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Abstract
Our presentation centers on the consequences of s-channel unitarity, mani-
fested by soft re-scatterings of the spectator partons in a high energy diffrac-
tive process, focusing on the calculations of gap survival probabilities. Our
emphasis is on recent estimates relevant to exclusive diffractive Higgs pro-
duction at the LHC. To this end, we critically re-examine the comparison of
the theoretical estimates of large rapidity gap hard di-jets with the measured
data, and remark on the difficulties in the interpretation of HERA hard di-jet
photoproduction.

1 Introduction
A large rapidity gap (LRG) in an hadronic, photo or DIS induced final state is experimentally defined
as a large gap in the η − φ lego plot devoid of produced hadrons. LRG events were suggested [1–4]
as a signature for Higgs production due to a virtual W − W fusion subprocess. An analogous pQCD
process, in which a colorless exchange (”hard Pomeron”) replaces the virtual W, has a considerably
larger discovery potential as it leads also to an exclusive p + H + p final state. Assuming the Higgs
mass to be in the range of 100− 150GeV , the calculated rates for this channel, utilizing proton tagging
are promissing. Indeed, LRG hard di-jets, produced via the same production mechanism, have been
observed in the Tevatron [5–17] and HERA [18–29]. The experimental LRG di-jets production rates are
much smaller than the pQCD (or Regge) estimates. Following Bjorken [3, 4], the correcting damping
factor is called ”LRG survival probability”.

The present summary aims to review and check calculations of the survival probability as applied
to the HERA-Tevatron data and explore the consequences for diffractive LRG channels at LHC with a
focus on diffractive Higgs production.

We distinguish between three configurations of di-jets (for details see Ref. [13–17]):

1) A LRG separates the di-jets system from the other non diffractive final state particles. On the
partonic level this is a single diffraction (SD) Pomeron exchange process denoted GJJ.

2) A LRG separates between the two hard jets. This is a double diffraction (DD) denoted JGJ.
3) Centrally produced di-jets are separated by a LRG on each side of the system. This is a central

diffraction (CD) two Pomeron exchange process denoted GJJG. This mechanism also leads to
diffractive exclusive Higgs production.

We denote the theoretically calculated rate of a LRG channel by F gap . It was noted by Bjorken
[3, 4] that we have to distinguish between the theoretically calculated rate and the actual measured rate
fgap

fgap = 〈|S |2〉·Fgap. (1)

The proportionality damping factor [30–33] is the survival probability of a LRG. It is the probability of
a given LRG not to be filled by debris (partons and/or hadrons). These debris originate from the soft
re-scattering of the spectator partons resulting in a survival probability denoted |S spec(s)|2, and/or from
the gluon radiation emitted by partons taking part in the hard interaction with a corresponding survival
probability denoted |Sbrem (∆ y)|2,

〈|S(s,∆ y)|2〉 = 〈|Sspec(s)|2〉·〈|Sbrem (∆ y)|2〉. (2)
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s is the c.m. energy square of the colliding particles and ∆ y is the large rapidity gap. Gluon radiation
from the interacting partons is strongly suppressed by the Sudakov factor [34]. However, since this
suppression is included in the perturbative calculation (see 4.3) we can neglect 〈|S brem (∆ y)|2〉 in our
calculations. In the following we denote 〈|S spec |2〉 = S 2. It is best defined in impact parameter space
(see 2.1)). Following Bjorken [3, 4], the survival probability is determined as the normalized integrated
product of two quantities

S 2 =

∫
d2b |M H (s,b)|2 P S (s,b)∫

d2b |M H (s,b)|2 . (3)

M H (s,b) is the amplitude for the LRG diffractive process (soft or hard) of interest. P S (s,b) is the
probability that no inelastic soft interaction in the re-scattering eikonal chain results in inelasticity of the
final state at (s,b).

The organization of this paper is as follows: In Sec.2 we briefly review the role of s-channel uni-
tarity in high energy soft scattering and the eikonal model. The GLM model [30–33] and its consequent
survival probabilities [35–37] are presented in Sec.3, including a generalization to a multi channel re-
scattering model [38,39]. The KKMR model [40–44] and its survival probabilities is presented in Sec.4.
A discussion and our conclusions are presented in Sec.5. An added short presentation on Monte Carlo
calculations of S 2 is given in an Appendix.

2 Unitarity
Even though soft high energy scattering has been extensively studied experimentally over the last 50
years, we do not have, as yet, a satisfactory QCD framework to calculate even the gross features of
this impressive data base. This is just a reflection of our inability to execute QCD calculations in the
non-perturbative regime. High energy soft scattering is, thus, commonly described by the Regge-pole
model [45,46]. The theory, motivated by S matrix approach, was introduced more than 40 years ago and
was soon after followed by a very rich phenomenology.

The key ingredient of the Regge pole model is the leading Pomeron, whose linear t-dependent
trajectory is given by

αIP (t) = α IP (0)+ α ′
IP t. (4)

A knowledge of α IP (t) enables a calculation of σtot,σel and dσel
dt , whose forward elastic exponential

slope is given by

B el = 2B 0 + 2α′
IP ln

(
s

s0

)
. (5)

Donnachie and Landshoff (DL) have vigorously promoted [47, 48] an appealing and very simple Regge
parametrization for total and forward differential elastic hadron-hadron cross sections in which they offer
a global fit to all available hadron-hadron and photon-hadron total and elastic cross section data. This
data, above P L = 10GeV , is excellently fitted with universal parameters. We shall be interested only
in the DL Pomeron with an intercept α IP (0) = 1 + ε, where ε = 0.0808, which accounts for the high
energy growing cross sections. Its fitted [49] slope value is α ′

IP = 0.25GeV − 2.

2.1 S-channel unitarity
The simple DL parametrization is bound to violate s-channel unitarity at some energy since σ el grows
with energy as s2ε, modulu logarithmic corrections, while σtotgrows only as sε. The theoretical problems
at stake are easily identified in an impact b-space representation.

The elastic scattering amplitude is normalized so that

dσel
dt

= π |fel(s,t)|2, (6)
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Fig. 1: A pictorial illustration of a high energy b-space elastic amplitude bounded by unitarity and analytic-
ity/crossing. In the illustration we have an input amplitude which violates the eikonal unitarity bound and an
output amplitude obtained after a unitarization procedure.

σtot = 4πImf el(s,0). (7)

The elastic amplitude in b-space is defined as

ael(s,b) =
1

2π

∫
dqe− iq·bfel(s,t), (8)

where t = − q2. In this representation

σtot = 2

∫
d2bIm [ael(s,b)], (9)

σel =

∫
d2b |ael(s,b)|2, (10)

σin = σtot − σel. (11)

As noted, a simple Regge pole with α IP (0)> 1 will eventually violate s-channel unitarity. The
question is if this is a future problem to be confronted only at far higher energies than presently avail-
able, or is it a phenomena which can be identified through experimental signatures observed within the
available high energy data base. It is an easy exercise to check that the DL model [47, 48], with its fitted
global parameters, will violate the unitarity black bound (see 2.2) at very small b, just above the present
Tevatron energy. Indeed, CDF reports [50] that ael(b = 0,

√
s = 1800) = 0.96 ± 0.04. A pictorial

illustration of the above is presented in Fig.1. Note that the energy dependence of the experimental SD
cross section [13–17] in the ISR-Tevatron energy range is much weaker than the power dependences
observed for σel. Diffractive cross sections are not discussed in the DL model.

