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1 Introduction 1

With HERA currently in its second stage of operation, it is possible to assess the potential precision
limits of HERA data and to estimate the potential impact of the measurements which are expected at
HERA-II, in particular with respect to the PDF uncertainties.

Precision limits of the structure function analyses at HERA are examined in [1]. Since large
amounts of luminosity are already collected, the systematic uncertainty becomes most important. A
detailed study of error sources with particular emphasis on correlated errors for the upcoming precision
analysis of the inclusive DIS cross section at low Q2 using 2000 data taken by the H1 experiment is
presented. A new tool, based on the ratio of cross sections measured by different reconstruction methods,
is developed and its ability to qualify and unfold various correlated error sources is demonstrated.

An important issue is the consistency of the HERA data. In section 3, the H1 and ZEUS published
PDF analyses are compared, including a discussion of the different treatments of correlated systematic
uncertainties. Differences in the data sets and the analyses are investigated by putting the H1 data set
through both PDF analyses and by putting the ZEUS and H1 data sets through the same (ZEUS) analysis,
separately. Also, the HERA averaged data set (section 4) is put through the ZEUS PDF analysis and
the result is compared to that obtained when putting the ZEUS and H1 data sets through this analysis
together, using both the Offset and Hessian methods of treating correlated systematic uncertainties.

The HERA experimental data can not only be cross checked with respect to each other but also
combined into one common dataset, as discussed in section 4. In this respect, a method to combine
measurements of the structure functions performed by several experiments in a common kinematic do-
main is presented. This method generalises the standard averaging procedure by taking into account
point-to-point correlations which are introduced by the systematic uncertainties of the measurements.
The method is applied to the neutral and charged current DIS cross section data published by the H1 and
ZEUS collaborations. The averaging improves in particular the accuracy due to the cross calibration of
the H1 and ZEUS measurements.

The flavour decomposition of the light quark sea is discussed in [2]. For low x and thus lowQ2

domain at HERA only measurement of the photon exchange induced structure functions F2 and FL is
possible, which is insufficient to disentangle individual quark flavours. A general strategy in this case
is to assume flavour symmetry of the sea. [2] considers PDF uncertainties if this assumption is released.
These uncertainties can be significantly reduced if HERA would run in deuteron-electron collision mode.

The impact of projected HERA-II data on PDFs is estimated in section 7. In particular, next-to-
leading order (NLO) QCD predictions for inclusive jet cross sections at the LHC centre-of-mass energy
are presented using the estimated PDFs. A further important measurement which could improve under-
standing of the gluon density at low x and, at the same time, provide consistency checks of the lowQ2

QCD evolution is the measurement of the longitudinal structure function FL. Perspectives of this mea-
surement are examined in section 5, while the impact of this measurement is also estimated in section 7.

Further improvements for consistently including final-state observables in global QCD analyses
are discussed in section 8. There, a method for “a posteriori” inclusion of PDFs, whereby the Monte
Carlo run calculates a grid (in x andQ) of cross section weights that can subsequently be combined with
an arbitrary PDF. The procedure is numerically equivalent to using an interpolated form of the PDF. The

1Subsection coordinators: A. Glazov, S. Moch
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main novelty relative to prior work is the use of higher-order interpolation, which substantially improves
the tradeoff between accuracy and memory use. An accuracy of about 0.01% has been reached for the
single inclusive cross-section in the central rapidity region |y|< 0.5for jet transverse momenta from100
to5000GeV. This method will make it possible to consistently include measurements done at HERA,
Tevatron and LHC in global QCD analyses.

2 Precision Limits for HERA DIS Cross Section Measurement 2

The published precision lowQ2cross section data [3] of the H1 experiment became an important data set
in various QCD fit analyses [3–6]. Following success of these data the H1 experiment plans to analyse
a large data sample, taken during 2000 running period3 , in order to reach precision limits of low Q2

inclusive cross sections measurements at HERA. The precision is expected to approach 1% level.

The aim of this contribution is to calculate realistic error tables for 2000 H1 data and pursue paths
how to reach such a high precision. Correlated error sources are studied in particular and a new tool,
based on the ratio of cross sections measured by different reconstruction methods, is developed. All
errors, including correlated errors, are treated in the same manner as in [3]. Error tables are provided and
used in QCD fit analysis, see Sec 7, in order to study the impact of the new data on PDFs. The new data
are expected to reach higher precision level than [3] due to the following reasons

– Larger data statistics - Statistical errors will decrease by factor of1.5−2, compared to [3], de-
pending on the kinematic region.

– Very large Monte Carlo simulations (MC) - Due to a progress in computing a number of simulated
events can be significantly increased in order to minimise statistical error of MC, to understand
uncorrelated errors and to estimate correlated errors more precisely.

– During past years increasing knowledge, arriving from various H1 analyses, enabled better under-
standing of the detector and its components as well as improving quality of MC.

– Data taking in 2000 was particularly smooth. Both HERA and H1 were running at peak perfor-
mance for HERA-I running period.

This contribution uses existing 2000 data and MC ntuples along with the full analysis chain. It
applies all preliminary technical work done on these data, including calibration, alignment, trigger studies
etc. Quoted errors are assumed to be achieved in the final version of analysis yet the analysis has not
been finalised, all the numbers in the paper are preliminary and may change in the publication.

The uncertainties of the cross section measurement are divided into a number of different types.
Namely, these are statistical uncertainties of the data, uncorrelated systematics and correlated systemat-
ics. The term ’correlated’ refers to the fact that cross section measurements in kinematic bins are affected
in a correlated way while different correlated systematic error sources are considered uncorrelated among
each other. The classification of the systematic errors into types is sometimes straightforward (MC statis-
tics is uncorrelated error source) but sometimes is rather arbitrary (radiative corrections are assumed to
be uncorrelated error source). The main goal of this classification is to preserve correlation between data
points while keeping the treatement as simple as possible.

The cross section uncertainties depend on the method used to reconstruct event kinematics. There
are various methods existing, involving a measurement of the scattered electron as well as of the hadronic
finale state. In the following two of them, so called electron method and sigma method, are employed [7].
The electron method uses only the measurement of the scattered electron, namely its energy and polar
angle, while the sigma method uses both the scattered electron and the hadronic final state. An advantage
of the sigma method is a proper treatment of QED radiation from the incoming beam electron (ISR).

2Contributing authors: G. Laštovička-Medin, A. Glazov, T. Laštovička
3Data statistics will be increased further by adding data taken in year 1999.
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Fig. 1: A scan of the cross section measurement change in % depending on a variation of (from top-left) electron
energy, electron polar angle, hadronic final state calibration scale and noise level in LAr calorimeter (bottom-right).
The sigma method (a) and the electron method (b) were used to reconstruct kinematics of events.

The statistical uncertainty of the data is typically 0.5-1%, depending on the kinematic region
analysed and the definition of the kinematic bins. In the following we adapt the bin definition used in [3],
apart from merging bins at low ywhich was done in the published data in order to increase statistics.

The uncorrelated systematics consists from various contributions. A cross section uncertainty due
to the Monte Carlo statistics is the one with very good potential to be minimised. In the following we
assume 100 million simulated events to be used in analysis of 2000 data. Estimates were calculated with
available 12 million simulated events and corresponding statistical errors scaled by a factor of

√
100/12.

As a result the uncertainty is very small and typically on the level of few permile.

Additional contributions to the uncorrelated systematics are efficiencies. We assume for trigger
efficiency 0.3% and backward tracker tracker efficiency 0.3% uncertainty. Radiative corrections are
expected to affect the final cross section by 0.4%.

Effect of correlated uncertainties on the cross section measurement is studied in the following
manner. Particular source of correlated uncertainty, for instance the scattered electron energy measure-
ment, is varied by assumed error and the change of the measured cross section is quoted as the corre-
sponding cross section measurement error. An example of cross section change on various correlated
error source is shown in Fig. 1 for bin of Q2= 45GeV2 and x = 0.005. The kinematics of events
was reconstructed with the sigma method (a) and the electron method (b). Errors are calculated as so
called standard errors of the mean in calculation of which the available Monte Carlo sample was split
into nine sub-samples. It is clearly seen that the cross section measurement with the sigma method in
this kinematic bin is particularly sensitive to the electron energy measurement (top-left) and to noise
description in LAr calorimeter (bottom-right). On the contrary, the electron polar angle measurement
and the calibration of the hadronic final state play a little role. The electron method is mainly sensitive
to the electron energy measurement. The importance of the systematic sources vary from bin to bin.

There are five individual sources contributing to the correlated cross section uncertainties:

– Uncertainties of 0.15% at Ee =27GeV and 1% at 7 GeV are assigned to the electron energy scale
for the backward calorimeter. The uncertainty is treated as a linear function of E e interpolating
between the results at 27 GeV and 7 GeV.

– The uncertainty on the scattered electron polar angle measurement is 0.3 mrad . The corresponding
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Table 1: An example of the error table forQ2= 25 GeV2for 2000 data, large Monte Carlo sample and suppressed
systematic errors compared to [1], see text for details. Absolute errors are shown. The table format is identical to
the one published in [1].

25 0.0005 0.493 1.391 0.261 1.449 0.88 0.47 0.63 0.41 0.19 0.21 0.22 0.15 0.13
25 0.0008 0.308 1.251 0.261 1.268 0.91 0.43 0.62 0.51 0.34 0.37 0.02 0.04 0
25 0.0013 0.19 1.138 0.248 1.143 0.94 0.44 0.62 0.56 0.45 0.33 0.03 0.02 0
25 0.002 0.123 1.041 0.236 1.042 0.9 0.45 0.62 0.47 0.13 0.45 0.03 0.05 0
25 0.0032 0.077 0.842 0.254 0.843 1.42 0.5 0.63 1.17 0.74 0.36 0.17 0.8 0
25 0.005 0.049 0.745 0.243 0.745 1.17 0.52 0.63 0.83 0.59 0.42 0.25 0.33 0
25 0.008 0.031 0.667 0.225 0.667 1.22 0.56 0.64 0.87 0.43 0.35 0.66 0.09 0
25 0.013 0.019 0.586 0.214 0.586 2.02 0.65 0.66 1.8 0.67 0.57 1.43 0.65 0
25 0.02 0.012 0.569 0.159 0.569 5.77 0.86 0.71 5.66 0.83 0.52 3.51 4.33 0
25 0.032 0.008 0.553 0.065 0.553 10.64 1.34 0.88 10.52 0.93 0.64 3.86 9.72 0

Table 2: An example of the full error table for Q2 = 25 GeV2, published H1 data. The definition of kinematic
bins is not identical to that in Table 1, some bins were merged to enlarge statistics.

