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Abstract
We present the elements of QED⊗QCD exponentiation and its interplay with
shower/ME matching in precision LHC physics scenarios. Applications to sin-
gle heavy gauge boson production at hadron colliders are illustrated.

In the LHC environment, precision predictions for the effects of multiple gluon and multiple pho-
ton radiative processes will be needed to realize the true potential of the attendant physics program. For
example, while the current precision tag for the luminosity at FNAL is at the ∼ 7% level [1], the high
precision requirements for the LHC dictate an experimental precision tag for the luminosity at the 2%
level [2]. This means that the theoretical precision tag requirement for the corresponding luminosity
processes, such as single W,Z production with the subsequent decay into light lepton pairs, must be at
the 1% level in order not to spoil the over-all precision of the respective luminosity determinations at
the LHC. This theoretical precision tag means that multiple gluon and multiple photon radiative effects
in the latter processes must be controlled to the stated precision. With this objective in mind, we have
developed the theory of QED ⊗ QCD exponentiation to allow the simultaneous resummation of the
multiple gluon and multiple photon radiative effects in LHC physics processes, to be realized ultimately
by MC methods on an event-by-event basis in the presence of parton showers in a framework which
allows us to systematically improve the accuracy of the calculations without double-counting of effects
in principle to all orders in both αs and α.

Specifically, the new QED ⊗QCD exponentiation theory is an extension of the QCD exponen-
tiation theory presented in Refs. [3]1. We recall that in the latter references it has been established that
the following result holds for a process such as q + q̄′ → V + n(G) + X → ¯̀̀ ′ + n(g) + X:
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where gluon residuals ˜̄βn(k1, . . . , kn) , defined by Ref. [3], are free of all infrared divergences to all
orders in αs(Q). The functions SUMIR(QCD), DQCD, together with the basic infrared functions
Bnls

QCD, B̃nls
QCD, S̃nls

QCD are specified in Ref. [3]. Here V = W±, Z,and ` = e, µ, `′ = νe, νµ(e, µ) re-
spectively for V = W+(Z), and ` = νe, νµ, `′ = e, µ respectively for V = W−. We call attention
to the essential compensation between the left over genuine non-Abelian IR virtual and real singulari-
ties between

∫
dPhβ̄n and

∫
dPhβ̄n+1 respectively that really allows us to isolate ˜̄βj and distinguishes

QCD from QED, where no such compensation occurs. The result in (1) has been realized by Monte
Carlo methods [3]. See also Refs. [5–7] for exact O(α2

s) and Refs. [8–10] for exact O(α) results on the
W,Z production processes which we discuss here.

∗Work partly supported by US DOE grant DE-FG02-05ER41399 and by NATO grant PST.CLG.980342.
1We stress that the formal proof of exponentiation in non-Abelian gauge theories in the eikonal approximation is given in

Ref. [4]. The results in Ref. [3] are in contrast exact but have an exponent that only contains the leading contribution of the
exponent in Ref. [4].
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The new QED ⊗ QCD theory is obtained by simultaneously exponentiating the large IR terms
in QCD and the exact IR divergent terms in QED, so that we arrive at the new result

dσ̂exp = eSUMIR(QCED)
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where the new YFS [11, 12] residuals, defined in Ref. [13], ˜̄βn,m(k1, . . . , kn; k′1, . . . , k
′
m), with n hard

gluons and m hard photons, represent the successive application of the YFS expansion first for QCD
and subsequently for QED. The functions SUMIR(QCED), DQCED are determined from their analogs
SUMIR(QCD), DQCD via the substitutions
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(3)

everywhere in expressions for the latter functions given in Refs. [3]. The residuals ˜̄βn,m are free of all
infrared singularities and the result in (2) is a representation that is exact and that can therefore be used to
make contact with parton shower MC’s without double counting or the unnecessary averaging of effects
such as the gluon azimuthal angular distribution relative to its parent’s momentum direction.

In the respective infrared algebra (QCED) in (2), the average Bjorken x values

xavg(QED) ∼= γ(QED)/(1 + γ(QED))
xavg(QCD) ∼= γ(QCD)/(1 + γ(QCD))

where γ(A) = 2αACA
π (Ls − 1), A = QED, QCD, with CA = Q2

f , CF , respectively, for A = QED, QCD
and the big log Ls, imply that QCD dominant corrections happen an order of magnitude earlier than
those for QED. This means that the leading ˜̄β0,0-level gives already a good estimate of the size of the
interplay between the higher order QED and QCD effects which we will use to illustrate (2) here.

More precisely, for the processes pp → V +n(γ)+m(g)+X → ¯̀̀ ′+n′(γ)+m(g)+X , where
V = W±, Z,and ` = e, µ, `′ = νe, νµ(e, µ) respectively for V = W+(Z), and ` = νe, νµ, `′ = e, µ
respectively for V = W−, we have the usual formula (we use the standard notation here [13])

dσexp(pp → V + X → ¯̀̀ ′ + X ′) =∑
i,j

∫
dxidxjFi(xi)Fj(xj)dσ̂exp(xixjs), (4)

and we use the result in (2) here with semi-analytical methods and structure functions from Ref. [14]. A
Monte Carlo realization will appear elsewhere [15].

We do not attempt in the present discussion to replace HERWIG [16] and/or PYTHIA [17] – we
intend here to combine our exact YFS calculus with HERWIG and/or PYTHIA by using the latter to
generate a parton shower starting from the initial (x1, x2) point at factorization scale µ after this point
is provided by the {Fi}. This combination of theoretical constructs can be systematically improved with
exact results order-by-order in αs, where currently the state of the art in such a calculation is the work in
Refs. [18] which accomplishes the combination of an exact O(αs) correction with HERWIG. We note
that, even in this latter result, the gluon azimuthal angle is averaged in the combination. We note that
the recent alternative parton distribution function evolution MC algorithm in Refs. [19] can also be used
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in our theoretical construction here. Due to its lack of the appropriate color coherence [20], we do not
consider ISAJET [21] here.