2.2 The eikonal model
The theoretical difficulties, pointed out in the previous subsection, are eliminated once we take into
account the corrections necessitated by unitarity. The problem is that enforcing unitarity is a model
dependent procedure. In the following we shall confine ourselves to a Glauber type eikonal model
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[51]. In this approximation, the scattering matrix is diagonal and only repeated elastic re-scatterings are
summed. Accordingly, we write

ael(s,b) = i
(
1 − e− Ω(s,b)/2

)
. (12)

Since the scattering matrix is diagonal, the unitarity constraint is written as

2Im [ael(s,b)]= |ael(s,b)|2 + G in(s,b), (13)

with
G in = 1 − e− Ω(s,b). (14)

The eikonal expressions for the soft cross sections of interest are

σtot = 2

∫
d2b

(
1 − e− Ω(s,b)/2

)
, (15)

σel =

∫
d2b

(
1 − e− Ω(s,b)/2

)2
, (16)

σin =

∫
d2b

(
1 − e− Ω(s,b)

)
, (17)

and

B el(s) =

∫
d2b b2

(
1 − e− Ω(s,b)/2

)

2
∫
d2b

(
1 − e− Ω(s,b)/2

) . (18)

From Eq.(14) it follows that P S (s,b) = e− Ω(s,b) is the probability that the final state of the two initial
interacting hadrons is elastic, regardless of the eikonal rescattering chain. It is identified, thus, with
P S (s,b)of Eq.(3).

Following our implicit assumption that, in the high energy limit, hadrons are correct degrees of
freedom, i.e. they diagonalize the interaction matrix, Eq.(12) is a general solution of Eq.(13) as long as
the input opacity Ω is arbitrary. In the eikonal model Ω is real and equals the imaginary part of the iterated
input Born amplitude. The eikonalized amplitude is imaginary. Its analyticity and crossing symmetry
are easily restored. In a Regge language we substitute, to this end, sα IP → sα IP e−

1
2
iπα IP .

In the general case, Eq.(13) implies a general bound, |ael(s,b) |≤ 2, obtained when G in = 0.
This is an extreme option in which asymptotically σtot = σel [52]. This is formally acceptable but not
very appealing. Assuming that ael is imaginary, we obtain that the unitarity bound coincides with the
black disc bound, |ael(s,b)|≤ 1. Accordingly,

σel
σtot

≤ 1

2
. (19)

3 The GLM Model
The GLM screening correction (SC) model [30–33] is an eikonal model originally conceived so as to
explain the exceptionally mild energy dependence of soft diffractive cross sections. It utilized the obser-
vation that s-channel unitarization enforced by the eikonal model operates on a diffractive amplitude in
a different way than it does on the elastic amplitude. The GLM diffractive damping factor is identical to
Bjorken’s survival probability.
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3.1 The GLM SC model
In the GLM model, we take a DL type Pomeron exchange amplitude input in which α IP (0)= 1+ ∆ >
0. The simplicity of the GLM SC model derives from the observation that the eikonal approximation with
a central Gaussian input, corresponding to an exponential slope of dσel

dt , can be summed analytically. This
is, clearly, an over simplification, but it reproduces the bulk of the data well, i.e. the total and the forward
elastic cross sections. Accordingly, the eikonal DL type b-space expression for Ω(s,b) is:

Ω(s,b) = ν(s)ΓS (s,b), (20)

where,

ν(s) = σ(s0)

(
s

s0

) ∆

, (21)

R 2(s) = 4R 2
0 + 4α′

IP ln(
s

s0
), (22)

and the soft profile is defined

ΓS (s,b) =
1

πR 2(s)
e
− b2

R 2 (s). (23)

It is defined so as to keep the normalization
∫
d2bΓS (s,b) = 1.

One has to distinguish between the eikonal model input and output. The key element is that the
power ∆ , and ν, are input information, not bounded by unitarity, and should not be confused with DL
effective power ε and the corresponding total cross section. Since the DL model reproduces the forward
elastic amplitude, in the ISR-HERA-Tevatron range, well, we require that the eikonal model output will
be compatible with the DL results. Obviously, ∆ > ε. In a non screened DL type model with a
Gaussian profile the relation B el = 1

2R
2(s) is exact. In a screened model, like GLM, B el > 1

2R
2(s)

due to screening.

With this input we get

σtot = 2πR 2(s)

[
ln

(
ν(s)

2

)
+ C − E i

(
− ν(s)

2

)]
∝ ln2(s), (24)

σel = πR 2(s)

[
ln

(
ν(s)

4

)
+ C − 2E i

(
− ν(s)

2

)
+ E i(− ν(s))

]
∝ 1

2
ln2(s), (25)

σin = πR 2(s){ln[ν(s)]+ C − E i[− ν(s)]} ∝ 1

2
ln2(s). (26)

E i(x) =
∫ x
−∞

et

t dt, and C = 0.5773 is the Euler constant. An important consequence of the above is
that the ratio σel

σtot
is a single variable function of ν(s). In practice it means that given the experimental

value of this ratio at a given energy we can obtain an ”experimental” value of ν which does not depend
on the adjustment of free parameters.

The formalism presented above is extended to diffractive channels through the observation, traced
to Eqs.(3)and (14), that P S (s,b) = e− Ω(s,b). Accordingly, a screened non elastic diffractive cross
section is obtained by convoluting its b-space amplitude square with the probability P S .

The above has been utilized [30–33] to calculate the soft integrated single diffraction cross sec-
tion. To this end, we write, in the triple Regge approximation [53], the double differential cross section
M 2dσsd
dM 2dt

, where M is the diffracted mass. We, then, transform it to b-space, multiply by P S (s,b) and

integrate. The output M 2dσsd
dM 2dt

, changes its high energy behaviour from s2∆ modulu ln( s
s0
) (which is

identical to the behaviour of a DL elastic cross section) to the moderate behaviour of ln( s
s0
). Note also

a major difference in the diffractive b-space profile which changes from an input central Gaussian to an
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output peripheral distribution peaking at higher b. Consequently, the GLM model is compatible with the
Pumplin bound [54, 55].