25 0.0005 0.553 1.345 0.248 1.417 2.41 1.04 1.81 1.21 -1.04 -0.37 0.25 0.04 -0.41
25 0.0008 0.346 1.242 0.243 1.263 1.94 0.67 1.62 0.85 -0.6 -0.6 0.04 0.02 -0.07
25 0.0013 0.213 1.091 0.238 1.097 1.78 0.66 1.36 0.93 -0.64 -0.69 0 0 0
25 0.002 0.138 0.985 0.236 0.987 2.89 0.76 1.43 2.4 1.78 -0.7 0.17 1.34 0
25 0.0032 0.086 0.879 0.234 0.88 2.78 0.79 1.46 2.23 1.8 -0.77 -0.23 0.92 0
25 0.005 0.055 0.754 0.234 0.754 2.38 0.85 1.49 1.64 1.01 -0.58 0.16 1.03 0
25 0.008 0.034 0.663 0.234 0.663 2.52 0.92 1.54 1.78 1.11 -0.68 -0.72 0.84 0
25 0.0158 0.018 0.547 0.226 0.547 3.71 0.85 1.49 3.29 1.36 -0.88 -2.44 -1.42 0
25 0.05 0.005 0.447 0.148 0.447 7.54 1.28 3.35 6.64 0.99 -0.68 -3.28 -5.62 0

error on the cross section measurement is typically well below 1% but may be larger at lowest
values ofQ2.

– The uncertainty on the hadronic energy scale comprises a number of systematic error sources
corresponding to the E−pz decomposition: an uncertainty of the hadronic energy scale calibration
of 2% for the central and forward calorimeter, an uncertainty of 3% for the fraction carried by
tracks and a 5% uncertainty of the hadronic energy scale measured in backward calorimeter.

– The uncertainty on the hadronic energy scale is further affected by the subtracted noise in the
calorimetery. The noise is described to the level of 10% and the corresponding error is propagated
to the cross section uncertainty. The largest influence is in the low y region, which is measured
with the sigma method.

– The uncertainty due to the photoproduction background at large y is estimated from the normali-
sation error of the PHOJET simulations to about 10%. At low and medium values of y.0.5it is
negligible.

The total systematic error is calculated from the quadratic summation over all sources of the un-
correlated and correlated systematic uncertainties. The total error of the DIS cross section measurement
is obtained from the statistical and systematical errors added in quadrature.

An example of the full error table for kinematic bin ofQ2=25GeV2 is shown in Table 1. For a
comparison the corresponding part of the published data from [3] is presented in Table 2. One can see
that precision about 1% can be reached especially in four lowest x bins, where the electron method was
used to reconstruct the event kinematics. The key contributions to the seen improvement in the cross
section measurement precision are the electron energy measurement, very large Monte Carlo statistics,
well understood noise in LAr calorimeter and precisely controlled efficiencies entering the analysis.
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Fig. 2: A scan of the cross section ratio R in bins of Q2and y as a function of the hadronic final state calibration
variation.

Full error table, covering the kinematic region of5≤Q2≤150GeV2 and 0.01≤y≤0.6 was
produced. The electron method was applied for kinematic bins at y > 0.1while the sigma method
otherwise. The measurement of the proton structure function F2was simulated using fractal parametri-
sation [8] for central values, accounting for all sources of correlated and uncorrelated errors. This table
was used to estimate effect of precise lowQ2data on the determination of proton PDFs from QCD fits.

The fact that different kinematics reconstruction methods are affected differently by the correlated
systematic uncertainties may be employed as a tool to estimate these uncertainties. We define

Ri=
σel,ir

σΣ,ir
(1)

to be the cross section measurement ratio, where the reduced cross section σel,ir andσΣ,ir is mea-
sured using the electron method and the sigma method, respectively. Kinematic bins, indexed by i, cover
a region of the analysis phase space where both reconstruction methods are applicable for the measure-
ment. The statistical error ofRimeasurement is again evaluated by splitting the sample to a number of
sub-samples and calculating the standard error of the mean. An example of a scan of the cross section ra-
tioRi dependence on the hadronic final state calibration variation in a bin ofQ2=25GeV2and various
inelasticity y is shown in Fig. 2.

An error of a particular correlated uncertainty source j can be estimated by searching for lowest
χ2=

∑
i(Ri(αj)−1)2/σ2i , where summation runs over kinematic bins,σi is the error ofRimeasure-

ment andαj is the variation of the source j . However, since there is a number of correlated error sources
the correct way to find correlated uncertainties is account for all of them.

Unfolding of the correlated error sources can be linearised and directly solved by minimising the
following function:

L=
∑

i

1

σ2i
(Ri+

∑

j

αj
∂Ri
∂αj
−1)2. (2)

The partial derivatives ∂Ri∂αj for systematic sourceαj are obtained from linear fits to distributions as shown
in Fig. 2. Parametersαj and their respective errors are obtained by matrix inversion technique.

The procedure was tested on available Monte Carlo sample for 2000 H1 data. Half of the sample,
six million events, was used to simulate data. Full analysis chain was applied to measure the cross section
and thusRi. Kinematic bins were selected according to15≤Q2≤60 GeV2and 0.011≤y≤0.6, i.e.

T. CARLI , A. COOPER-SARKAR , J. FELTESSE, A. GLAZOV, C. GWENLAN , M. KLEIN , . . .

82



Fig. 3: Errors on the electron energy measurement (top-left), hadronic scale calibration (top-right) and noise in
LAr calorimeter (bottom-left). Open points correspond to χ2 scan in one correlated error source. Closed points
show the result of complete unfolding, taking into account correlations.

in the main region of the data. The results are shown in Fig. 3. Closed points correspond to unfolded
errors of the electron energy measurement (top-left), hadronic final state calibration and noise in the LAr
calorimeter (bottom-left). There is no sensitivity observed to the electron polar angle measurement. All
values are within statistical errors compatible with zero, as expected. For the final analysis the statistical
errors are expected to be approximately three times smaller due to the significantly larger statistics than
used for the presented study. This will enable the method to gain sufficient control over systematic
correlated errors. Apart from being able to evaluate calibration of the scattered electron and of the
hadronic final state, it gives a very good handle on the LAr calorimeter noise.

For a comparison, open points in Fig. 3 correspond to a χ2 scan in one correlated error source.
The statistical errors are smaller, as expected, and compatible with zero. However, the unfolding method
is preferred since it takes into account all correlated error sources correctly.

In summary, a study of the DIS cross section uncertainties realistically achievable at HERA has
been performed. For x ∈ 0.001−0.01a precision of1%can be reached across for a wide range ofQ2∈
5−150GeV2, allowing improved estimate ofW,Zproduction cross section in the central rapidity region
of LHC. The accuracy of the DIS cross section measurement can be verified using different kinematic
reconstruction methods available at the HERA collider.

3 Comparison and combination of ZEUS and H1 PDF analyses 4

Parton Density Function (PDF) determinations are usually global fits [4,5,9], which use fixed target DIS
data as well as HERA data. In such analyses the high statistics HERA NC e+pdata, which span the
range 6.3×10−5< x < 0.65,2.7 <Q2< 30,000 GeV2, have determined the low-x sea and gluon
distributions, whereas the fixed target data have determined the valence distributions and the higher-x sea
distributions. Theν-Fe fixed target data have been the most important input for determining the valence
distributions, but these data suffer from uncertainties due to heavy target corrections. Such uncertainties
are also present for deuterium fixed target data, which have been used to determine the shape of the
high-x d-valence quark.

HERA data on neutral and charged current (NC and CC) e+pand e−pinclusive double differential
cross-sections are now available, and have been used by both the H1 and ZEUS collaborations [10, 11]
in order to determine the parton distributions functions (PDFs) using data from within a single experi-
ment. The HERA high Q2 cross-section data can be used to determine the valence distributions, thus
eliminating uncertainties from heavy target corrections. The PDFs are presented with full accounting
for uncertainties from correlated systematic errors (as well as from statistical and uncorrelated sources).
Peforming an analysis within a single experiment has considerable advantages in this respect, since the
global fits have found significant tensions between different data sets, which make a rigorous statistical

4Contributing authors: A. Cooper-Sarkar, C. Gwenlan
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Fig. 4: Left plot: Comparison of PDFs from ZEUS and H1 analyses at Q2= 10GeV2. Right plot: Comparison
of gluon from ZEUS and H1 analyses, at various Q2. Note that the ZEUS analysis total uncertainty includes both
experimental and model uncertainties.

treatment of uncertainties difficult.

Fig. 4 compares the results of the H1 and ZEUS analyses. Whereas the extracted PDFs are broadly
compatible within errors, there is a noticeable difference in the shape of the gluon PDFs. Full details of
the analyses are given in the relevant publications, in this contribution we examine the differences in the
two analyses, recapping only salient details.

3.1 Comparing ZEUS and H1 published PDF analyses
The kinematics of lepton hadron scattering is described in terms of the variables Q2, the invariant mass
of the exchanged vector boson, Bjorken x, the fraction of the momentum of the incoming nucleon taken
by the struck quark (in the quark-parton model), and ywhich measures the energy transfer between the
lepton and hadron systems. The differential cross-section for the NC process is given in terms of the
structure functions by

d2σ(e±p)
dxdQ2

=
2πα2

Q4x

[
Y+F2(x,Q

2)−y2FL(x,Q2)∓Y−xF3(x,Q2)
]
, (3)

whereY±=1±(1−y)2. The structure functions F2and xF3are directly related to quark distributions,
and their Q2dependence, or scaling violation, is predicted by pQCD. At Q2≤1000GeV2F2domi-
nates the charged lepton-hadron cross-section and for x≤10−2,F2 itself is sea quark dominated but its
Q2evolution is controlled by the gluon contribution, such that HERA data provide crucial information
on low-x sea-quark and gluon distributions. At high Q2, the structure function xF3 becomes increas-
ingly important, and gives information on valence quark distributions. The CC interactions enable us to
separate the flavour of the valence distributions at high-x, since their (LO) cross-sections are given by,

d2σ(e+p)

dxdQ2
=

G2FM
4
W

(Q2+M2W)
22πx
x
[
(̄u+ c̄)+(1−y)2(d+ s)

]
,

d2σ(e−p)
dxdQ2

=
G2FM

4
W

(Q2+M2W)
22πx
x
[
(u+ c)+(1−y)2(̄d+ s̄)

]
.

For both HERA analyses the QCD predictions for the structure functions are obtained by solving the
DGLAP evolution equations [12–15] at NLO in theMSscheme with the renormalisation and factor-
ization scales chosen to be Q2. These equations yield the PDFs at all values of Q2 provided they are
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input as functions of x at some input scaleQ20 . The resulting PDFs are then convoluted with coefficient
functions, to give the structure functions which enter into the expressions for the cross-sections. For a
full explanation of the relationships between DIS cross-sections, structure functions, PDFs and the QCD
improved parton model see ref. [16].

The HERA data are all in a kinematic region where there is no sensitivity to target mass and
higher twist contributions but a minimum Q2 cut must be imposed to remain in the kinematic region
where perturbative QCD should be applicable. For ZEUS this is Q2 > 2.5GeV2, and for H1 it is
Q2 > 3.5GeV2. Both collaborations have included the sensitivity to this cut as part of their model
errors.

