIATIVE DECAY OF VECTOR MESONS

4.1 SU(3) symmetry®®)

We are now interested in the electromagnetic decay of the vector
mesons into a pseudoscalar meson and a photon. As previously the photon
is assumed to be the U spin scalar of an octuplet and from the point of

view of SU(3) symmetry we have again the transition

1 ® 8 > 8 Q® 8.

In the exact symmetry there are two reduced matrix elements using particle-

antiparticle conjugation invariance

(1)

8 =~ 85 g88
(1)

1 - 1 g1s

4.2 VM + vy decays

In the particular case where the pseudoscalar meson is a T° we have
three possible reactions which can be expressed in terms of ggs and gis

and of the w-¢ mixing angle

-Fuﬂ"a = %“’
gwm {3 [3"“9 e * (e 6 3:“]
%Pn% B A[&ae Szz - Aud 34‘6 ]

1]

]

We then have one relation

D- 5 gw - [eef, v 8n0f -0 wo
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In the VMD model, the two coupling constants fP“OY

and f¢ﬂ°Y can be com-
puted from the m° life term and the measured decay width I'(w > T°Y) (see

Lecture III). Using

T(m® > 2y) = (11.7 = 1.2)eV T'(w~ 7)) = (1.1 + 0.2)MeV
we obtain
£ qoy = 0126 % 0.012 w.7
Egpoy = 0+39 * 0.04 (v.8)
fdmoy = =-0,070 *+ 0.048 (V.9)

and the relation (V.6) is very well satisfied

D = 0.01* o0.05 .

In the quark model the reduced matrix elements g,, and g;g are no longer
independent; the strange quark-antiquark pair ¢q = —a3q3 cannot decay

into a 1%y system so that
g1s = V2 gss .
We now obtain two predictions instead of the single relation (V.6)

1 u
?jnob = - 'Pwmg, ‘?

3 Ces (e“@q) Al

= __+0Vl (6"é)q) {;\wl‘t"d‘

Using for fwﬂoy the experimental value (V.8) we obtain

0 0.130 + 0,013 (V.10)

f
pTYyY

= = +
f¢“0Y 0.031 = 0.003 (v.11)
in good agreement with the VMD model predictions (V.7) and (V.9).

In particular, the radiative decay width I'(¢ + m°Y) deduced from

(V.11) is compatible with the experimental upper limit of 15 keV.
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LECTURE VI

THE w-p MIXING

THE w - 27 DECAY

1,1 The decay of the w meson into 27 is forbidden by G parity invariance

and it can proceed only via electromagnetic interactions.

Experimentally a considerable effort has been made in order to mea-
sure the partial decay width r(m + 2m) via an interference between the
two amplitudes p > 27 and w > 2T and therefore to detect a possible w-p

electromagnetic mixing. We classify the experiments into three categories.
a) strong production of p and w mesons followed by a decay into the
+ -
T T modes
b) electron-positron annihilation into 2T;

. . = + - .
c) coherent photoproduction on nuclei of 22 and ™ T pairs.

1.2 An excellent review of the experimental situation in case a) has
recently been given by Roos®?). The experimental observation of a w-p

interference will determine two quantities, the branching ratio

Lo
£ o INCESID

C-

* ~ Vs
[oen Clpo2n )

and the relative phase for the p and w amplitudes.

The value given by Roos for T is

_ + 1.35 -2
T = <4.5 _ 0.75>10 . ~ (VI.1)



_94_

In the case b) the Orsay storage ring experiment obtains®!)

T= (6% 2)1072 (VI.2)

and finally in case c) the Daresbury measurements®?2) agree also with these

values
T= (2.7 * 0.6)1072 . (V1.3)
In the following we will use the value (VI.1l) for T.

1.3 It is now well-known that the one-photon exchange model for the

w = 2T transition gives for T a very small value
~ X -2
TIY 1 x 10
which cannot explain the observed value (VI.1).

Therefore it is natural to look at the theoretical problem of a
possible mixing of the p and w mesons due to electromagnetic interactions,

and which can be important because of the quasi degeneracy of the two

‘vector meson statesea) .