σel(s,b) + σdiff(s,b)

σtot(s,b)
≤ 1

2
. (27)

3.2 Extension to a multi channel model
The most serious deficiency of a single channel eikonal model is inherent, as the model considers only
elastic rescatterings. This is incompatible with the relatively large diffractive cross section observed
in the ISR-Tevatron energy range. To this we add a specific problematic feature of the GLM model.
Whereas, σtot, σel and B el are very well fitted, the reproduction of σsd, in the available ISR-Tevatron
range, is poorer. A possible remedy to these deficiencies is to replace the one channel with a multi
channel eikonal model, in which inelastic diffractive intermediate re-scatterings are included as well [38,
39,56]. However, we have to insure that a multi channel model does improve the diffractive (specifically
SD) predictions of the GLM model, while maintaining, simultaneously, its excellent reproductions [30–
33] of the forward elastic amplitude, as well as its appealing results on LRG survival probabilities [35–37]
to be discussed in 3.3.

In the simplest approximation we consider diffraction as a single hadronic state. We have, thus,
two orthogonal wave functions

〈Ψ h |Ψ d〉 = 0. (28)

Ψ h is the wave function of the incoming hadron, and Ψ d is the wave function of the outgoing diffractive
system initiated by the incoming hadron. Denote the interaction operator by T and consider two wave
functions Ψ 1 and Ψ 2 which are diagonal with respect to T. The amplitude of the interaction is given by

A i,k= 〈Ψ iΨ k |T |Ψ i′Ψ k′〉= ai,kδi,i′ δk,k′. (29)

In a 2 × 2 model i,k = 1,2. The amplitude ai,ksatisfies the diagonal unitarity condition (see Eq.(13))

2Im ai,k(s,b) = |ai,k(s,b)|2 + G in
i,k(s,b), (30)

for which we write the solution

ai,k(s,b) = i

(
1 − e−

Ω i,k(s,b)

2

)
, (31)

and
G in

i,k = 1 − e− Ω i,k(s,b). (32)

Ω i,k(s,b) is the opacity of the (i,k) channel with a wave function Ψ i × Ψ k .

Ω i,k = νi,k(s)Γ
S
i,k(s,b) (33)

where

νi,k = σS 0i,k

(
s

s0

) ∆

. (34)

The factorizable radii are given by

R 2
i,k(s) = 2R 2

i,0 + 2R 2
0,k + 4α′

IP ln(
s

s0
). (35)

ΓS
i,k(s,b) is the soft profile of the (i,k) channel. The probability that the final state of two interacting

hadron states, with quantum numbers i and k, will be elastic regardless of the intermediate rescatterings
is

P S
i,k(s,b) = e− Ω i,k(s,b) = {1 − ai,k(s,b)}2. (36)
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In the above diagonal representation, Ψ h and Ψ d can be written as

Ψ h = αΨ 1 + βΨ 2, (37)

Ψ d = − βΨ 1 + αΨ 2. (38)

Ψ 1 and Ψ 2 are orthogonal. Since |Ψ h |2 = 1, we have

α2 + β2 = 1. (39)

The wave function of the final state is

Ψ f = |T |Ψ h × Ψ h〉 =

α2a1,1{Ψ 1 × Ψ 1} + αβ a1,2{Ψ 1 × Ψ 2 + Ψ 2 × Ψ 1} +

β2a2,2{Ψ 2 × Ψ 2}. (40)

We have to consider 4 possible re-scattering processes. However, in the case of a p̄p (or pp) collision,
single diffraction at the proton vertex equals single diffraction at the antiproton vertex. i.e., a1,2 = a2,1
and we end with three channels whose b-space amplitudes are given by

ael(s,b) = 〈Ψ h × Ψ h |Ψ f〉 = α4a1,1 + 2α2β2a1,2 + β4a2,2, (41)

asd(s,b) = 〈Ψ h × Ψ d |Ψ f〉 = αβ {α 2a1,1 + (α2 − β2)a1,2 + β2a2,2}, (42)

add(s,b) = 〈Ψ d × Ψ d |Ψ f〉 = α2β2{a1,1 − 2a1,2 + a2,2}. (43)

In the numeric calculations one may further neglect the double diffraction channel which is exceedingly
small in the ISR-Tevatron range. This is obtained by setting a2,2 = 2a1,2 − a1,1. Note that in the limit
where β << 1, we reproduce the single channel model.

As in the single channel, we simplify the calculation assuming a Gaussian b-space distribution of
the input opacities soft profiles

ΓS
i,k(s,b) =

1

πR 2
i,k(s)

e
− b2

R 2
i,k

(s)
. (44)

The opacity expressions, just presented, allow us to express the physical observables of interest as func-
tions of ν1,1,ν1,2,R

2
1,1,R

2
1,2 and β , which is a constant of the model. The determination of these

variables enables us to produce a global fit to the total, elastic and diffractive cross sections as well as the
elastic forward slope. This has been done in a two channel model, in which σdd is neglected [38]. The
main conclusion of this study is that the extension of the GLM model to a multi channel eikonal results
with a very good overall reproduction of the data. The results maintain the b-space peripherality of the
diffractive output amplitudes and satisfy the Pumplin bound [54, 55]. Note that since different experi-
mental groups have been using different algorithms to define diffraction, the SD experimental points are
too scattered to enable a tight theoretical reproduction of the diffractive data, see Fig.2.

3.3 Survival probabilities of LRG in the GLM model
The eikonal model simplifies the calculation of the survival probability, Eq.(3), associated with the soft
re-scatterings of the spectator partons. We can, thus, eliminate the nominator and denominator terms in
|M H (s,b) |2 which depend exclusively on s. In the GLM model we assume a Gaussian b-dependence
for |M H (s,b) |2 corresponding to a constant hard radius R H 2. This choice enables an analytic solu-
tion of Eq.(3). More elaborate choices, such as dipole or multi poles distributions, require a numerical
evaluation of this equation.
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Fig. 2: Integrated SD data and a two channel model fit.

Define,

aH (s) =
R 2(s)

R H 2
(s)

> 1. (45)

aH (s) grows logarithmically with s. As stated, Eq.(3) can be analytically evaluated with our choice of
Gaussian profiles and we get

S 2 =
aH (s)γ[aH (s),ν(s)]

[ν(s)]aH (s)
, (46)

where γ(a,ν)denotes the incomplete Euler gamma function

γ(a,x) =

∫ x

0
za− 1e− zdz. (47)

The solution of Eq.(46), at a given s, depends on the input values of R H 2, R 2 and ν(s). In the
GLM approach, R H 2 is estimated from the excellent HERA data [57–59] on γ + p → J/Ψ + p. The
values of ν(s)and R 2(s)are obtained from the experimental p̄p data. This can be attained from a global
fit to the soft scattering data [38]. Alternatively, we can obtain ν from the ratio σel

σtot
and then obtain the

value of R 2 from the explicit expressions given in Eqs.(24,25,26). LHC predictions presently depend
on model calculations with which this information can be obtained. Once we have determined ν(s)and
aH (s), the survival probability is calculated from Eq.(46).