In the ZEUS analysis, the PDFs for uvalence, xuv(x), d valence, xdv(x), total sea, xS(x),
the gluon, xg(x), and the difference between the d and ucontributions to the sea, x(̄d−ū), are each
parametrized by the form

p1x
p2(1−x)p3P(x), (4)

whereP(x)=1+p4x, atQ20 =7GeV2. The total sea xS=2x(̄u+ d̄+ s̄+ c̄+ b̄), where q̄=qseafor
each flavour, u=uv+usea,d= dv+ dseaandq=qseafor all other flavours. The flavour structure of
the light quark sea allows for the violation of the Gottfried sum rule. However, there is no information on
the shape of the d̄−ūdistribution in a fit to HERA data alone and so this distribution has its shape fixed
consistent with the Drell-Yan data and its normalisation consistent with the size of the Gottfried sum-rule
violation. A suppression of the strange sea with respect to the non-strange sea of a factor of 2 atQ20 , is
also imposed consistent with neutrino induced dimuon data from CCFR. Parameters are further restricted
as follows. The normalisation parameters, p1, for the d and uvalence and for the gluon are constrained
to impose the number sum-rules and momentum sum-rule. Thep2parameter which constrains the low-x
behaviour of the uand d valence distributions is set equal, since there is no information to constrain
any difference. When fitting to HERA data alone it is also necessary to constrain the high-x sea and
gluon shapes, because HERA-I data do not have high statistics at large-x, in the region where these
distributions are small. The sea shape has been restricted by setting p4= 0 for the sea, but the gluon
shape is constrained by including data on jet production in the PDF fit. Finally the ZEUS analysis has
11 free PDF parameters. ZEUS have included reasonable variations of these assumptions about the
input parametrization in their analysis of model uncertainties. The strong coupling constant was fixed to
αs(M

2
Z)=0.118[17]. Full account has been taken of correlated experimental systematic errors by the

Offset Method, as described in ref [9, 18].

For the H1 analysis, the value of Q20 =4GeV2, and the choice of quark distributions which are
parametrized is different. The quarks are considered asu-type and d-type with different parametrizations
for, xU =x(uv+usea+c), xD=x(dv+dsea+s), xŪ =x(̄u+ c̄)and xD̄=x(̄d+ s̄), withqsea= q̄,
as usual, and the the form of the quark and gluon parametrizations given by Eq. 4. For xD̄ and xŪ the
polynomial,P(x)=1.0 , for the gluon and xD,P(x)=(1+p4x), and for xU,P(x)=(1+p4x+p5x3).
The parametrization is then further restricted as follows. Since the valence distributions must vanish as
x→0 , the low-x parameters,p1andp2are set equal for xU and xŪ, and for xDand xD̄. Since there is
no information on the flavour structure of the sea it is also necessary to setp2equal for xŪ and xD̄. The
normalisation, p1, of the gluon is determined from the momentum sum-rule and the p4parameters for
xU and xD are determined from the valence number sum-rules. Assuming that the strange and charm
quark distributions can be expressed as x independent fractions, fs and fc, of the d and utype sea, gives
the further constraintp1(̄U)=p1(̄D)(1−fs)/(1−fc). Finally there are 10 free parameters. H1 has also
included reasonable variations of these assumptions in their analysis of model uncertainties. The strong
coupling constant was fixed to αs(M2Z)= 0.1185and this is sufficiently similar to the ZEUS choice
that we can rule it out as a cause of any significant difference. Full account has been taken of correlated
experimental systematic errors by the Hessian Method, see ref. [18].

For the ZEUS analysis, the heavy quark production scheme used is the general mass variable
flavour number scheme of Roberts and Thorne [19]. For the H1 analysis, the zero mass variable flavour
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Fig. 5: Sea and gluon distributions at Q2= 10GeV2extracted from different data sets and different analyses. Left
plot: H1 data put through both ZEUS and H1 analyses. Middle plot: ZEUS data put through ZEUS analysis. Right
plot: H1 data put through ZEUS analysis.

number scheme is used. It is well known that these choices have a small effect on the steepness of the
gluon at very small-x, such that the zero-mass choice produces a slightly less steep gluon. However,
there is no effect on the more striking differences in the gluon shapes at larger x.

There are two differences in the analyses which are worth further investigation. The different
choices for the form of the PDF parametrization at Q20 and the different treatment of the correlated
experimental uncertainties.

3.2 Comparing different PDF analyses of the same data set and comparing different data sets
using the same PDF analysis.

So far we have compared the results of putting two different data sets into two different analyses. Because
there are many differences in the assumptions going into these analyses it is instructive to consider:(i)
putting both data sets through the same analysis and (ii) putting one of the data sets through both analyses.
For these comparisons, the ZEUS analysis does NOT include the jet data, so that the data sets are more
directly comparable, involving just the inclusive double differential cross-section data. Fig. 5 compares
the sea and gluon PDFs, at Q2 = 10GeV2, extracted from H1 data using the H1 PDF analysis with
those extracted from H1 data using the ZEUS PDF analysis. These alternative analyses of the same data
set give results which are compatible within the model dependence error bands. Fig. 5 also compares
the sea and gluon PDFs extracted from ZEUS data using the ZEUS analysis with those extracted from
H1 data using the ZEUS analysis. From this comparison we can see that the different data sets lead to
somewhat different gluon shapes even when put through exactly the same analysis. Hence the most of
the difference in shape of the ZEUS and H1 PDF analyses can be traced back to a difference at the level
of the data sets.

3.3 Comparing the Offset and Hessian method of assessing correlated experimental uncertainties
Before going further it is useful to discuss the treatment of correlated systematic errors in the ZEUS and
H1 analyses. A full discussion of the treatment of correlated systematic errors in PDF analyses is given in
ref [16], only salient details are recapped here. Traditionally, experimental collaborations have evaluated
an overall systematic uncertainty on each data point and these have been treated as uncorrelated, such that
they are simply added to the statistical uncertainties in quadrature when evaluatingχ2. However, modern
deep inelastic scattering experiments have very small statistical uncertainties, so that the contribution of
systematic uncertainties becomes dominant and consideration of point to point correlations between
systematic uncertainties is essential.
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For both ZEUS and H1 analyses the formulation of theχ2 including correlated systematic uncer-
tainties is constructed as follows. The correlated uncertainties are included in the theoretical prediction,
Fi(p,s), such that

Fi(p,s)=F
NLOQCD
i (p)+

∑

λ

sλ∆
sys
iλ

where,FNLOQCDi (p), represents the prediction from NLO QCD in terms of the theoretical parametersp,
and the parameters sλrepresent independent variables for each source of systematic uncertainty. They
have zero mean and unit variance by construction. The symbol ∆ sysiλ represents the one standard deviation
correlated systematic error on data point idue to correlated error sourceλ. Theχ2is then formulated as

χ2=
∑

i

[Fi(p,s)−Fi(meas)]2

σ2i
+
∑

λ

s2λ (5)

where,Fi(meas), represents a measured data point and the symbolσi represents the one standard devia-
tion uncorrelated error on data point i, from both statistical and systematic sources. The experiments use
thisχ2in different ways. ZEUS uses the Offset method and H1 uses the Hessian method.

Traditionally, experimentalists have used ‘Offset’ methods to account for correlated systematic
errors. The χ2 is formluated without any terms due to correlated systematic errors (sλ= 0 in Eq. 5)
for evaluation of the central values of the fit parameters. However, the data points are then offset to
account for each source of systematic error in turn (i.e. set sλ=+1and then sλ=−1for each source
λ) and a new fit is performed for each of these variations. The resulting deviations of the theoretical
parameters from their central values are added in quadrature. (Positive and negative deviations are added
in quadrature separately.) This method does not assume that the systematic uncertainties are Gaussian
distributed. An equivalent (and much more efficient) procedure to perform the Offset method has been
given by Pascaud and Zomer [20], and this is what is actually used. The Offset method is a conservative
method of error estimation as compared to the Hessian method. It gives fitted theoretical predictions
which are as close as possible to the central values of the published data. It does not use the full statistical
power of the fit to improve the estimates of sλ, since it choses to mistrust the systematic error estimates,
but it is correspondingly more robust.

The Hessian method is an alternative procedure in which the systematic uncertainty parameters sλ
are allowed to vary in the main fit when determining the values of the theoretical parameters. Effectively,
the theoretical prediction is not fitted to the central values of the published experimental data, but these
data points are allowed to move collectively, according to their correlated systematic uncertainties. The
theoretical prediction determines the optimal settings for correlated systematic shifts of experimental data
points such that the most consistent fit to all data sets is obtained. Thus, in a global fit, systematic shifts
in one experiment are correlated to those in another experiment by the fit. In essence one is allowing
the theory to calibrate the detectors. This requires great confidence in the theory, but more significantly,
it requires confidence in the many model choices which go into setting the boundary conditions for the
theory (such as the parametrization atQ20 ).

The ZEUS analysis can be performed using the Hessian method as well as the Offset method and
Fig. 6 compares the PDFs, and their uncertainties, extracted from ZEUS data using these two methods.
The central values of the different methods are in good agreement but the use of the Hessian method
results in smaller uncertainties, for a the standard set of model assumptions, since the input data can
be shifted within their correlated systematic uncertainties to suit the theory better. However, model un-
certainties are more significant for the Hessian method than for the Offset method. The experimental
uncertainty band for any one set of model choices is set by the usual χ2 tolerance, ∆ χ2=1, but the
acceptability of a different set of choices is judged by the hypothesis testing criterion, such that the χ2

should be approximately in the rangeN±√(2N), whereN is the number of degrees of freedom. The
PDF parameters obtained for the different model choices can differ by much more than their experimen-
tal uncertainties, because each model choice can result in somewhat different values of the systematic
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Fig. 6: PDFs at Q2 = 10GeV2, for the ZEUS analysis of ZEUS data performed by the Offset and the Hessian
methods.

uncertainty parameters, sλ, and thus a different estimate of the shifted positions of the data points. This
results in a larger spread of model uncertainty than in the Offset method, for which the data points can-
not move. Fig 4 illustrates the comparability of the ZEUS (Offset) total uncertainty estimate to the H1
(Hessian) experimental plus model uncertainty estimate.

Another issue which arises in relation to the Hessian method is that the data points should not be
shifted far outside their one standard deviation systematic uncertainties. This can indicate inconsistencies
between data sets, or parts of data sets, with respect to the rest of the data. The CTEQ collaboration have
considered data inconsistencies in their most recent global fit [4]. They use the Hessian method but
they increase the resulting uncertainty estimates, by increasing theχ2tolerance to ∆ χ2=100, to allow
for both model uncertainties and data inconsistencies. In setting this tolerance they have considered
the distances from theχ2-minima of individual data sets to the global minimum for all data sets. These
distances by far exceed the range allowed by the ∆ χ2=1criterion. Strictly speaking such variations can
indicate that data sets are inconsistent but the CTEQ collaboration take the view that all of the current
world data sets must be considered acceptable and compatible at some level, even if strict statistical
criteria are not met, since the conditions for the application of strict criteria, namely Gaussian error
distributions, are also not met. It is not possible to simply drop “inconsistent” data sets, as then the
partons in some regions would lose important constraints. On the other hand the level of “inconsistency”
should be reflected in the uncertainties of the PDFs. This is achieved by raising the χ2 tolerance. This
results in uncertainty estimates which are comparable to those achieved by using the Offset method [18].