1.4 Because of the lack of time we cannot review all the theoretical

investigationssu_73) and we only present a mixing formalism based on

74) and using the propagator method proposed some years

75)

quantum mechanics

ago by Jacob and Sachs

FORMALISM

2.1 We start with an orthonormal basis |a >

Ia>=lp0>’ I(L)o>

defined by the strong interactions with isotopic spin invariance in the

two dimensional space E; . The characteristic relations are

<alb>=06_ I=) |a>c<al
a

where I is the projector on E2, e.g. the unit operator in Ej;.
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In the absence of electromagnetic interactions, the matrix W has a

diagonal form in this basis.

Now introducing the electromagnetic interactions, we first have a
slight modification of the diagonal elements of W and secondly the appear-

ance of non-diagonal matrix elements connecting the p and w’ states.

2.2 We assume that, in the neighbourhood of the physical region W can be
diagonalized by a linear transformation in E; represented by a complex

regular matrix C

*)

The right eigenvectors IV > are defined by the homogeneous equation

W - W1}V > =0

where Wv is the corresponding eigenvalue function. The linear transforma-

tion is then written

19> = P[W» - &y \‘O”;j (VI.4)

[0y = [ Sy 1pes + (69 | s

where we have introduced two complex mixing parameters

™

-

L[}
o o

m

N

fl

n|R

*) In order to simplify the notations we omit systematically the energy
dependence for all the functions. : v
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The hermitian conjugate vectors < V| are not, in general, left eigen-
vectors of W because W is not a hermitian matrix the vector mesons being

unstable particles. The left eigenvectors defined by the homogeneous

<VISW-W, T -

are related to the vector < a| by the inverse linear transformation C™'

<(€(= [<5>‘,{—é; <wcl] (VI.6)

‘Fs+qr

<o\ LSK? | + 4&\]

Fs-*c\v
(VI.7)

whereas the vectors < V| are deduced, from the same vectors < a| by the

transformations C*.

2.3 The matrix C is not unitary and the bases |V > and [ﬁ > are not an

orthogonal basis

<‘wts>'>=+'r;Lsz— £]

<w‘?5 Z\_Ei—f:,]
‘Cir\
But using both bases we have very nice properties

S ET PR NP IARTAN

<G 1gy=0=<§\w>

The closure relation in the space E; is simply written using again both
bases



_97._

T 195<Pl + Lo« |

2.4 Let us assume that the matrix W is known in the bases |a >. We
can then compute the two mixing parameters €1, €2 and the two eigen-

4 ]
values Wp, Ww in terms of the wab s.

2 2)
e % ‘. .
1+ Ji+A§QL 14 w‘fA?Jz
‘ _ (VI.8)
r 1 /e i~
wg: %Cwﬁl"- M)(“‘J‘)u ) + ;‘Z‘/ngg’—ww) ")1+Ayl?2
4 _ i
W:‘ = f‘i (\.Q\Gug» * W;)"‘b“) B §<l~f}f w;' we ) i* A ?‘2&
where
? . - Ww"f° - w}‘é"” (VI.9)
| . ?1: -

2.5 If time reversal invariance holds the matrix W is symmetric in the

basis |a > and we obtain interesting constraints on the linear trans-

formation C: r=q s = p.

The two quantities ni and n2 are equal and we have only one inde-

pendent mixing parameter
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In particular the hermitian product < wlp > becomes purely imaginary

< wlp >=-2i Ime |p|% .

MIXING PARAMETERS

3.1 The w = 27 decay in this formalism can come either from the direct
transition wo + 2m or from the strong decay po - 27 the po being mixed

into the physical w by the mixing parameter €2 or both. From Eq. (VI.5).

f = S }-{: + 83 {:‘2“ (VI.10)

b, 2n [

It seems that the dominant effect is located in the mixing parameter €
which can be larger than o because of the quasi degeneracy in mass of the

p and w mesonses).

Nevertheless, with a mixing parameter €2 larger than o we still think
that the direct tramsition wo > 27 should be of order o as compared with

po = 2T.

Similar consideration can be made for the p - 37 decay

Y - i ¥ _ 6 v
‘g: An F ‘Fjis"l N O.)‘,St[

and again the direct transition pg - 37T is assumed to remain of order o
as compared with wo > 37 the dominant effect being due to the mixing

parameter €.