In the GLM three channel model we obtain for central hard diffraction of di-jets or Higgs a survival
probability,

S 2
C D (s) =

∫
d2b

(
α4 P S

1,1 Ω
H
1,1

2
+ 2α2β2 P S

1,2 Ω
H
1,2

2
+ β4P S

2,2 Ω
H
2,2

2
)

∫
d2b

(
α4 Ω H

1,1
2
+ 2α2β2 Ω H

1,2
2
+ β4 Ω H

2,2
2
) . (48)

The hard diffractive cross sections in the (i,k) channel are calculated using the multi particle optical
theorem [53]. They are written in the same form as the soft amplitudes

Ω H
i,k

2
= νHi,k(s)

2
ΓH
i,k(b), (49)

where,

νHi,k = σH 0
i,k

(
s

s0

) ∆ H

. (50)
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As in the single channel calculation we assume that Γ H
i,k(b) is Gaussian,

ΓH
i,k(b) =

2

πR 2
i,k

e
− 2 b2

R 2
i,k. (51)

Note, that the hard radii R H
i,k

2 are constants derived from HERA J/Ψ photo and DIS production [57–59].

As it stands, a three channel calculation is not useful since σdd is very small and the 3’d channel
introduces additional parameters which can not be constraint by the meager experimental information on
σdd [13–17]. In a two channel model Eq.(48) reduces to

S 2
C D (s) =

∫
d2b

(
P S
1,1 Ω

H
1,1

2 − 2β2 (P S
1,1 Ω

H
1,1

2 − P S
1,2 Ω

H
1,2

2
)
)

∫
d2b

(
Ω H
1,1

2 − 2β2 (ΩH1,1
2 − Ω H

1,2
2
)
) . (52)

A new, unpublished yet, model [60], offers an explicit S 2 calculation for the exclusive N N → N +
LR G + 2J + LR G + N final state, both in one and two channel eikonal models. We shall comment on
its output in the next subsection.

3.4 GLM S 2 predictions
Following are a few general comments on the GLM calculations of S 2, after which we discuss the
input/output features of the single and two channel models. Our objective is to present predictions for
LHC.

The only available experimental observable with which we can check the theoretical S 2 predic-
tions is the hard LRG di-jets data obtained in the Tevatron and Hera. A comparison between data and
our predictions is not immediate as the basic measured observable is fgap and not S 2. The application of
the GLM models to a calculation of fgap depends on an external input of a hard diffractive LRG cross
section which is then corrected by S 2 as presented above. Regardless of this deficiency, the introduction
of a survival probability is essential so as to understand the huge difference between the pQCD calcu-
lated F gap and its experimental value fgap . A direct test of the GLM predictions calls for a dedicated
experimental determination of S 2. The only direct S 2 information from the Tevatron is provided by a
JGJ ratio measured by D0 [5–7] in which S 2(

√
s= 630)

S 2(
√
s= 1800)

= 2.2± 0.8. This is to be compared with a GLM
ratio of 1.2 − 1.3 ± 0.4 presented below.

The survival probabilities of the CD, SD and DD channels are not identical. The key difference is
that each of the above channels has a different hard radius. A measure of the sensitivity of S 2 to changes
in ν and aH is easy to identify in a single channel calculation which is presented in Fig.3. Indeed,
preliminary CDF GJJG data [17] suggest that fgap measured for this channel is moderately smaller than
the rate measured for the GJJ channel.

GLM soft profile input is a central Gaussian. This is over simplified, and most models assume
a power like dipole or multipole b-dependence of Γ S (s,b) and ΓH (s,b). Explicit comparisons [60] of
S 2 obtained with different input profiles shows a diminishing difference between the survival probability
outputs, provided their effective radii are compatible.

Regardless of the attractive simplicity of the single channel model, one should add a cautious
reminder that the single channel model does not reproduce σsd well since its survival probabilities are
over-estimated. Consequently, we are inclined to suspect that the S 2 values presented in Table 1 are
over-estimated as well.

As we noted, the soft input can be obtained from either a model fit to the soft scattering data
or directly from the measured values of σtot,σel and R H 2. The first method is denoted F1C and the
second is denoted D1C. Note that having no LHC data, S 2

D D (D 1C ), at this energy, is calculated on the
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Fig. 3: A contour plot of S2(1C) against ν(s) and aH (s).

Table 1: Survival probabilities

√
s (GeV) S 2

CD (F1C) S 2
CD (D1C) S 2

SD incl
(F1C) S 2

SD incl
(D1C) S 2

DD (F1C) S 2
DD (D1C)

540 14.4% 13.1% 18.5% 17.5% 22.6% 22.0%

1800 10.9% 8.9% 14.5% 12.6% 18.2% 16.6%

14000 6.0% 5.2% 8.6% 8.1% 11.5% 11.2 %

basis of model estimates for the total and elastic cross sections. The constant hard radius R H 2
= 7.2

is deduced from HERA J/Ψ photoproduction forward exponential slope which shows only diminishing
shrinkage [57,58]. This is a conservative choice which may be changed slightly with the improvement of
the Tevatron CDF estimates [61] of R H 2. The two sets of results obtained are compatible, even though,
S 2(D 1C ) is consistently lower than S 2(F 1C ). The S 2 output presented above depends crucially on the
quality of the data base from which we obtain the input parameters. The two sets of Tevatron data at
1800GeV have a severe 10 − 15% difference resulting in a non trivial ambiguity of the S 2 output.

The global GLM two channel fit [38] reproduces the soft scattering data (including SD) remark-
ably well with β = 0.464. Its fitted parameters are used for the soft input required for the S 2 calcu-
lations. Our cross section predictions for LHC are: σtot = 103.8mb , σel = 24.5mb , σsd = 12mb
and B el = 20.5GeV − 2. The input for the calculation of S 2 requires, in addition to the soft parameters,
also the values of νHi,kand R H

i,k
2. The needed hard radii can be estimated, at present, only for the CD

channel, where we associate the hard radii R H
1,1 with the hard radius obtained in HERA exclusive J/Ψ

photoproduction [57,58] and R H
1,2 with HERA inclusive J/Ψ DIS production [59]. Accordingly, we have

R H
1,1

2
= 7.2GeV − 2, and R H

1,2
2
= 2.0GeV − 2. We do not have experimental input to determine νHi,k. We

overcome this difficalty by assuming a Regge-like factorization σ H 0
i,k/σ

S 0
i,k = constant. Our predictions

for the CD survival probabilities are: 6.6% at 540GeV , 5.5% at 1800GeV and 3.6% at 14000GeV .

These results may be compared with a recent, more elaborate, eikonal formulation [60] aiming to
calculate the survival probability of a final exclusive N + LR G + 2J(orH )+ LR G + N state. These
calculations were done in one and two channel models. The one channel S 2

C D predicted values are 14.9%
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at 540GeV , 10.8% at 1800GeV and 6.0% at 14000GeV . These values are remarkably similar to the
GLM one channel output. In the two channel calculations the corresponding predictions are 5.1% , 4.4%
and 2.7% , which are marginally smaller than the GLM two channel output numbers.

In our assessment, the two channel calculations provide a more reliable estimate of S 2 since they
reproduce well the soft scattering forward data. Our estimate for the survival probability associated with
LHC Higgs production is 2.5% − 4.0% .