3.4 Using both H1 and ZEUS data in the same PDF analysis
Using data from a single experiment avoids questions of data consistency, but to get the most information
from HERA it is necessary to put ZEUS and H1 data sets into the same analysis together, and then
questions of consistency arise. Fig 7 compares the sea and gluon PDFs and the uand d valence PDFs
extracted from the ZEUS PDF analysis of ZEUS data alone, to those extracted from the ZEUS PDF
analysis of both H1 and ZEUS data. It is noticeable that, for the low-x sea and gluon PDFs, combining
the data sets does not bring a reduction in uncertainty equivalent to doubling the statistics. This is
because the data which determine these PDFs are systematics limited. In fact there is some degree of
tension between the ZEUS and the H1 data sets, such that the χ2per degree of freedom rises for both
data sets when they are fitted together. The Offset method of treating the systematic errors reflects this
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Fig. 7: Top plots: Sea and gluon distributions at Q2 = 10GeV2 extracted from H1 and ZEUS data using the
ZEUS analysis (left) compared to those extracted from ZEUS data alone using the ZEUS analysis (right). Bottom
Plots: Valence distributions at Q2= 10GeV2, extracted from H1 and ZEUS data using the ZEUS analysis (left)
compared to those extracted from ZEUS data alone using the ZEUS analysis (right).

tension such that the overall uncertainty is not much improved when H1 data are added to ZEUS data.
However, the uncertainty on the high-x valence distributions is reduced by the input of H1 data, since
the data are still statistics limited at high x.

3.5 Combining the H1 and ZEUS data sets before PDF analysis
Thus there could be an advantage in combining ZEUS and H1 data in a PDF fit if the tension between the
data sets could be resolved. It is in this context the question of combining these data into a single data set
arises. The procedure for combination is detailed in the contribution of S. Glazov to these proceedings
(section 4). Essentially, since ZEUS and H1 are measuring the same physics in the same kinematic
region, one can try to combine them using a ’theory-free’ Hessian fit in which the only assumption is
that there is a true value of the cross-section, for each process, at each x,Q2 point. The systematic
uncertainty parameters, sλ, of each experiment are fitted to determine the best fit to this assumption.
Thus each experiment is calibrated to the other. This works well because the sources of systematic
uncertainty in each experiment are rather different. Once the procedure has been performed the resulting
systematic uncertainties on each of the combined data points are significantly smaller than the statistical
errors. Thus one can legitimately make a fit to the combined data set in which these statistical and
systematic uncertainties are simply combined in quadrature. The result of making such a fit, using the
ZEUS analysis, is shown in Fig. 8. The central values of the ZEUS and H1 published analyses are also
shown for comparison. Looking back to Fig. 7 one can see that there has been a dramatic reduction in the
level of uncertainty compared to the ZEUS Offset method fit to the separate ZEUS and H1 data sets. This
result is very promising. A preliminary study of model dependence, varying the form of the polynomial,
P(x), used in the PDF paremtrizations atQ20 , also indicates that model dependence is relatively small.
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Fig. 8: Left plot: Sea and gluon distributions at Q2= 10GeV2, extracted from the combined H1 and ZEUS data
set using the ZEUS analysis. Right plot: Valence distributions at Q2= 10GeV2, extracted from the combined H1
and ZEUS data set using the ZEUS analysis.

0

5

10

15

20

-410 -310 -210 -110 1
0

5

10

15

20

 ZEUS+H1 (Hessian)
 
 exp. uncert.
 
 H1 PDF 2000
 ZEUS-JETS Fit

x

xf 2 = 10 GeV2Q

xS

xg

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-210

-110

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-210

-110

1

 ZEUS+H1 (Hessian)
 

 exp. uncert.
 

 H1 PDF 2000
 ZEUS-JETS fit

x

xf 2 = 10 GeV2Q

vxu

vxd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-210

-110

1

Fig. 9: Left plot: Sea and gluon distributions at Q2= 10GeV2, extracted from the H1 and ZEUS data sets using
the ZEUS analysis done by Hessian method. Right plot: Valence distributions at Q2= 10GeV2, extracted from
the H1 and ZEUS data sets using the ZEUS analysis done by Hessian method.

The tension between ZEUS and H1 data could have been resolved by putting them both into a PDF
fit using the Hessian method to shift the data points. That is, rather than calibrating the two experiments
to each other in the ’theory-free’ fit, we could have used the theory of pQCD to calibrate each experiment.
Fig. 9 shows the PDFs extracted when the ZEUS and H1 data sets are put through the ZEUS PDF analysis
procedure using the Hessian method. The uncertainties on the resulting PDFs are comparable to those
found for the fit to the combined data set, see Fig. 8. However, the central values of the resulting PDFs
are rather different- particularly for the less well known gluon and d valence PDFs. For both of the fits
shown in Figs. 8 and 9 the values of the systematic error parameters, sλ, for each experiment have been
allowed to float so that the data points are shifted to give a better fit to our assumptions, but the values
of the systematic error parameters chosen by the ’theory-free’ fit and by the PDF fit are rather different.
A representaive sample of these values is given in Table 3. These discrepancies might be somewhat
alleviated by a full consideration of model errors in the PDF fit, or of appropriate χ2 tolerance when
combining the ZEUS and H1 experiments in a PDF fit, but these differences should make us wary about
the uncritical use of the Hessian method.
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Table 3: Systematic shifts for ZEUS and H1 data as determine by a joint pQCD PDF fit, and as determined by the
theory-free data combination fit

Syatematic uncertainty sλ in PDF fit in Theory-free fit
ZEUS electron efficiency 1.68 0.31
ZEUS electron angle -1.26 -0.11
ZEUS electron energy scale -1.04 0.97
ZEUS hadron calorimeter energy scale 1.05 -0.58
H1 electron energy scale -0.51 0.61
H1 hadron energy scale -0.26 -0.98
H1 calorimeter noise 1.00 -0.63
H1 photoproduction background -0.36 0.97

4 Averaging of DIS Cross Section Data 5

The QCD fit procedures (Alekhin [6], CTEQ [4], MRST [5], H1 [11], ZEUS [9]) use data from a number
of individual experiments directly to extract the parton distribution functions (PDF). All programs use
both the central values of measured cross section data as well as information about the correlations
among the experimental data points.

The direct extraction procedure has several shortcomings. The number of input datasets is large
containing several individual publications. The data points are correlated because of common system-
atic uncertainties, within and also across the publications. Handling of the experimental data without
additional expert knowledge becomes difficult. Additionally, as it is discussed in Sec. 3, the treatment of
the correlations produced by the systematic errors is not unique. In the Lagrange Multiplier method [20]
each systematic error is treated as a parameter and thus fitted to QCD. Error propogation is then used
to estimate resulting uncertainties on PDFs. In the so-called “offset” method (see e.g. [9]) the datasets
are shifted in turn by each systematic error before fitting. The resulting fits are used to form an envelope
function to estimate the PDF uncertainty. Each method has its own advantages and shortcomings, and it
is difficult to select the standard one. Finally, some global QCD analyses use non-statistical criteria to
estimate the PDF uncertainties (∆ χ2�1). This is driven by the apparent discrepancy between different
experiments which is often difficult to quantify. Without a model independent consistency check of the
data it might be the only safe procedure.

These drawbacks can be significantly reduced by averaging of the input structure function data
in a model independent way before performing a QCD analysis of that data. One combined dataset
of deep inelastic scattering (DIS) cross section measurements is much easier to handle compared to a
scattered set of individual experimental measurements, while retaining the full correlations between data
points. The averaging method proposed here is unique and removes the drawback of the offset method,
which fixes the size of the systematic uncertainties. In the averaging procedure the correlated systematic
uncertainties are floated coherently allowing in some cases reduction of the uncertainty. In addition, study
of a global χ2/dofof the average and distribution of the pulls allows a model independent consistency
check between the experiments. In case of discrepancy between the input datasets, localised enlargement
of the uncertainties for the average can be performed.

A standard way to represent a cross section measurement of a single experiment is given in the
case of theF2structure function by:

χ2exp(
{
Fi,true2

}
,{αj})=

∑
i

[
Fi,true2 −

(
Fi2+
∑
j
∂Fi2
∂αj
αj

)]2

σ2i
+
∑
j

α2j
σ2αj
. (6)

HereFi2(σ2i ) are the measured central values (statistical and uncorrelated systematic uncertainties) of the
5Contributing author: A. Glazov
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F2structure function6 ,αj are the correlated systematic uncertainty sources and ∂Fi2/∂αj are the sensi-
tivities of the measurements to these systematic sources. Eq. 6 corresponds to the correlated probability
distribution functions for the structure function Fi,true2 and for the systematic uncertainties αj . Eq. 6
resembles Eq. 5 where the theoretical predictions forF2are substituted by Fi,true2 .

Theχ2function Eq. 6 by construction has a minimumχ2=0 for Fi,true2 =Fi2andαj =0 . One
can show that the total uncertainty forFi,true2 determined from the formal minimisation of Eq. 6 is equal
to the sum in quadrature of the statistical and systematic uncertainties. The reduced covariance matrix
cov(Fi,true2 ,Fj,true2 )quantifies the correlation between experimental points.

In the analysis of data from more than one experiment, theχ2totfunction is taken as a sum of theχ2

functions Eq. 6 for each experiment. The QCD fit is then performed in terms of parton density functions
which are used to calculate predictions for Fi,true2 .

Before performing the QCD fit, the χ2totfunction can be minimised with respect to Fi,true2 and
αj . If none of correlated sources is present, this minimisation is equivalent to taking an average of the
structure function measurements. If the systematic sources are included, the minimisation corresponds
to a generalisation of the averaging procedure which contains correlations among the measurements.

Being a sum of positive definite quadratic functions, χ2totis also a positive definite quadratic and
thus has a unique minimum which can be found as a solution of a system of linear equations. Although
this system of the equations has a large dimension it has a simple structure allowing fast and precise
solution.

A dedicated program has been developed to perform this averaging of the DIS cross section data
(http://www.desy.de/~glazov/f2av.tar.gz). This program can calculate the simultaneous aver-
ages for neutral current (NC) and charged current (CC) electron- and positron-proton scattering cross
section data including correlated systematic sources. The output of the program includes the central
values and uncorrelated uncertainties of the average cross section data. The correlated systematic uncer-
tainties can be represented in terms of (i) covariance matrix, (ii) dependence of the average cross section
on the original systematic sources together with the correlation matrix for the systematic sources, (iii)
and finally the correlation matrix of the systematic sources can be diagonalised, in this case the form of
χ2for the average data is identical to Eq. 6 but the original systematic sources are not preserved.