3.2 We split the matrix W written in the |a > basis into its hermitian

R and skew hermitian I parts

(VI.11)
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The constraint on the vector meson propagator due to the unitarity of

the S matrix is simply (see Lecture II, Section II)

Z (s) 25(‘?") X ‘\ P <EIJ (°)‘°><_‘J—(°)(°>9 (VI.12)

1
ab 6 F

Let us recall that the diagonal elements, on the mass shell, are related

to total widths by

¢ [ .1
S me T 19

If time reversal invariance holds all the matrix elements Rab and Zab are

real functions of energy.

3.3 Let us study more carefully the parameter nz defined in Eq. (VI.9).

‘Using the decomposition (VI.ll) we can write

R A
P-Z:?_z*—t}‘z
with

R /R‘)‘,bn , 2 Z'?,w c

- 9 = (VI.14)

N-H% = Vs WM,, - W,

The term Rpow0 comes from transitions to a virtual intermediate state
containing at least one photon. It is a self-energy type contribution

of electromagnetic origin as those responsible for the mass differences
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between charged and neutral particles in the same isotopic spin multiplet.

Rpowo can be estimated using symmetry argument. For instance in the frame-

work of the SU(3) theory of electromagnetic interactions with the usual

assumptions we obtain58)

E}.@aé/@e (Rf»‘f) + &héﬁ(ﬁgbu\} (VI.15)

0 2
- ( ?o__ mj ) (m -mﬁ,,o)

Unfortunately the electromagnetic mass differences for vector mesons are

not experimentally known with a reliable accuracyaq)

mj"‘mg* = (2.4 = 2.1)MeV ch-«q(,; (7.6 £ 3.0)MeV

We then need more assumptions to estimate Rwopo'

The quark model with ideal mixing angle predicts R = 0 so that

Pod
in a first approximation one can neglect the ¢ contributiog to Eq. (VI.15)
and we replace its left-hand side simply by Re (Rpowo)' Moreover, the
quark model - or the SU(6) symmetry - relates the pseudoscalar meson and

vector meson mass differences75).

In fact, models must be constructed to evaluate R and all the

PoWo
estimates give results with a negative sign and in the range68’77’78),

2 e (R w) = (5 - 10) MeV .
g g

3.4 The term zpowo comes from the existence of real physical intermedi-
. - + - .
ate states like wtm™, mm ﬂo, ﬂoy, ny, etc. and it can be represented as

the sum of its various contributions

ey ey ()
Zs)a“:"' = 2.})?600 + ZJS’.;@O + 21300&)0 + v~
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Fig. 13

From Eqs. (VI.12) and (VI.13) and neglecting the small w-p mass difference

N ~_’(?)t) 43532“

m ¢ 5’,,(0, -PJ,“ o ( )

. »
.j_ j"(&') = 4CS« D l“ (wc ">5‘7
m o 0: «
¢ ¢ ?
for Bet

Accepting the order of o argument we obtain

()

4
TV]‘S Zrbmu ’:‘_ Oc8 MeV

, __.@“)'

LR ] D, ‘ } ~  0.08 MeV

m, | g

For the T’y intermediate state the experimental data are3*)
F'(w® » m%) = (1.1 £ 0.2)MeV I'(p® > m%) < 0.4 MeV

and hence there is an upper limit for the T’y contribution
P
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IR

( < 0.7 MeV .
My

P oo

A rough limit for IZpowol seems to be

1
n lzpowol < 1.6 MeV .

3.5 All these results can be easily translated in the language of the

parameters nR and n2 using the hermitian character of the matrices R and
z.

*
R LR 5>

qua - fﬂ(DD LDD)‘D oéfa
and for the diagonal terms W and W the simple forms
PopPo WoWo
2 ) 2 . i
S - | ~mo-um |
wf’§° = My =t “];a('ﬁu @ LS

Masses and widths are modified by electromagnetic corrections only at

second order. Using the observed values we can summarize our estimates

In¥| = |n3| = (4.5 to 10)1072
In¥| = [ng| < 1.4 x 1072

3.6 The mixing parameters €3, €2 are given in terms of ni1 and n2 by

the Eqs. (VI.8). Expanding in powers of mi and n:

&y » ?4_ (i-?;?g-\ 52,32; (i«?12¢\
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For the modulus of the mixing parameters, a first order calculation in

n is certainly reliable
lex] = [mi le2| = |n2|

and from the previous discussion, both moduli must be dominated by the

contributions coming from the self-energy terms

R
ler] = |e2| = [n7] .