4 The KKMR Model
The main part of this section (4.1-4.3) was written by V.A. Khoze, A.D. Martin and M. Ryskin (KMR)
and is presented here without any editing.

The KKMR model calculation [40–44] of the survival probabilities is conceptually quite similar
to the GLM model, in as much as unitarization is enforced through an eikonal model whose parame-
ters provide a good reproduction of the high energy soft scattering data. However, the GLM model is
confined to a geometrical calculation of S 2 for which we need just the value of R H 2, without any speci-
fication of the hard dynamics. This value is an external input to the model. The KKMR model contains
also a detailed pQCD calculation of the hard diffractive proccess, specifically, central diffractive Higgs
production. Consequently, it can predict a cross section for the channel under investigation.

4.1 KKMR model for soft diffraction
The KMR description [41] of soft diffraction in high energy pp (or pp̄) collisions embodies

(i) pion-loop insertions in the bare Pomeron pole, which represent the nearest singularity generated
by t-channel unitarity,

(ii) a two-channel eikonal which incorporates the Pomeron cuts generated by elastic and quasi-elastic
(with N ∗ intermediate states) s-channel unitarity,

(iii) high-mass diffractive dissociation.

The KKMR model gives a good description of the data on the total and differential elastic cross
section throughout the ISR-Tevatron energy interval, see [41]. Surprisingly, KMR found the bare Pomeron
parameters to be

∆ ≡ α(0)− 1 ' 0.10, α ′ = 0. (53)

On the other hand it is known that the same data can be described by a simple effective Pomeron pole
with [47, 48, 62]

αeff
IP (t) = 1.08 + 0.25 t. (54)

In this approach the shrinkage of the diffraction cone comes not from the bare pole (α ′ = 0), but has
components from the three ingredients, (i)–(iii), of the model. That is, in the ISR-Tevatron energy range

“α′
eff ” = (0.034 + 0.15 + 0.066)GeV − 2 (55)

from the π-loop, s-channel eikonalisation and diffractive dissociation respectively. Moreover, eikonal
rescattering suppresses the growth of the cross section and so ∆ ' 0.10 > ∆ eff ' 0.08.

Since the model [41] embodies all the main features of soft diffraction KMR expect it to give
reliable predictions for the survival probability S 2 of the rapidity gaps against population by secondary
hadrons from the underlying event, that is hadrons originating from soft rescattering. In particular, KMR
predict S 2 = 0.10 (0.06) for single diffractive events and S 2 = 0.05 (0.03) for exclusive Higgs boson
production, pp → p + H + p, at Tevatron (LHC) energies.
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Fig. 4: Schematic diagram for central exclusive production, pp → p + X + p. The presence of Sudakov form
factors ensures the infrared stability of the Qt integral over the gluon loop. It is also necessary to compute the
probability, S2 , that the rapidity gaps survive soft rescattering.

4.2 Calculation of the exclusive Higgs signal
The basic mechanism for the exclusive process, pp → p + H + p, is shown in Fig. 4. The left-hand
gluon Q is needed to screen the colour flow caused by the active gluons q1 and q2. Since the dominant
contribution comes from the region Λ 2

QCD � Q 2
t � M 2

H , the amplitude may be calculated using
perturbative QCD techniques [40, 63]

M H ' N

∫
dQ 2

t

Q 4
t

fg(x1,x
′
1,Q

2
t,µ

2)fg(x2,x
′
2,Q

2
t,µ

2), (56)

where the overall normalisation constant N can be written in terms of the H → gg decay width [40,64].
The probability amplitudes (fg) to find the appropriate pairs of t-channel gluons (Q, q1) and (Q, q2) are
given by the skewed unintegrated gluon densities at the hard scale µ , taken to be 0.62 M H . Since
the momentum fraction x′ transfered through the screening gluon Q is much smaller than that (x)
transfered through the active gluons (x′ ∼ Q t/

√
s � x ∼ M H /

√
s � 1), it is possible to express

fg(x,x
′,Q 2

t,µ
2), to single log accuracy, in terms of the conventional integrated density g(x) [65–68].

The fg’s embody a Sudakov suppression factor T , which ensures that the gluon does not radiate in the
evolution from Q t up to the hard scale µ ∼ M H /2, and so preserves the rapidity gaps.

It is often convenient to use the simplified form [40]

fg(x,x
′,Q 2

t,µ
2) = R g

∂

∂ lnQ 2
t

[√
Tg(Q t,µ)xg(x,Q

2
t)

]
, (57)

which holds to 10–20% accuracy.1 The factor R g accounts for the single logQ 2 skewed effect [67]. It is
found to be about 1.4 at the Tevatron energy and about 1.2 at the energy of the LHC.

4.3 The Sudakov factor
The Sudakov factor Tg(Q t,µ) reads [65, 66, 69]

Tg(Q t,µ)= exp

(
−
∫ µ2

Q 2
t

αS (k
2
t)

2π

dk2t
k2t

[∫ 1− ∆

∆
zPgg(z)dz +

∫ 1

0

∑

q

Pqg(z)dz

])
, (58)

with ∆ = kt/(µ + kt). The square root arises in (57) because the (survival) probability not to emit any
additional gluons is only relevant to the hard (active) gluon. It is the presence of this Sudakov factor
which makes the integration in (56) infrared stable, and perturbative QCD applicable2 .

1In the actual computations a more precise form, as given by Eq. (26) of [68], was used.
2Note also that the Sudakov factor inside t integration induces an additional strong decrease (roughly as M − 3 [44]) of the

cross section as the mass M of the centrally produced hard system increases. Therefore, the price to pay for neglecting this
suppression effect would be to considerably overestimate the central exclusive cross section at large masses.
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Table 2: Compilation of S2 values obtained in the KKMR model

√
s (GeV) S 2

2C (CD) S 2
2C (SD incl) S 2

2C (DD)

540 6.0% 13.0% 20.0%

1800 4.5% 10.0% 15.0%

14000 2.6% 6.0% 10.0%

It should be emphasized that the presence of the double logarithmic T -factors is a purely classical
effect, which was first discussed in 1956 by Sudakov in QED. There is strong bremsstrahlung when
two colour charged gluons ‘annihilate’ into a heavy neutral object and the probability not to observe
such a bremsstrahlung is given by the Sudakov form factor3 . Therefore, any model (with perturbative or
non-perturbative gluons) must account for the Sudakov suppression when producing exclusively a heavy
neutral boson via the fusion of two coloured particles.

More details of the role of the Sudakov suppression can be found in J. Forshaw’s review in these
proceedings [34]. Here KMR would like to recall that the T -factors in [44, 70] were calculated to single
log accuracy. The collinear single logarithms were summed up using the DGLAP equation. To account
for the ‘soft’ logarithms (corresponding to the emission of low energy gluons) the one-loop virtual cor-
rection to the gg → H vertex was calculated explicitly, and then the scale µ = 0.62 M H was chosen
in such a way that eq.(58) reproduces the result of this explicit calculation. It is sufficient to calculate
just the one-loop correction since it is known that the effect of ‘soft’ gluon emission exponentiates. Thus
(58) gives the T -factor to single log accuracy.