The first application of the averaging program has been a determination of the average of the
published H1 and ZEUS data [3, 11, 21–28]. Nine individual NC and CC cross section measurements
are included from H1 and seven are included from ZEUS. Several sources of systematic uncertainties are
correlated between datasets, the correlations among H1 and ZEUS datasets are taken from [11] and [10],
respectively. No correlations are assumed between H1 and ZEUS systematic uncertainties apart from a
common 0.5%luminosity measurement uncertainty. The total number of data points is 1153 (552 unique
points) and the number of correlated systematic sources, including normalisation uncertainties, is 43.

The averaging can take place only if most of the data from the experiments are quoted at the same
Q2 and x values. Therefore, before the averaging the data points are interpolated to a common Q2,x
grid. This interpolation is based on the H1 PDF 2000 QCD fit [11]. The interpolation of data points in
principle introduces a model dependency. For H1 and ZEUS structure function data both experiments
employ rather similarQ2,x grids. About 20%of the input points are interpolated, for most of the cases
the correction factors are small (few percent) and stable if different QCD fit parametrizations [4, 5] are
used.

The cross section data have also been corrected to a fixed center of mass energy squared S =
101570GeV2. This has introduced a small correction for the data taken at S = 90530GeV2. The
correction is based on H1-2000 PDFs, it is only significant for high inelasticity y > 0.6 and does not
exceed 6%.

6The structure function is measured for different Q2 (four momentum transfer squared) and Bjorken-x values which are
omitted here for simplicity.
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Fig. 10: Q2 dependence of the NC reduced cross section for x = 0.002 and x = 0.25 bins. H1 data is shown as
open circles, ZEUS data is shown as open squares and the average of H1 and ZEUS data is shown as filled circles.
The line represents the expectation from the H1 PDF 2000 QCD fit.

The HERA data sets agree very well: χ2/doffor the average is 521/601. The distribution of
pulls does not show any significant tensions across the kinematic plane. Some systematic trends can
be observed at low Q2<50GeV2, where ZEUS NC data lie systematically higher than the H1 data,
although this difference is within the normalisation uncertainty. An example of the resulting average DIS
cross section is shown in Fig. 10, where the data points are displaced inQ2for clarity.

A remarkable side feature of the averaging is a significant reduction of the correlated systematic
uncertainties. For example the uncertainty on the scattered electron energy measurement in the H1 back-
ward calorimeter is reduced by a factor of three. The reduction of the correlated systematic uncertainties
thus leads to a significant reduction of the total errors, especially for lowQ2<100GeV2, where sys-
tematic uncertainties limit the measurement accuracy. For this domain the total errors are often reduced
by a factor two compared to the total errors of the individual H1 and ZEUS measurements.

The reduction of the correlated systematic uncertainties is achieved since the dependence of the
measured cross section on the systematic sources is significantly different between H1 and ZEUS exper-
iments. This difference is due mostly to the difference in the kinematic reconstruction methods used by
the two collaborations, and to a lesser extent to the individual features of the H1 and ZEUS detectors.
For example, the cross section dependence on the scattered electron energy scale has a very particular
behaviour for H1 data which relies on kinematic reconstruction using only the scattered electron in one
region of phase space. ZEUS uses the double angle reconstruction method where the pattern of this
dependence is completely different leading to a measurement constraint.

In summary, a generalised averaging procedure to include point-to-point correlations caused by
the systematic uncertainties has been developed. This averaging procedure has been applied to H1 and
ZEUS DIS cross section data. The data show good consistency. The averaging of H1 and ZEUS data
leads to a significant reduction of the correlated systematic uncertainties and thus a large improvement in
precision for lowQ2measurements. The goal of the averaging procedure is to obtain HERA DIS cross
section set which takes into account all correlations among the experiments.
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5 The longitudinal structure functionFL 7

5.1 Introduction
At low x the sea quarks are determined by the accurate data on F2(x,Q2). The charm contribution to
F2is directly measured while there is no separation of up and down quarks at low x which are assumed
to have the same momentum distribution, see [2]. Within this assumption, and setting the strange sea to
be a fraction of the up/down sea, the proton quark content at low x is determined. The gluon distribution
xg(x,Q2), however, is determined only by the derivative ∂F2/∂lnQ2 which is not well measured [3].
It is thus not surprising that rather different gluon distributions are obtained in global NLO analyses, as
is illustrated in Figure 11. The figure displays the result of recent fits by MRST and CTEQ on the gluon
distribution at low and high Q2. It can be seen that there are striking differences at the initial scale,
Q2=5GeV2, which at highQ2get much reduced due to the evolution mechanism. The ratio of these
distributions, however, exhibits differences at lower x at the level of 10% even in the LHC Higgs and
Wproduction kinematic range, see Figure 12. One also observes a striking problem at large x which is
beyond the scope of this note, however. In a recent QCD analysis it was observed [3] that the dependence
of the gluon distribution at low x, xg∝xbG , is correlated to the value ofαs(M2Z), see Figure 13.
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Fig. 11: Gluon momentum distributions determined by MRST and CTEQ in NLO QCD, as a function of x for
Q2= 5 GeV2, close to the initial scale of the fits, and at higher Q2as the result of the DGLAP evolution.

In the Quark-Parton Model the longitudinal structure function FL(x,Q2)is zero [29]. In DGLAP
QCD, to lowest order, FL is given by [30]

FL(x,Q
2)=
αs
4π
x2
∫1

x

dz

z3
·
[
16

3
F2(z,Q

2)+8
∑
e2q

(
1−x
z

)
zg(z,Q2)

]
(7)

with contributions from quarks and from gluons. Approximately this equation can be solved [31] and the
gluon distribution appears as a measurable quantity,

xg(x)=1.8[
3π

2αs
FL(0.4x)−F2(0.8x]'

8.3

αs
FL, (8)

determined by measurements ofF2and FL . Since FL , at low x, is not much smaller than F2, to a good
approximation FL is a direct measure for the gluon distribution at low x.

Apart from providing a very useful constraint to the determination of the gluon distribution, see
also Sect. 7, a measurement of FL(x,Q2)is of principal theoretical interest. It provides a crucial test
of QCD to high orders. A significant departure of an FLmeasurement from the prediction which is
based on the measurement of F2(x,Q2)and ∂F2/∂lnQ2 only, would require theory to be modified.
There are known reasons as to why the theoretical description of gluon radiation at low x may differ

7Contributing authors: J. Feltesse, M. Klein
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Fig. 12: Ratio of the gluon distributions of CTEQ to MRST as a function of x for low and large Q2.

from conventional DGLAP evolution: the neglect of ln(1/x), in contrast to BFKL evolution, or the
importance of NLL resummation effects on the gluon splitting function (see [32]). Furthermore recent
calculations of deep inelastic scattering to NNLO predict very large effects from the highest order on
FLcontrary to F2 [33].

Within the framework of the colour dipole model there exists a testable prediction forFL(x,Q2),
and the longitudinal structure function, unlike F2, may be subject to large higher twist effects [34].
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Fig. 13: Correlation of the low x behaviour of the gluon distribution, characterised by the power x−bg , with the
strong coupling constant αs as obtained in the H1 NLO QCD fit to H1 and BCDMS data.

5.2 Indirect Determinations of FL at Low x
So far first estimates on FL(x,Q2)at low x have been obtained by the H1 Collaboration. These result
from data on the inclusive ep→eX scattering cross section

Q4x

2πα2Y+
· d
2σ

dxdQ2
=[F2(x,Q

2)−f(y)·FL(x,Q2)]=σr (9)

obtained at fixed, large energy, s = 4EeEp. The cross section is defined by the two proton structure
functions, F2and FL , with Y+ = 1+(1−y)2 and f(y)= y2/Y+ . At fixed s the inelasticity y is
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fixed by x and Q2 as y = Q2/sx. Thus one can only measure a combination F2−f(y)FL. Since
HERA accesses a large range of y, and f(y)is large only at large y > 0.4, assumptions have been
made on FL to extract F2at larger y. Since the cross section measurement accuracy has reached the
few per cent level [3], the effect of the FLassumption on F2at lowest x has been non-negligible. The
determination of F2(x,Q2)has thus been restricted to a region in which y < 0.6. The proton structure
function F2(x,Q2)is known over a few orders of magnitude in x rather well, from HERA and at largest
x from fixed target data. Thus H1 did interpret the cross section at higher y as a determination of
FL(x,Q

2)imposing assumptions about the behaviour of F2(x,Q2)at lowest x. These were derived
from QCD fits to the H1 data [35] or at lowerQ2, where QCD could not be trusted, from the derivative
of F2 [36]. Recently, with the established x behaviour [37] of F2(x,Q2)= c(Q2)x−λ(Q

2), a new
method [36] has been used to determine FL . This “shape method” is based on the observation that the
shape of σr, Eq. 9, at high y is driven by f ∝ y2 and sensitivity to FL is restricted to a very narrow
range of x corresponding to y = 0.3− 0.9. Assuming that FL(x,Q2)in this range, for each bin in
Q2, does not depend on x, one obtains a simple relation, σr= cx−λ−fFL. which has been used to
determine FL(x,Q2). Figure 14 shows the existing, preliminary data on FL(x,Q2)at lowQ2from the
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Fig. 14: Data on the longitudinal structure function obtained using assumptions on the behaviour of the other
structure function F2 in comparison with NLO QCD fit predictions. The data labeled svtx00 and mb99 data are
preliminary.

H1 Collaboration in comparison with predictions from NLO DGLAP QCD fits to HERA and further
cross section data. One can see that the accuracy and the x range of these FL(x,Q2)determinations are
rather limited although the data have some discriminative power already.

5.3 Backgrounds and Accuracy
The longitudinal structure function contribution toσrrepresents a small correction of the cross section in
a small part of the kinematic range only. The demands for the FLmeasurement are extremely high: the
cross section needs to be measured at the per cent level and the scattered electron be uniquely identified
up to high y. The method of unfolding F2andFLconsists in a measurement ofσrat fixed x andQ2with
varying s. This allows both structure functions to be determined from a straight line variation ofσras a
function of f(y), see [38].

At large y, corrresponding to low x, and low Q2 the scattering kinematics at HERA resembles
that of a fixed target scattering experiment: the electron scattered off quarks at very low x (“at rest”) is
going in the backward detector region, i.e. in the direction of the electron beam. The scattered electron
is accompanied by part of the hadronic final state which is related to the struck quark. High inelasticities
y '1−E ′e/Ee demand to identify scattered electrons down to a few GeV of energy E ′e. Thus a
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considerable background is to be isolated and removed which stems from hadrons or photons, from the
π0 →γγdecay. These particles may originate both from a genuine DIS event but to a larger extent
stem from photoproduction processes, in which the scattered electron escapes mostly non recognised in
electron beam direction. Removal of this background in H1 is possible by requiring a track associated
to the Spacal cluster, which rejects photons, and by measuring its charge which on a statistical basis
removes the remaining part of the background as was demonstrated before [3, 36].