3.7 Let us work again to lowest order with respect to electromagnetic
interactions so that €, , = n; ,. The physical states o > and |w > are
3 L

normalized to unity: p=s = 1 + 0(e?)

¢ ~ U (VI.16)
wan B {m% * %‘oéﬂ

The direct transition wo =+ 2m affects the physical amplitude w - 27 in

two ways
a) through the first term in Eq. (VI.16)

b) through the 2T contribution in ng.

It ié remarkable, and one can easily check by direct calculation, that
these two contributions partially cancel and the effective importance of
fwozﬂ in Eq. (VI.16) comes out damped by a factor of order Fw/Fp. The
physical origin of this cancellation is the dominance of the 27 channel

in our problem.

Therefore fw o has only a small effect on the physical transition
0
fwz“ and it cannot explain the magnitude of the observed w = 2T decay
width.

. . . X ]
It is then convenient to introduce a parameter N2 defined as n% but

without the 27 contribution. Equation (VI.16) is then rewritten as

e 3 U n
‘?Uzﬁ,n e/?:+‘?2 \Q’bt’h*{:)c‘b\ O(':'—TY' ) (VI.17)
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Of course the estimate for ng is reduced by a factor two as compared to

that of ng.

The only possible explanation for the large observed value of fmzw

is then the self-energy term n%

R
&’ih&?zﬁgzﬂ

tyon

From the mean value of experimental measurements (VI.1l) we get

In§| 2 1 = (4.5 * g:;;’)m"“ (VI.18)
and the corresponding self-energy needed

o i + Q.8 .
h—%—g ‘/Rpw;':(é's _J.a)Mer

fits the models very well.

3.8 Because of the smallness of |n|, in all the applications we will use
the lowest order approximation € = n neglecting, for the modulus and the

phases, third order correctioms.

THEORETICAL PREDICTIONS

4.1 We assume time reversal invariance

Nni =7N2 =nN €1 = €2 = € .

The function Rpowo is real and all theoretical arguments give it a nega-—

tive sign.

The phase of nR is known, and using

]

783 MeV

(773.6 = 5.3)MeV m

mp )

r 12.2 MeV

p

1+

(110.7 * 5.3)MeV and Fw
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we obtain
¢ R = (101 + 6)°
n

where the error is essentially due to the uncertainty on the w—p mass

difference.

4.2 Let us call ¢ . the relative phase of the decay amplitudes

fU.)ZTl'
fpzﬂ

¢

o phase

The main contribution to ¢2Tr is given by the nR term and we can also take

z

‘into account the small correction due to the term n

O,r =0 * 8
2T nR
with
3 ZDowo
S = - T
Powo
The only possible significant contribution to z can be due to the

PaoWe
m%y intermediate state. As explained in Lectures II and V, in the frame-

work of the vector meson dominance model, fw°w° and £ ¢ _o. have the same

(1T0Y) Y Py
sign so that Zpow is positive. We then obtain
6ﬂ°Y = (4 +2)° from the VMD model
S“QY = 8° using the experimental limit

for T'(p ~» ﬂoY).

4.3 The phase of n can be slightly different because of the 27 contri-

butions entering in nz. We write
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and 62“ is given by
_ R

¢ 2
G P

Unfortunately, we don't know the sign of Gzﬂ and using the order of a

argument we find ]62ﬂ| ~ 8°,

Therefore

o, = (105 * 16)° . (VI.20)

4.4 The photon-vector meson coupling constants f:l have a small phase
¢v because of the mixing. Equations (VI.6) and (81.7) are used to com-

pute these parameters

¢,- by = [yl dme (f;‘“ By 'i' Swb Gog, (‘E‘“ ‘C”" + O(2”)

h 5)\') [/ f‘, ‘(u.

With the experimental values of fm° and £ , as deduced from the Orsay
storage ring experiments and the previous estimates of ln| and ¢Hf
(VI.18) and (VI.19), we obtain

_ (s 2Y
® ¢p = (8 _ 3>_ . (VI.21)
4.5 The phase measured in the Orsay experiment is

G = by = O+ by -

The theoretical prediction is

B} + 10\°
Uy op = (113 N 11) . (VI.22)
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The Orsay measurement issl)

_ o
o exp (164 = 28)° .