In some sense, the T -factor may be considered as a ‘survival’ probability not to produce any
hard gluons during the gg → H fusion subprocess. However, it is not just a number (i.e. a numerical
factor) which may be placed in front of the integral (the ‘bare amplitude’). Without the T -factors hidden
in the unintegrated gluon densities fg the integral (56) diverges. From the formal point of view, the
suppression of the amplitude provided by T -factors is infinitely strong, and without them the integral
depends crucially on an ad hoc infrared cutoff.

4.4 Summary of KKMR S 2 predictions
Table 2 shows a compilation of S 2 values in the KKMR model. A comparison with the corresponding
GLM two channel model is possible only for the available GLM CD channel, where, the KKMR output
is compatible with GLM. KKMR SD and DD output are compatible with the corresponding GLM single
channel numbers. Overall, we consider the two models to be in a reasonable agreement.

A remarkable utilization of the KKMR model is attained when comparing the HERA [18–27]
and CDF [8–12, 17] di-jets diffractive structure functions derived for the dynamically similar GJJ chan-
nels. To this end, the comparison is made between the kinematically compatible HERA F D

jj(Q
2 =

75GeV 2,β) and the CDF F D
jj(< E 2

T > = 75GeV 2,β). The theoretical expectation is that F D
jj(β), as

measured by the two experiments, should be very similar. As can be seen in Fig.5, the normalizations of
the two distributions differ by approximately an order of magnitude and for very small β < 0.15 there
is a suggestive change in the CDF distribution shape. This large discrepancy implies a breaking of QCD
and/or Regge factorization. Reconsidering, it is noted, that HERA DIS data is measured at a high Q 2

where the partonic interactions induced by the highly virtual photon are point like and, hence, S 2 = 1.
On the other hand, CDF GJJ measurement is carried out at 1800GeV and, as we saw, its survival prob-

3It is worth mentioning that the H → gg width and the normalization factor N in (56) is an ‘inclusive’ quantity which
includes all possible bremsstrahlung processes. To be precise, it is the sum of the H → gg + ng widths, with n=0,1,2,... . The
probability of a ‘purely exclusive’ decay into two gluons is nullified by the same Sudakov suppression.
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Fig. 5: The predictions for the diffractive di-jets production at the Tevatron (lower lines), obtained from two
alternative sets of HERA diffractive parton distributions I and II, compared with the CDF data (shaded area). The
upper lines correspond to the Tevatron prediction neglecting the survival probability correction.

ability is rather small. The convolution between the HERA determined GJJ F D
jj(β)and the β dependent

survival probabilities, as calculated by KKMR, provides the F D
jj(β) distribution corrected for the soft

rescattering of the spectator partons. This is shown in Fig.5 and provides an impressive reproduction of
the experimental distribution. We were informed [71] that this analysis was successfully redone with an
updated H1 produced structure function distribution.

The weak element in the above analysis is that it is crucially dependent on the H1 determined
F D
jj(β) distribution. ZEUS has constructed a somewhat different structure function. Clearly, a very

different experimental determination of F D
jj(β), such as been recently suggested by Arneodo [72], will

re-open this analysis for further studies, experimental and theoretical.

4.5 A Comparison between KKMR and GLM
The approach of GLM and KKMR to the calculation of forward soft scattering in the ISR-Tevatron range
are basically similar. Both models utilize the eikonal model assuming different input soft profiles which
have, nevertheless, compatible effective radii. There are, though, a few particular differences between
the two sets of calculations:

1) The GLM model, with a Gaussian soft profile, is applicable only in the forward cone (|t| <
0.3GeV 2), where we have most of the data of interest. KKMR use a multipole power behaviour
profile which enables applicability over a, somewhat, wider t range, |t| < 0.5GeV 2. Note that,
the GLM output is not significantly changed with a multipole power behaviour profile provided its
radii are compatible with the Gaussian input [60].

2) The GLM input Pomeron trajectory is specified by ∆ = 0.12 and α ′
IP = 0.2. These evolve due

to eikonalisation to an effective output of ε = 0.08 and α ′
IP = 0.25. Note that, ∆ is obtained in

GLM as a fitted output parameter. In KKMR, the relatively high input ∆ ' 0.2 is theoretically
tuned by a pion loop renormalization resulting in an input value of ∆ ' 0.1. KKMR have a
more elaborate treatment of α IP (t) than GLM, resulting, nevertheless, with forward cone output
predictions similar to GLM. However, KKMR accounts for a somewhat wider t range than GLM
and reproduces the t dependence of B elwell. Similar results are obtained in a GLM version [39,56]
in which the soft profile is given by a dipole distribution. KKMR can predict a few differential
properties of S 2, which are beyond the scope of GLM.
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3) Both models treat the high mass diffraction with the triple Pomeron formalism [53]. In GLM the
final SD cross section is obtained by a convolution of the input dσsd

d2b with P S (s,b). In KKMR
the treatment of the SD amplitude is more elaborate, ending, though, with no detailed SD data
reconstruction which is presented in GLM.

4) The LHC predictions of the two models for cross sections and slopes are compatible, with the
exception of σdd which is neglected in GLM and acquires a significant KKMR predicted value of
9.5mb .

GLM is a geometrical model where both the input hard LRG non corrected matrix element squared
and the soft elastic scattering amplitude, are approximated by central Gaussians in b-space. This property
enables us to easily calculate the survival probabilities which depend on ν, R 2 and R H 2 in a single
channel input, and on νi,k, R 2

i,kand R H
i,k

2 in a two channel input. As we have noted, the GLM model, on
its own, cannot provide a calculation of F gap and fgap as it needs the hard radii as an external input. The
KKMR model is more sophisticated. This is attributed to the fact that the hard diffractive LRG process
is explicitly calculated in pQCD, hence the non corrected F gap and the corrected fgap and F D

jj are model
predictions. As we have just noted, given the hard diffractive matrix element, the actual calculation of the
diffractive LRG survival probability damping is almost identical to GLM. Keeping this basic observation
in mind, it is constructive to compare the features of the two models with a special interest on the input
assumptions and output differences of the two models.

The main difference between the two models is reflected in the level of complexity of their inputs.
GLM soft input is obtained from a simple eikonal model for the soft forward scattering, to which we add
the hard radii which are derived from the HERA data. KKMR calculations of P S are equally simple.
The calculation of the hard sector matrix elements are, naturally, more cumbersome. Given HERA
F D
jj(Q

2,β), a Tevatron diffractive F D
jj in which < E T > and Q 2 are comparable, can be calculated,

parameter free, without the need to calculate the hard amplitude. But this is a particular case and, in
general, the KKMR calculation depends on an extended parameter base, such as the the input p.d.f. and
pQCD cuts. These input parameters are not constrained tightly enough.