The scattered electron kinematics, E ′e and θe, can be accurately reconstructed using the high res-
olution Spacal calorimeter energy determination and the track measurements in the Backward Silicon
Tracker (BST) and the Central Jet Drift Chamber (CJC). Reconstruction of the hadronic final state al-
lows the energy momentum constraint to be imposed, using the “E −pz” cut, which removes radiative
corrections, and the Spacal energy scale to be calibrated at large E ′e using the double angle method. At
low energies E ′e the Spacal energy scale can be calibrated to a few % using theπ0 mass constraint and be
cross checked with the BST momentum measurement and with QED Compton events. The luminosity
is measured to 1-2%. Any common normalisation uncertainty may be removed, or further constrained,
by comparing cross section data at very low ywhere the contribution ofFL is negligible.

Subsequently two case studies are presented which illustrate the potential of measuringFLdirectly
in unfolding it from the largeF2contribution to the cross section, a study using a set of 3 low proton beam
energies and a simulation for just one low Epdata set combined with standard 920 GeV data. Both
studies use essentially the same correlated systematic errors and differ slightly in the assumptions on the
background and efficiency uncertainties which regard the errors on cross section ratios. The following
assumptions on the correlated systematics are used: δE ′e/E

′
e = 0.003 at large Ee linearly rising to 0.03

at 3 GeV; δθe = 0.2mrad in the BST acceptance region and 1 mrad at larger angles; δE h/Eh = 0.02.
These and further assumed systematic uncertainties represent about the state of analysis reached so far
in inclusive lowQ2cross section measurements of H1.

5.4 Simulation Results
A simulation has been performed for Ee = 27.6GeV and for four different proton beam energies,
Ep=920,575,465and400GeV assuming luminosities of 10, 5, 3 and 2 pb−1, respectively. The beam
energies are chosen such that the cross section data are equidistant in f(y). If the luminosity scales as
expected as E2p, the low Epluminosities are equivalent to 35 pb−1at standard HERA settings. Further
systematic errors regard the residual radiative corrections, assumed to be 0.5%, and the photoproduction
background, 1-2% depending on y. This assumption on the background demands an improvement by a
factor of about two at high ywhich can be expected from a high statistics subtraction of background using
the charge assignment of the electron scattering candidate. An extra uncorrelated efficiency correction is
assumed of 0.5%. The resulting cross section measurements are accurate to 1-2%. For each Q2and x
point this choice provides up to four cross section measurements. The two structure functions are then
obtained from a fit toσr=F2+ f(y)FL taking into account the correlated systematics. This separation
provides also accurate data ofF2, independently ofFL . The simulated data onFL span nearly one order
of magnitude in x and are shown in Figure 15. For the chosen luminosity the statistical and systematic
errors on FLare of similar size. The overall accuracy on FL(x,Q2), which may be obtained according
to the assumed experimental uncertainties, is thus estimated to be of the order of 10-20%.

Based on recent information about aspects of the machine conditions in a low proton beam energy
mode, a further case study was performed [39] for only one reduced proton beam energy. In this simula-
tion, for the standard electron beam energy of Ee =27.6GeV, proton beam energies of Ep=920and
460 GeV were chosen with luminosities of 30 and 10pb−1, respectively. According to [40] it would take
about three weeks to change the configuration of the machine and to tune the luminosity plus 10 weeks to
record 10pb−1of good data with High Voltage of trackers on. Uncertainties besides the correlated errors
specified above are assumed for photo-production background subtraction varying from 0% at y=0.65 to
4% at y = 0.9, and of 0.5% for the residual radiative corrections. An overall uncertainty of 1% is assumed
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and 460 GeV (10 pb−1). The inner error bar is the statistical error. The full error bar denotes the statistical and
systematic uncertainty added in quadrature.

on the measurement of the cross section at low beam energy settings, which covers relative uncertainties
on electron identification, trigger efficiency, vertex efficiency, and relative luminosity.

To evaluate the errors two independent methods have been considered an analytic calculation and a
fast Monte-Carlo simulation technique. The two methods provide statistical and systematic errors which
are in excellent agreement. The overall result of this simulation of FL is displayed in Figure 16. In
many bins the overall precision on FL(x,Q2)is around or below 20%. It is remarkable that the overall
precision would stay below 25% even if the statistical error or the larger source of systematic uncertainty
would turn out to be twice larger than assumed to be in this study.
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5.5 Summary
It has been demonstrated with two detailed studies that a direct measurement of the longitudinal structure
function FL(x,Q2)may be performed at HERA at the five sigma level of accuracy, in the x range from
10−4to10−3 in four bins ofQ2. This measurement requires about three months of running and tuning
time at reduced proton beam energy. In addition it would provide the first measurement of the diffractive
longitudinal structure function at the three sigma level (see the contribution of P. Newman in the summary
of Working Group 4). The exact choice of the parameters of such a measurement are subject to further
studies. In conclusion an accurate measurement of FL(x,Q2)is feasible, it requires efficient detectors,
dedicated beam time and analysis skills. It would be the right sign of completion to have measured
F2first, in 1992 and onwards, and to conclude the HERA data taking with a dedicated measurement of
the second important structure function FL(x,Q2), which is related to the gluon density in the low x
range of the LHC.

6 Determination of the Light Quark Momentum Distributions at Low x at HERA 8

Based on the data taken in the first phase of HERA’s operation (1993-2000), the HERA collider exper-
iments have measured a complete set of neutral (NC) and charged (CC) current double differential e±p
inclusive scattering cross sections, based on about 120 pb−1of positron-proton and 15 pb−1of electron-
proton data. The NC and CC deep inelastic scattering (DIS) cross sections for unpolarised e±pscattering
are determined by structure functions and quark momentum distributions in the proton as follows:

σ±NC ∼Y+F2∓Y−xF3, (10)

F2'e2ux(U +U)+ e2dx(D+D), (11)

xF3'2x[aueu(U−U)+ aded(D−D)], (12)

σ+CC ∼xU +(1−y)2xD, (13)

σ−CC ∼xU +(1−y)2xD. (14)

Here y = Q2/sxis the inelasticity, s = 4EeEpand Y± = 1±(1−y)2. The parton distribution
U =u+ c+ b is the sum of the momentum distributions of the up-type quarks with charge eu=2/3
and axial vector coupling au=1/2, whileD= d+ s is the sum of the momentum distributions of the
down type quarks with charge ed = −1/3, ad = −1/2. Similar relationships hold for the anti-quark
distributions U andD.

As is illustrated in Fig. 17 the H1 experiment [11] has determined all four quark distributions
and the gluon distribution xg. The accuracy achieved so far by H1, for x = 0.01,0.4and 0.65, is
1%,3%,7%for the sum of up quark distributions and 2%,10%,30%for the sum of down quark dis-
tributions, respectively. The extracted parton distributions are in reasonable agreement with the results
obtained in global fits by the MRST [5] and CTEQ [4] collaborations. The H1 result is also consistent
with the pdfs determined by the ZEUS Collaboration [10] which uses jet data to improve the accuracy for
the gluon distribution and imports a d−uasymmetry fit result from MRST. New data which are being
taken (HERA II) will improve the accuracy of these determinations further. At the time this is written,
the available data per experiment have been grown to roughly 150 pb−1for both e+pand e−pscattering,
and more is still to come. These data will be particularly important to improve the accuracy at large x,
which at HERA is related to highQ2.

As is clear from the above equations, the NC and CC cross section data are sensitive directly to
only these four quark distribution combinations. Disentangling the individual quark flavours (up, down,
strange, charm and beauty) requires additional assumptions. While informations on the cand bdensities
are being obtained from measurements of Fcc2 and Fbb2 of improving accuracy, the determination of the
strange quark density at HERA is less straightforward and may rest on sW+→cand strange (Φ) particle

8Contributing authors: M. Klein, B. Reisert
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Fig. 17: Determination of the sum of up, anti-up, down and anti-downquark distributions and of the gluon distri-
bution in the proton based on the H1 neutral and charged current cross section data. Left: for Q2of 10 and 1000
GeV2 compared with results from MRST and CTEQ; Right: the parton distributions with their experimental and
model uncertainties as determined by H1 at the starting scale Q20 = 4 GeV2.
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distributions is observed to be rather independent ofQ2. The beauty contribution to the cross section thus becomes
sizeable, amounting to about 5% for pp→ HW .
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results of MRST and CTEQ include Drell Yan data which suggest a sea quark asymmetry at x ∼ 0.1.

production [41]. The relative contributions from the heavy quarks become increasingly important with
Q2, as is illustrated in Fig. 18.

The larger x domain is dominated by the valence quarks. At HERA the valence quark distributions
are not directly determined but extracted from the differences uv=U−U and dv=D−D. Note that
this implies the assumption that sea and anti-quarks are equal which in non-perturbative QCD models
may not hold. A perhaps more striking assumption is inherent in these fits and regards the sea quark
asymmetries at low x which is the main subject of the subsequent discussion.

Fig. 19 shows the difference xd−xuas determined in the H1 PDF 2000 fit based on the H1 data
alone (left) and using in addition the BCDMS proton and deuteron data (right). One observes a trend of
these fits to reproduce the asymmetry near x∼0.1which in the MRST and CTEQ fits, shown in Fig. 19,
is due to fitting the Drell Yan data from the E866/NuSea experiment [42]. While this enhancement is not
very stable in the H1 fit [43] and not significant either, with the BCDMS data an asymmetry is observed
which reflects the violation of the Gottfried sum rule.

In the H1 fit [11] the parton distributions at the initial scale Q2=4GeV2 are parameterised as
xP=Apx

BP(1−x)CP ·fP(x). The function fP is a polynomial in x which is determined by requiring
“χ2saturation” of the fits, i.e. starting from fP =1additional termsDPx, EPx2etc. are added and only
considered if they cause a significant improvement in χ2, half integer powers were considered in [43].
The result for fitting the H1 data has been as follows: fg =(1+ Dgx), fU = (1+ DUx + FUx3),
fD = (1+ DDx)and fU = fD = 1. The parton distributions at low x are thus parameterised as
xP→APxBP . The strange (charm) anti-quark distribution is coupled to the total amount of down (up)
anti-quarks as s = fcD (c = fcU). Two assumptions have been made on the behaviour of the quark
and anti-quark distributions at low x. It has been assumed that quark and anti-quark distributions are
equal and, moreover, that the sea is flavour symmetric. This implies that the slopes B of all four quark
distributions are set equal BU =BD =BU =BD. Moreover, the nomalisations of up and down quarks
are the same, i.e. AU(1−fc)= AD(1−fs), which ensures that d/u→1as x tends to zero. The
consequence of this assumption is illustrated in Fig. 19. While the DIS data suggest some asymmetry at
larger x, the up-down quark asymmetry is enforced to vanish at lower x. This results in a rather fake
high accuracy in the determination of the four quark distributions at low x, despite the fact that at low
x there is only one combination of them measured, which is F2= x[4(U + U)+(D+D)]/9. If one
relaxes both the conditions on the slopes and normalisations, the fit to the H1 data decides to completely
remove the down quark contributions as is seen in Fig. 20 (left plot).
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Fig. 20: Determinations of the quark and gluon momentum distributions releasing the constraint xd = xu at low
x, from the H1 NC and CC data alone (left) and from the H1 ep and the BCDMS µp and µD data (right). Since
at low x < 0.01 there is no further constraint than that given from F2 the uncertainties of U and in particular of D
become sizeable.