The agreement between theory and experiment is not very good but a de-
finite conclusion cannot be given for the moment, more accurate experi-—

ments being needed.

COHERENT PHOTOPRODUCTION ON NUCLEI

5.1 Let us disregard here all the complicated problems of background
and shape in the vector meson photoproduction on nuclei. We also assume

the production amplitude

Y+A>V+A
to be spin independent and the total cross—section is simply written as
C, >

V[q('"L)“knl

<?:<7{Q > VA= TFA) ¢ .%?

2

where m“ is the invariant squared mass of the final state F resulting

from the vector meson decay V - F.

The complex parameter CV is the product of the production amplitude

and the decay coupling constant
C ‘gu [ ¥
v - VF ' ! Vo,

5.2 The vector mesons V are the physical ones after electromagnetic
mixing, and in the w region we take into account only the w and p con-

tributions. The w-p interference is described by the complex ratio

: o
Co | t e (VI.28)
Cy
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and we have to study the two real parameters £ and a. In the vector

meson dominance model, the production amplitude is given by
LN )
SUAITIG AN =D S <VA(TIV.AS
'
Vl

It is more convenient to work on the |[po > |wo > basis where we assume
the non-diagonal transitions wg—po to be negligible as compared to the

diagonal wWo-Wo and Po—pPo transitions. Defining

’AS"’ L<PALTLEAS A -<@AITeh>

we obtain, to first order in €

{;,H [ T1p.AD>- AJ’F <o RIT lwAS=Ay.

<FARITIRAS < <w,AITIPAS. a(ﬁjo-ﬁw )

The two elastic amplitudes Apo and Am0 are expected to be of the same

order of magnitude in the quark model.

5.3 The ratio Cw/cp is given by

0
)
1)

w

——

we '&w ‘P(n‘* AS° 'GE° —Hba"’
4 e + B "z
. [ 1+e ( 1(“S,,, Ree 10@ Hf“ )] (VI.24)

—
b )

— )
=
:D“:D

To lowest order in €, the bracket in Eq. (VI.24) is a phase and we define

the production phase ¢ by
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where

A *
e, | "R G £.1&i €

Equation (VI.24) is then rewritten to lowest order in € as

Coo Fr 7 fr &2

-
=

Co 0 .

. . -+ - . .
5.4 In the particular final state F = T m , we have previously obtained

u e
4“"‘“‘ ~ 19V C
4?5 an

. . + -
and the w—-p interference parameters for the reaction YA > m m A are

given by

o £ |
%ﬂ= '2‘/&0 4)— X, - %f % (VI.26)

W,

. + - + - . . .
For the final state F = e e or U U a straightforward calculation gives
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o = S 4 LN NS
43:2@ Vﬂy ‘¥“; . i

and the w-p interference parameters for the lepton pair photoproduction

are given by

%_/@&‘\(%— \.KR., ngﬁéw"?sf* CX’ (VI.27)
BN 3y,

5.5 The experimental data on lepton pair production are consistent with
Ro = 1. If, on the other hand, we make the assumption ®¢ = 0 as suggested
by the quark model, we can make predictions because the production phase

® is now essentially due to the w—-p mixing

Y A ' (V.28
(:.p = 54» - ¢f ‘

+ - . . . .
a) m T photoproduction: the theoretical prediction turns out to be

+ - . . + - eq e .
the same as for m M production in e e annihilation

+ 10.0

=3’ )

%1 th

and a Daresbury measurement givessz)

= ]
Oy exp (104 * 5.1)

in excellent agreement with the theoretical value.
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Let us remark that under the assumption Ro = 1, ®o = 0, the relative
+ - + - -
phase o for the two processes e e > T T and YA - e A must be the
same, independently of the details of the w-p mixing theory which pre-

dicts its precise value.

b) 2% photoproduction: the theoretical prediction for the phase %% is

entirely due to the w—-p mixing, Oy = 2(¢w - ¢p)

o - = (16 *
2% th B

)
6)

The experimental situation is not absolutely clear. The Daresbury experi-

ment gives a very large resultez)

+ 38,°

o - 30

1T exp = (100

but a preliminary analysis of a DESY experiment gives78)

— o
OLQ,E exp = (41 = 20)

in better agreement with the theoretical prediction

¢—p ELECTROMAGNETIC MIXING

6.1 The general problem of electromagnetic mixing between the neutral
vector mesons is a three-dimensional one. Nevertheless in two particu-
lar situations it can be approximated by a two-dimensional one, because
of the smallness of the w and ¢ meson widths as compared with the p
meson width.

a) In the w region, only the w-p mixing is important.

b) In the ¢ region only the ¢—p mixing has to be considered.