To illustrate how the combination with Pythia/Herwig can proceed, we note that, for example, if
we use a quark mass mq as our collinear limit regulator, DGLAP [22] evolution of the structure functions
allows us to factorize all the terms that involve powers of the big log Lc = ln µ2/m2

q − 1 in such a way
that the evolved structure function contains the effects of summing the leading big logs L = ln µ2/µ2

0

where we have in mind that the evolution involves initial data at the scale µ0. The result is therefore
independent of mq for mq ↓ 0. In the context of the DGLAP theory, the factorization scale µ represents
the largest p⊥ of the gluon emission included in the structure function. In practice, when we use these
structure functions with an exact result for the residuals in (2), it means that we must in the residuals
omit the contributions from gluon radiation at scales below µ. This can be shown to amount in most
cases to replacing Ls = ln ŝ/m2

q − 1 → Lnls = ln ŝ/µ2 but in any case it is immediate how to limit the
pT in the gluon emission 2 so that we do not double count effects. In other words, we apply the standard
QCD factorization of mass singularities to the cross section in (2) in the standard way. We may do it
with either the mass regulator for the collinear singularities or with dimensional regularization of such
singularities – the final result should be independent of this regulator. This would in practice mean the
following: We first make an event with the formula in (4) which would produce an initial beam state at
(x1, x2) for the two hard interacting partons at the factorization scale µ from the structure functions {Fj}
and a corresponding final state X from the exponentiated cross section in dσ̂exp(xixjs) ; the standard Les
Houches procedure [23] of showering this event (x1, x2, X) would then be used, employing backward
evolution of the initial partons. If we restrict the pT as we have indicated above, there would be no
double counting of effects. Let us call this pT matching of the shower from the backward evolution and
the matrix elements in the QCED exponentiated cross section.

However, one could ask if it is possible to be more accurate in the use of the exact result in
(2)? Indeed, it is. Just as the residuals ˜̄βn,m(k1, . . . , kn; k′1, . . . , k

′
m)are computed order by order in

perturbation theory from the corresponding exact perturbative results by expanding the exponents in (2)
and comparing the appropriate corresponding coefficients of the respective powers of αnαm

s , so too can
the shower formula which is used to generate the backward evolution be expanded so that the product
of the shower formula’s perturbative expansion, the perturbative expansion of the exponents in (2), and
the perturbative expansions of the residuals can be written as an over-all expansion in powers of αnαm

s

and required to match the respective calculated exact result for given order. In this way, new shower

subtracted residuals, { ˆ̄̃
βn,m(k1, . . . , kn; k′1, . . . , k

′
m)}, are calculated that can be used for the entire gluon

pT phase space with an accuracy of the cross section that should in principle be improved compared with
the first procedure for shower matching presented above. Both approaches are under investigation.

Returning to the general discussion, we compute, with and without QED, rexp = σexp/σBorn.
For this ratio we do not use the narrow resonance approximation; for, we wish to set a paradigm for
precision heavy vector boson studies. The formula which we use for σBorn is obtained from that in (4)
by substituting dσ̂Born for dσ̂exp therein, where dσ̂Born is the respective parton-level Born cross section.
Specifically, we have from (1) the ˜̄β0,0-level result

σ̂exp(x1x2s) =
∫ vmax

0
dvγQCEDvγQCED−1FYFS(γQCED)eδYFS σ̂Born((1− v)x1x2s) (5)

where we intend the well-known results for the respective parton-level Born cross sections and the value
of vmax implied by the experimental cuts under study. What is new here is the value for the QED⊗QCD
exponent

γQCED =
{

2Q2
f

α

π
+ 2CF

αs

π

}
Lnls (6)

where Lnls = ln x1x2s/µ2 when µ is the factorization scale.
2Here, we refer to both on-shell and off-shell emitted gluons.
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The functions FYFS(γQCED) and δYFS(γQCED) are well-known [12] as well:

FYFS(γQCED) =
e−γQCEDγE

Γ(1 + γQCED)
,

δYFS(γQCED) =
1
4
γQCED + (Q2

f

α

π
+ CF

αs

π
)(2ζ(2)− 1

2
),

(7)

where ζ(2) is Riemann’s zeta function of argument 2, i.e., π2/6, and γE is Euler’s constant, i.e.,
0.5772 . . . Using these formulas in (4) allows us to get the results

rexp =


1.1901 , QCED ≡ QCD+QED, LHC
1.1872 , QCD, LHC
1.1911 , QCED ≡ QCD+QED, Tevatron
1.1879 , QCD, Tevatron.

(8)

We see that QED is at the level of .3% at both LHC and FNAL. This is stable under scale variations [13].
We agree with the results in Refs. [5, 6, 8–10] on both of the respective sizes of the QED and QCD
effects. The QED effect is similar in size to structure function results found in Refs. [24–28], for further
reference.

We have shown that YFS theory (EEX and CEEX) extends to non-Abelian gauge theory and allows
simultaneous exponentiation of QED and QCD, QED⊗QCD exponentiation. For QED⊗QCD we find
that full MC event generator realization is possible in a way that combines our calculus with Herwig and
Pythia in principle. Semi-analytical results for QED (and QCD) threshold effects agree with literature
on Z production. As QED is at the .3% level, it is needed for 1% LHC theory predictions. We have
demonstrated a firm basis for the completeO(α2

s, ααs, α
2) results needed for the FNAL/LHC/RHIC/ILC

physics and all of the latter are in progress.
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