The elaborate structure of the KKMR model provides a rich discovery potential which is reflected
in the model being able to define and calculate the dependence of S 2 not only on b, but also on other
variables, notably β , and experimental cuts such as the recoil proton transverse momentum. GLM de-
pends on the hard radii external information obtained from HERA data. It lacks the potential richness
of KKMR. GLM can serve, though, as a standard through which we can compare different unitarized
models. Given such a model, we can extract effective values for ν, R 2 and R H 2 and proceed to a simple
calculation of S 2. We shall return to this proposed procedure in the final discussion.

Even though both GLM and KKMR are two channel models, they are dynamically different. GLM
two channel formulation relates to the diversity of the intermediate soft re-scatterings, i.e. elastic and
diffractive for which we have different soft amplitudes ai,k, each of which is convoluted with a different
probability P S

i,kwhich depends on a different interaction radius R 2
i,k. In the KKMR model the two chan-

nels relate to two different dynamical options of the hard process. In model A the separation is between
valence and sea interacting partons. In model B the separation is between small and large dipoles. The
two models give compatible results. The key point, though, is that the KKMR opacities Ω i,k, in the
definition of P S

i,k, differ in their normalization, but have the same b-dependence. Regardless of this dif-
ference the output of the GLM and KKMR models is reasonably compatible. The compatibility between
GLM and KKMR is not surprising since the explicit KKMR calculation of the hard LRG amplitude is
approximated relatively well by the GLM simple Gaussian.

Our final conclusion is that the two model output sets are compatible. The richness of the KKMR
model has a significant discovery potential lacking in GLM. On the other hand, the GLM simplicity
makes it very suitable as a platform to present different models in a uniform way, which enables a
transparent comparison.
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5 Discussion
As we shall see, at the end of this section, there is no significant difference between the values of σ totpre-
dicted by DL and GLM up to the top Cosmic Rays energies. This is, even though, DL is a Regge model
without unitarity corrections. The explanation for this ”paradox” is that the DL amplitude violations of
s-unitarity are confined, even at super high energies, to small b which does not contribute significantly to
σtot. Note, though, that σel

σtot
grows in DL like sε whereas in GLM its growth is continuosly being mod-

erated with increasing s (see table in 5.3). The DL model predicts that S 2 is identical to unity or very
close to it in the DL high-tmodel where a weak IP IP cut is added. The need for survival probabilities so
as to reproduce the the experimental soft SD cross section values and the hard di-jets rates, is the most
compelling evidence in support of unitarization at presently available energies. As such, the study of
high energy soft and hard diffraction serves as a unique probe substantiating the importance of s-channel
unitarity in the analysis of high energy scattering.

5.1 S 2 in unitarized models
Most, but not all, of the unitarized models dealing with LHC S 2 predictions have roughly the same
S 2 values. This calls for some clarifications. The first part of our discussion centers on the correlated
investigation of two problems:

1) How uniform are the output predictions of different unitarization procedures?
2) How sensitive are the eikonal calculations to the details of the eikonal model they use?

We start with two non eikonal models which have contradictory predictions.

The first is a model suggested by Troshin and Tyurin [52]. In this model the single channel
unitarity constraint (Eq.(13)) is enforced with an asymptotic bound where G in = 0 and |ael| = 2 i.e.
asymptotically, σtot = σel and P S (s,b) = 1. The parameters of the model are set so as to obtain
a ”normal” survival probability monotonically decreasing with energy up to about 2500GeV where
it changes its behavior and rises monotonically to its asymptotic limit of 1. Beside the fact that the
model has a legitimate but non appealing asymptotics, its main deficiency is that it suggests a dramatic
change in the systematics of S 2 without being able to offer any experimental signature to support this
claim. Regardless of this criticism, this is a good example of a proper unitarity model whose results are
profoundly different from the eikonal model predictions.

Another non eikonal procedure is Goulianos flux renormalization model [17]. This is a phe-
nomenological model which formally does not enforce unitarity, but rather, a bound of unity on the
Pomeron flux in diffractive processes. Note that, the Pomeron flux is not uniquely defined so this should
be regarded as an ad hoc parametrization. Nevertheless, it has scored an impressive success in repro-
ducing the soft and hard diffractive data in the ISR-Tevatron range. The implied survival probabilities of
this procedure are compatible with GLM and KKMR. However, the model predicts suppression factors
for the diffractive channels which are t-independent and, thus, b-independent. The result is that, even
though the output diffractive cross section is properly reduced relative to its input, there is no change of
the output profile from its input Gaussian form. Consequently, the Pumplin bound is violated. We are
informed that Goulianos plans to improve his model by eikonalizing the output of his present model.

As noted, there are a few eikonal models on the market [73–80], and their predictions are com-
patible with GLM and KKMR. Reconsidering the procedure of these calculations, their compatibility is
not surprising once we translate their input to a GLM format. The GLM eikonal S 2 calculation has two
input sectors in either a single or a two channel version. They are the soft ν and R 2, and the hard radius
R H 2. Since the soft input is based on a fit of the soft scattering data base, the potential variance in the
soft parameters is relatively small. The input hard radius is obtained from either the HERA data or a
theoretical calculation, be it a pQCD diagram or a Regge model. All in all, this is a reasonably stable
input. In this context, it is interesting to discuss the eikonal model of Block and Halzen [73], where
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the calculated survival probabilities for Higgs production through W-W fusion are seemingly too high,
S 2(540)= 27% ,S 2(1800)= 21% and S 2(14000)= 13% . Even though, Higgs production is a CD
process, the above S 2 values are in agreement with the KKMR calculations of S 2

D D with a relatively
high R H 2

= 11GeV − 2. In a proper S 2
C D calculation, these high S 2 values correspond to an even

higher R H 2 ' 20GeV − 2, which is far too high as an estimate of the hard radius of W W → H . A
possible interpretation of Block-Halzen results is to associate them with a soft, rather than a hard, LRG
CD process. This would couple with the non screened interpretation of CD Higgs through the soft CEM
model [74, 75], which predicts very high S 2 values. Since the CEM model is not screened we may, as
well, assign a survival probability to its output result. This translates into S 2

C D = S 2
B H S

2
C E M , providing

rather reasonable one channel predictions, S 2
C D (540)= 18.9% and S 2

C D (1800)= 7.2% .

Obviously, each of the eikonal models, quoted above has its own particular presentation and em-
phasis. They do, however, have compatible results reflecting the observation that their input translates
into similar values of ν,R 2 and R H 2.

5.2 Compatibility between HERA and the Tevatron di-jets data
Much attention has been given recently to the compatibility between the Tevatron and HERA DIS GJJ
data. The starting point made by KKMR and CDF is that rather than depend on a p.d.f. input to calculate
Fgap , we may use, the GJJ di-jets diffractive structure function, F D

jj , inferred from HERA DIS data
[18–27] and associate it with the F D

jj derived from the Tevatron GJJ data. As it stands, this procedure
ignores the role of the survival probability. Consequently, F D

jj obtained from the Tevatron is an order
of magnitude smaller than the HERA output [8–12, 17, 40–44]. This result led to speculations about a
possible breaking of QCD or Regge factorization or both. Once the Tevatron di-jets diffractive structure
function is rescaled by the appropriate survival probability, the compatibility between the Tevatron and
HERA DIS diffractive data is attained. The conclusion of this analysis is that the breaking of factorization
is attributed to the soft re-scatterings of the the colliding projectiles. Additional hard contribution to the
factorization breaking due to gluon radiation is suppressed by the Sudakov factor included in the pQCD
calculation (see 4.3).