In DIS the up and down quark asymmetry can be constrained using deuteron data because the
nucleon structure function determines a different linear combination according to FN2 =5x(U + U +
D+D)/18+x(c+c−s−s)/6withN=(p+n)/2. Unfortunately, there are only data at rather large x
available. The effect of including the BCDMS data on the low x behaviour of the parton distributions is
illustrated in Fig. 20 (right plot). It restores some amount of down quarks at low x , the errors, however, in
particular of the down quarks, are still very large. The result is a large sea quark asymmetry uncertainty,
which is shown in Fig. 21. At HERA a proposal had been made [44] to operate the machine in electron-
deuteron mode. Measuring the behaviour at low x would not require high luminosity. Such data would
constrain 9 a possible sea quark asymmetry with very high accuracy, as is also shown in Fig. 21.

Deuterons at HERA would require a new source and modest modifications to the preaccelerators.
The H1 apparatus could be used in its standard mode with a forward proton detector added to take
data at half the beam energy. Tagging the spectator protons with high accuracy at HERA, for the first
time in DIS, one could reconstruct the electron-neutron scattering kinematics essentially free of nuclear
corrections [44]. Since the forward scattering amplitude is related to diffraction one would also be
able to constrain shadowing to the per cent level [47]. The low x measurements would require small
luminosity amounts, of less than 50 pb−1. Long awaited constraints of the d/uratio at large x and
Q2would require extended running, as would CC data. Besides determining the parton distributions
better, the measurement of the singlet FN2 structure function would give important constraints on the
evolution and theory at low x [48]. It would also result in an estimated factor of two improvement on the
measurement of αs at HERA [49]. For the development of QCD, of low x physics in particular, but as
well for understanding physics at the LHC and also for superhigh energy neutrino astrophysics, HERA
eDdata remain to be important.

9Constraints on the sea quark distributions may also be obtained fromW+/W− production at the TeVatron. However, the
sensitivity is limited to larger x ≥ 0.1[45] sinceW′s produced in collisions involving sea quarks of smaller x will be boosted
so strongly, that their decay products are not within the acceptance of the collider detectors. W+ andW− production at the
LHC has been discussed in [46].
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Fig. 21: Simulation of the difference of sea quark distributions, here assumed to be zero, at low x based on
additional 20 pb−1of electron-deuteron data at HERA. The error band represents the uncertainty of the H1 NLO
QCD fit to the H1 ep and the BCDMS µp and µd data without the constraint d = u at low x. The dashed curves
represent calculations using recent global fits by MRST and by CTEQ.

7 Impact of future HERA data on the determination of proton PDFs using the ZEUS
NLO QCD fit 10

7.1 PDF fits to HERA data
Recently, the ZEUS Collaboration have performed a combined NLO QCD fit to inclusive neutral and
charged current DIS data [23–28] as well as high precision jet data in DIS [50] andγpscattering [51].
This is called the ZEUS-JETS PDF fit [10]. The use of only HERA data eliminates the uncertainties from
heavy-target corrections and removes the need for isospin symmetry assumptions. It also avoids the dif-
ficulties that can sometimes arise from combining data-sets from several different experiments, thereby
allowing a rigorous statistical treatment of the PDF uncertainties. Furthermore, PDF uncertainties from
current global fits are, in general, limited by (irreducible) experimental systematics. In contrast, those
from fits to HERA data alone, are largely limited by the statistical precision of existing measurements.
Therefore, the impact of future data from HERA is likely to be most significant in fits to only HERA
data.

7.2 The ZEUS NLO QCD fit
The ZEUS-JETS PDF fit has been used as the basis for all results shown in this contribution. The most
important details of the fit are summarised here. A full description may be found elsewhere [10]. The
fit includes the full set of ZEUS inclusive neutral and charged current e±pdata from HERA-I (1994-
2000), as well as two sets of high precision jet data in e+pDIS (Q2>>1GeV2) andγp(Q2∼ 0 )
scattering. The inclusive data used in the fit, span the kinematic range 6.3×10−5< x < 0.65and
2.7<Q2<30000 GeV2.

The PDFs are obtained by solving the NLO DGLAP equations within the MSscheme. These
equations yield the PDFs at all values of Q2provided they are input as functions of x at some starting
scaleQ20 . The resulting PDFs are convoluted with coefficient functions to give predictions for structure
functions and, hence, cross sections. In the ZEUS fit, the xuv(x)(u-valence), xdv(x)(d-valence), xS(x)
(total sea-quark), xg(x)(gluon) and x(̄d(x)−ū(x))PDFs are parameterised at a starting scale ofQ20 =7
GeV2by the form,

xf(x)=p1x
p2(1−x)p3P(x), (15)

10Contributing authors: C. Gwenlan, A. Cooper-Sarkar, C. Targett-Adams.
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Fig. 22: The optimised jet cross sections included in the HERA-II projected fit. The solid points show the simulated
data generated using the NLO QCD programme of Frixione-Ridolfi, using the CTEQ5M1 proton and the AFG
photon PDFs. The error bars show the statistical uncertainties, which correspond to 500 pb−1of HERA data.
Systematic uncertainties have been neglected. The dashed line shows the NLO QCD prediction using the ZEUS-S
proton and AFG photon PDFs. The shaded band shows the contribution to the cross section uncertainty arising
from the uncertainty in the gluon distribution in the proton.
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Table 4: The data-sets included in the ZEUS-JETS and HERA-II projected PDF fits. The first column lists the
type of data and the second gives the kinematic coverage. The third column gives the integrated luminosities of
the HERA-I measurements included in the ZEUS-JETS fit. The fourth column gives the luminosities assumed in
the HERA-II projection. Note that the 96-97 NC and the 94-97 CC measurements have not had their luminosity
scaled for the HERA-II projection.

HERA-I HERA-II

data sample kinematic coverage L(pb−1) L(pb−1)

(assumed)

96-97 NC e+p[23] 2.7<Q2<30000 GeV2; 6.3·10−5<x < 0.65 30 30

94-97 CC e+p[24] 280<Q2<17000GeV2; 6.3·10−5<x < 0.65 48 48

98-99 NC e−p[25] 200<Q2<30000 GeV2; 0.005<x < 0.65 16 350

98-99 CC e−p[26] 280<Q2<17000GeV2; 0.015<x < 0.42 16 350

99-00 NC e+p[27] 200<Q2<30000 GeV2; 0.005<x < 0.65 63 350

99-00 CC e+p[28] 280<Q2<17000GeV2; 0.008 <x < 0.42 61 350

96-97 inc. DIS jets [50] 125<Q2<30000 GeV2; EBreitT >8GeV 37 500

96-97 dijets inγp[51] Q2.1GeV2; E jet1,2T >14,11GeV 37 500

optimised jets [52] Q2.1GeV2; E jet1,2T >20,15GeV - 500

where P(x)=(1+p4x). No advantage in theχ2 results from using more complex polynomial forms.
The normalisation parameters, p1(uv)and p1(dv), are constrained by quark number sum rules while
p1(g)is constrained by the momentum sum rule. Since there is no information to constrain any difference
in the low-x behaviour of the u- and d-valence quarks, p2(uv)has been set equal to p2(dv). The data
from HERA are currently less precise than the fixed target data in the high-x regime. Therefore, the high-
x sea and gluon distributions are not well constrained in current fits to HERA data alone. To account
for this, the sea shape has been restricted by setting p4(S)=0 . The high-x gluon shape is constrained
by the inclusion of HERA jet data. In fits to only HERA data, there is no information on the shape of
d̄−ū. Therefore, this distribution has its shape fixed consistent with Drell-Yan data and its normalisation
set consistent with the size of the Gottfried sum rule violation. A suppression of the strange sea with
respect to the non-strange sea of a factor of 2 at Q20 is also imposed, consistent with neutrino induced
dimuon data from CCFR. The value of the strong coupling has been fixed toαs(MZ)=0.1180. After all
constraints, the ZEUS-JETS fit has 11 free parameters. Heavy quarks were treated in the variable flavour
number scheme of Thorne & Roberts [19]. Full account was taken of correlated experimental systematic
uncertainties, using the Offset Method [9, 18].

The results of two separate studies are presented. The first study provides an estimate of how
well the PDF uncertainties may be known by the end of HERA-II, within the currently planned running
scenario, while the second study investigates the impact of a future HERA measurement of FL on the
gluon distribution. All results presented, are based on the recent ZEUS-JETS PDF analysis [10].

7.3 PDF uncertainty estimates for the end of HERA running
The data from HERA-I are already very precise and cover a wide kinematic region. However, HERA-II is
now running efficiently and is expected to provide a substantial increase in luminosity. Current estimates
suggest that, by the end of HERA running (in mid-2007), an integrated luminosity of 700 pb−1should
be achievable. This will allow more precise measurements of cross sections that are curently statistically
limited: in particular, the high-Q2NC and CC data, as well as high-Q2 and/or high-ET jet data. In
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Fig. 23: The fractional PDF uncertainties, as a function of x, for the u-valence, d-valence, sea-quark and gluon
distributions at Q2 = 1000 GeV2. The red shaded bands show the results of the ZEUS-JETS fit and the yellow
shaded bands show the results of the HERA-II projected fit.

addition to the simple increase in luminosity, recent studies [52] have shown that future jet cross section
measurements, in kinematic regions optimised for sensitivity to PDFs, should have a significant impact
on the gluon uncertainties. In this contribution, the effect on the PDF uncertainties, of both the higher
precision expected from HERA-II and the possibility of optimised jet cross section measurements, has
been estimated in a new QCD fit. This fit will be referred to as the “HERA-II projection”.

In the HERA-II projected fit, the statistical uncertainties on the currently available HERA-I data
have been reduced. For the high-Q2 inclusive data, a total integrated luminosity of 700 pb−1was as-
sumed, equally divided between e+ and e−. For the jet data, an integrated luminosity of500pb−1was
assumed. The central values and systematic uncertainties were taken from the published data in each
case. In addition to the assumed increase in precision of the measurements, a set of optimised jet cross
sections were also included, for forward dijets inγpcollisions, as defined in a recent study [52]. Since
no real data are yet available, simulated points were generated using the NLO QCD program of Frixione-
Ridolfi [53], using the CTEQ5M1 [4] proton and AFG [54] photon PDFs. The statistical uncertainties
were taken to correspond to500pb−1. For this study, systematic uncertainties on the optimised jet cross
sections were ignored. The simulated optimised jet cross section points, compared to the predictions of
NLO QCD using the ZEUS-S proton PDF [9], are shown in Fig. 22.