We now discuss some aspects of the ¢-p mixing in the ¢ meson region.
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6.2 We assume, from the beginning, time-reversal invariance and we work

in lowest order with respect to the mixing parameter A
\J)> = “)v> - ) ‘¢01>
(¢>7 f¢0>+ A “Dc’>

Again, A is given in terms of the matrix elements of the matrix propaga-

tors W in the isotopic spin basis |po >, |¢o >

A _ Wf#u
Wep, — ey,

All the quantities are assumed to be taken at the ¢ meson mass. As

previously, wpo¢o is split into two parts

\n = R -1z .
podo podo “podo

The first term is a self-energy contribution and the second one can be

computed using the unitarity relation.

6.3 Estimates based on the quark model predict Rp0¢0 smaller than Rp W
0

by perhaps an order of magnitude, and positive. In that case the vector

meson mass difference is large and it seems that the dominant part of

Rpo¢o is due to the one photon exchange

&, X JA
ANANAANN_ANAN

Fig. 14

The corresponding value of Rpo¢o is then

%7 (/r\’fo% )“ ~ 0.8 MeV .



- 113 -

6.4 We now decompose Zpofbo as a sum over the physical intermediate

states

- (KR k) _(9%) () —(3T) _ @)
\ | g ’ ' )

2—1‘ 4,.2, +2 + + + = e

fds“' ) 59?" 9‘ » fo)t’., fa)'év.. f"ﬁ ﬁpﬂ

The two KK contributions have opposite sign but they do not cancel exactly

+ .
because of the K -K° mass difference. In fact, we have

_ (K L ~
A2 S L <¢-‘> <)
Yn? S)b:f)b A{:szé K"K"

SR
\:’-')— l 9)74. {:S’ KR r (SIS = KDE\))

{::f’ VKL

Now neglecting the Coulomb corrections in the coupling constants, we

obtain

-

- (KR ) eel [ A . -
i )_ 24 + 2 ] = _E‘i_m— \.l (¢$KrK—)_P(¢.=>KOW°)
Lt e gy fore

Using the relation £ - = %f and the Orsay data we obtain
PKK pTT
A < (KK)
bl ~ (0.46 £ Q0.04)MeV .
m¢ f"¢°

For the nYy contribution, we can only make speculations

o, (9%) _C

4 : —

— K ¢ L I o
m Z’y"ff %;—Z; <¢ >?K)
2
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One can estimate the coupling constants £ and f ) using the
SU(3) symmetry with the N-X° mixing and the VMD mode13°$. The result

turns out to give a negative contribution to Zpo¢o

4 — (93)

. ~ — Q.28 Me(
My  §¢e

The T’y and 37 contributions are obviously smaller by an order of magni-
tude and the 27 contribution, which can be large, fortunately don't play

any role for the particular 2m decay mode as previously.

Summarizing, a crude evaluation of §p0¢0 - where the 2T contribution

is absent - gives

1 —-—
_— 7 ~ (0.2 £ 0.1)MeV .
w6 Zoode - ¢ MHe

6.5 The ¢ > 27 decay amplitude has the form

_g? Zn ( A T (FA ) 5“ .{ié 2n <:)// i )

Neglecting the direct transition f¢02ﬂ reduced by a damping factor

£

F¢/Fp we obtain

R

(2.3 + 0.1)1078

] 4;’2«
£ 2«

Phase / fﬁfﬂ‘}

R

(-30 + 10)°
Fo o
where a large part of the uncertainty on the phase prediction is due to

the unknown value of the p meson width at the ¢ meson mass.

Again we emphasize that these numbers are only crude estimates and

the errors given cannot be taken very seriously. Nevertheless, they can

perhaps be useful for planning experiments.
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