One should note, though, that the H1 determination [18–27] of F D
jj is not unique. Arneodo [72]

has suggested a different F D
jj output based on HERA di-jets data which has a different normalization and

β dependences. Should this be verified, there might well be a need to revise the KKMR calculations.

The evolution of HERA F D
jj from high Q 2 DIS to Q 2 = 0 di-jets photoproduction has raised

additional concern with regard to the validity of the factorization theorems [28,29]. This is a complicated
analysis since one has to be careful on two critical elements of the calculations:

1) The determination of the ratio between direct and resolved exchanged photon (real or virtual). This
is a crucial element of the theoretical calculation since survival probability is applicable only to
the resolved photon component. For very high Q 2 data the hard scattering process with the target
partons is direct. At Q 2 = 0 there is a significant resolved photon contribution.

2) For di-jets production there is a big difference between the LO and the NLO pQCD calculated
cross sections [81–83]. Since the HERA analysis compares the pQCD calculation with the di-jets
measured cross section the normalization and shape of the theoretical input is most crucial in the
experimental comparison between the high Q 2 and Q 2 = 0 data.

On the basis of a NLO calculation, Klasen and Kramer [81, 82] conclude that they can reproduce the
photoproduction data with S 2 = 0.34, applied to the resolved sector. This survival probability is in
agreement with KKMR and GLM calculations.

Regardless of the above, preliminary photoproduction GJJ HERA data [28, 29] suggest that both
the direct and resolved photon sectors are suppressed at Q 2 = 0. A verification of this observation has
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Table 3: GLM two-channel predictions at a few energies

√
s[GeV ] σDL

tot [mb] σGLMtot [mb] σGLMel [mb] σGLMsd [mb] B GLM
el [GeV − 2] S GLM

CD
2

540 60.1 62.0 12.3 8.7 14.9 0.066

1800 72.9 74.9 15.9 10.0 16.8 0.055

14000 101.5 103.8 24.5 12.0 20.5 0.036

30000 114.8 116.3 28.6 12.7 22.0 0.029

60000 128.4 128.7 32.8 13.2 23.4 0.023

90000 137.2 136.5 35.6 13.5 24.3 0.019

120000 143.6 142.2 37.6 13.7 24.9 0.017

severe consequences for our understanding of the evolution of the diffractive structure function from
DIS to photoproduction. It does not directly relate, though, to the issue of soft survival probability
which apply, per definition, only to the resolved photon sector. The suggested effect in the direct photon
sector should, obviously be subject to a good measure of caution before being substantiated by further
independent analysis.

5.3 Diffraction at energies above the LHC
We end with Table 3, which shows the GLM two channel predictions for energies including the LHC, and
up to the top Cosmic Rays energies. The, somewhat, surprizing observation is that the GLM calculated
total cross sections are compatible with the DL simple Regge predictions all over the above energy
range. This is a reflection of the fact that even at exceedingly high energies unitarization reduces the
elastic amplitude at small enough b values to be relatively insensitive to the calculation of σ tot. On the
other hand, we see that σel becomes more moderate in its energy dependence and σel/σtot which is
23.6% at the LHC is no more than 26.4% at the highest Cosmic Rays energy, 120T eV . The implication
of this observation is that the nucleon profile becomes darker at a very slow rate and is grey (well below
the black disc bound) even at the highest energy at which we can hope for a measurment. A check of our
results at the Planck scale shows σtot = 1010mb and the profile to be entirely black. i.e., σel

σtot
= 1

2 .
σsd is even more moderate in its very slow rise with energy. The diminishing rates for soft and hard
diffraction at exceedingly high energies are a consequence of the monotonic reduction in the values of
S 2 with a Planck scale limit of S 2 = 0. This picture is bound to have its effect on Cosmic Rays studies.

Our LHC predictions are compatible with KMR. Note, though, that: i) σ GLM
sd is rising slowly

with s gaining 20% from the Tevatron to LHC. KMR has a much faster rise with energy, where, σ K M R
sd

is gaining 77% − 92% over the same energy interval. ii) At the LHC B GLM
el = 20.5GeV − 2, to be

compared with a DL slope of 19GeV − 2 and a KMR slope of 22GeV − 2. The GLM 30T eV cross
sections are compatible with Block-Halzen.
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An alternative approach to gap survival and factorization breaking is to implement multiple inter-
actions in Monte Carlo event generators. These models are typically based on the eikonalization of the
partonic cross section in hadronic collisions and can be combined with any hard sub process to describe
the additional production of hadrons due to secondary partonic scatterings. Some of these programs,
such as PYTHIA [84, 85] and HERWIG/JIMMY [86–88], are described in some detail elsewhere in these
proceedings [89]. Common for all these models is that they include exact kinematics and flavour conser-
vation, which introduces some non-trivial effects and makes the multiple scatterings process-dependent.
Also, the predictions of the models are very sensitive to the cutoff used to regularize the partonic cross
section and to the assumptions made about the distribution of partons in impact parameter space. Never-
theless, the models are quite successful in describing sensitive final-state observables such as multiplicity
distributions and jet-pedestal effects [89]. In particular this is true for the model in PYTHIA which has
been successfully tuned to Tevatron data4 by Rick Field [90], the so-called CDF tune A.

The PYTHIA model does not make any prediction for the energy dependence of the total cross
section - rather this is an input to the model used to obtain the distribution in the number of multiple
interactions. PYTHIA can, however, make predictions for gap survival probabilities. This was first done
for Higgs production via W-fusion [2], and amounts to simply counting the fraction of events which
do not have any additional scatterings besides the W-fusion process. The basic assumption is that any
additional partonic scattering would involve a colour exchange which would destroy any rapidity gap
introduced by W-fusion process. Since PYTHIA produces complete events, these can also be directly
analyzed with the proper experimental cuts. A similar estimate was obtained for the gaps between jets
process, both for the Tevatron and HERA case [91].

Recently, PYTHIA was used to estimate gap survival probabilities also for the case of central ex-
clusive Higgs production [92]. As in the case of gaps between jets, the actual signal process is not
implemented in PYTHIA, so direct analysis with proper experimental cuts was not possible. Instead a
similar hard sub process was used (standard inclusive Higgs production via gluon fusion in this case)
and the fraction of events without additional secondary partonic scatterings was identified with the gap
survival probability. Using the CDF tune A the gap survival probability was estimated to be 0.040 for
the Tevatron and 0.026 for the LHC. This is remarkably close both to the values used in [64] obtained in
the KKMR model [43], and to the GLM values presented in section 3.4 especially the two-channel ones
obtained in [60].
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