Table 4 lists the data-sets included in the ZEUS-JETS and HERA-II projected fits. The luminosi-
ties of the (real) HERA-I measurements and those assumed for the HERA-II projection are also given.

The results are summarised in Fig. 23, which shows the fractional PDF uncertainties, for the u-
and d-valence, sea-quark and gluon distributions, at Q2 = 1000GeV2. The yellow bands show the
results of the ZEUS-JETS fit while the red bands show those for the HERA-II projection. Note that the
same general features are observed for all values ofQ2. In fits to only HERA data, the information on the
valence quarks comes from the high-Q2NC and CC cross sections. The increased statistical precision
of the high-Q2 data, as assumed in the HERA-II projected fit, gives a significant improvement in the
valence uncertainties over the whole range of x. For the sea quarks, a significant improvement in the

T. CARLI , A. COOPER-SARKAR , J. FELTESSE, A. GLAZOV, C. GWENLAN , M. KLEIN , . . .

106



-1210

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110
1

10

 Jet + X→ pp 
 = 14 TeVs 

 JETCLU Cone R=0.7

NLO QCD (JETRAD)

 PDF: ZEUS-JETS
 PDF: HERA-II PROJECTION

-1210

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-110
1

10

-0.5

0

0.5 | < 1Jetη0 < |

-0.5

0

0.5

-0.5

0

0.5 | < 2Jetη1 < |

-0.5

0

0.5

-0.5

0

0.5 | < 3Jetη2 < |

-0.5

0

0.5

0 1000 2000 3000 4000 5000
 (GeV)TInclusive Jet E

 (n
b/G

eV
)

T
/dEσd

Fr
ac

tio
na

l U
nc

ert
ain

ty

Fig. 24: NLO QCD inclusive jet cross section predictions at
√
s=14 TeV in three regions of pseudo-rapidity. The

yellow and blue bands show the PDF uncertainties from the ZEUS-JETS and HERA-II projected fits, respectively.

uncertainties at high-x is also observed. In contrast, the low-x uncertainties are not visibly reduced. This
is due to the fact that the data constraining the low-x region tends to be at lower-Q2, which are already
systematically limited. This is also the reason why the low-x gluon uncertainties are not significantly
reduced. However, the mid-to-high-x gluon, which is constrained by the jet data, is much improved in
the HERA-II projected fit. Note that about half of the observed reduction in the gluon uncertainties is
due to the inclusion of the simulated optimised jet cross sections.

Inclusive jet cross sections at the LHC

The improvement to the high-x partons, observed in the HERA-II projection compared to the ZEUS-
JETS fit, will be particularly relevant for high-scale physics at the LHC. This is illustrated in Fig. 24,
which shows NLO QCD predictions from the JETRAD [55] programme for inclusive jet production at√
s =14TeV. The results are shown for both the ZEUS-JETS and the HERA-II projected PDFs. The

uncertainties on the cross sections, resulting from the PDFs, have been calculated using the LHAPDF
interface [56]. For the ZEUS-JETS PDF, the uncertainty reaches ∼50%at central pseudo-rapidities,
for the highest jet transverse energies shown. The prediction using the HERA-II projected PDF shows a
marked improvement at high jet tranverse energy.
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Fig. 25: The gluon PDFs, showing also the fractional uncertainty, for fits with and without inclusion of the simu-
lated FL data, for Q2= 1.5, 5, 10 and 20 GeV2. The red shaded bands show the results of the ZEUS-JETS fit and
the yellow shaded band show the results of the ZEUS-JETS+FL fit.

7.4 Impact of a future HERA measurement ofFL on the gluon PDF
The longitudinal structure function,FL, is directly related to the gluon density in the proton. In principle,
FL can be extracted by measuring the NC DIS cross section at fixed x andQ2, for different values of y
(see Eqn. 3). A precision measurement could be achieved by varying the centre-of-mass energy, since
s = Q2/xy≈ 4EeEp, where Ee and Epare the electron and proton beam energies, respectively.
Studies [38] (Sec. 5) have shown that this would be most efficiently achieved by changing the proton
beam energy. However, such a measurement has not yet been performed at HERA.

There are several reasons why a measurement of FL at low-x could be important. The gluon
density is not well known at low-x and so different PDF parameterisations can give quite different pre-
dictions for FL at low-x. Therefore, a precise measurement of the longitudinal sturcture function could
both pin down the gluon PDF and reduce its uncertainties. Furthermore, predictions of FL also depend
upon the nature of the underlying theory (e.g. order in QCD, resummed calculation etc). Therefore, a
measurement of FL could also help to discriminate between different theoretical models.

Impact on the gluon PDF uncertainties

The impact of a possible future HERA measurement of FL on the gluon PDF uncertainties has been
investigated, using a set of simulated FL data-points [38]. (see Sec. 5). The simulation was performed
using the GRV94 [57] proton PDF for the central values, and assuming Ee = 27.6 GeV and Ep=
920,575,465and 400GeV, with luminosities of 10, 5, 3 and 2 pb−1, respectively. Assuming that
the luminosity scales simply as E2p, this scenario would nominally cost 35pb−1of luminosity under
standard HERA conditions. However, this estimate takes no account of time taken for optimisation of
the machine with each change in Ep, which could be considerable. The systematic uncertainties on the
simulated data-points were calculated assuming a ∼ 2%precision on the inclusive NC cross section
measurement. A more comprehensive description of the simulated data is given in contribution for this
proceedings, see Sec. 5.
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Fig. 26: The distribution of the longitudinal structure function FL at Q2=5, 10 and 20 GeV2. The blue, red and
green points show the simulated FL data-points, respectively labelled maximum, middle and minimum in Table 5.
The blue, red and green shaded bands show the NLO QCD predictions, in the case where the data-points of the
corresponding colour have been included in the fit. For comparison, the yellow shaded band shows the prediction
of the ZEUS-JETS fit.

The simulated data were included in the ZEUS-JETS fit. Figure 25 shows the gluon distribution
and fractional uncertainties for fits with and without inclusion of the simulated FL data. The results
indicate that the gluon uncertainties are reduced at low-x, but the improvement is only significant at
relatively lowQ2.20GeV2.

Discrimination between theoretical models

In order to assess whether a HERA measurement of FL could discriminate between theoretical models,
two more sets of FL data-points have been simulated [58], using different theoretical assumptions. The
first of the two sets was generated using the MRSG95 [59] proton PDF, which has a large gluon density.
The PDFs were then convoluted with the NNLO order coefficient functions, which are large and positive.
This gives the “maximum” set of FL data-points. In contrast, the second set has been generated using
the MRST2003 [60] proton PDF, which has a negative gluon at low-x and low-Q2, thus providing a
“minimum” set of FL data. The original set of FL points described in the previous subsection lies
between these two extremes. The details of all three sets are summarised in Table 5.

Figure 26 shows the results of including, individually, each set of simulatedFL data into the ZEUS
NLO QCD fit. The results show that the NLO fit is relatively stable to the inclusion of the extreme sets
of data. This indicates that a measurement of FL could discriminate between certain theoretical models.
However, it should be noted that the maximum and minimum models studied here were chosen specifi-
cally to give the widest possible variation inFL. There are many other alternatives that would lie between
these extremes and the ability of an FL measurement to discriminate between them would depend both
on the experimental precision of the measurement itself, as well as the theoretical uncertainties on the
models being tested.
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Table 5: Summary of the PDFs used to generate the simulated FL data-points. The extreme maximum FL points
were generated using the MRSG95 PDF, and convoluted with NNLO coefficient functions. The middle points
were generated using the GRV94 PDF, and the extreme minimum points were generated using the MRST2003
PDF, which has a negative gluon at low-x.

PDF QCD order of coefficient functions
Maximum FL MRSG95 NNLO
Middle FL GRV94 NLO
Minimum FL MRST2003 NLO

8 A Method to Include Final State Cross-sections Measured in Proton-Proton Collisions
to Global NLO QCD Analysis 11

The Large Hadron Collider (LHC), currently under construction at CERN, will collide protons on pro-
tons with an energy of 7 TeV. Together with its high collision rate the high available centre-of-mass
energy will make it possible to test new interactions at very short distances that might be revealed in the
production cross-sections of Standard Model (SM) particles at very high transverse momentum (PT) as
deviation from the SM theory.

The sensitivity to new physics crucially depends on experimental uncertainties in the measure-
ments and on theoretical uncertainties in the SM predictions. It is therefore important to work out a
strategy to minimize both the experimental and theoretical uncertainties from LHC data. For instance,
one could use single inclusive jet or Drell-Yan cross-sections at low PT to constrain the PDF uncertain-
ties at high PT . Typical residual renormalisation and factorisation scale uncertainties in next-to-leading
order (NLO) calculations for single inclusive jet-cross-section are about5−10%and should hopefully
be reduced as NNLO calculations become available. The impact of PDF uncertainties on the other hand
can be substantially larger in some regions, especially at large PT , and for example at PT =2000 GeV
dominate the overall uncertainty of 20%. If a suitable combination of data measured at the Tevatron and
LHC can be included in global NLO QCD analyses, the PDF uncertainties can be constrained.

The aim of this contribution is to propose a method for consistently including final-state observ-
ables in global QCD analyses.

For inclusive data like the proton structure function F2 in deep-inelastic scattering (DIS) the per-
turbative coefficients are known analytically. During the fit the cross-section can therefore be quickly
calculated from the strong coupling (αs) and the PDFs and can be compared to the measurements. How-
ever, final state observables, where detector acceptances or jet algorithms are involved in the definition of
the perturbative coefficients (called “weights” in the following), have to be calculated using NLO Monte
Carlo programs. Typically such programs need about one day of CPU time to calculate accurately the
cross-section. It is therefore necessary to find a way to calculate the perturbative coefficients with high
precision in a long run and to includeαs and the PDFs “a posteriori”.

To solve this problem many methods have been proposed in the past [3,10,61–64]. In principle the
highest efficiencies can be obtained by taking moments with respect to Bjorken-x [61, 62], because this
converts convolutions into multiplications. This can have notable advantages with respect to memory
consumption, especially in cases with two incoming hadrons. On the other hand, there are complications
such as the need for PDFs in moment space and the associated inverse Mellin transforms.

Methods in x-space have traditionally been somewhat less efficient, both in terms of speed (in
the ‘a posteriori’ steps — not a major issue here) and in terms of memory consumption. They are,
however, somewhat more transparent since they provide direct information on the x values of relevance.
Furthermore they can be used with any PDF. The use of x-space methods can be further improved by
using methods developed originally for PDF evolution [65, 66].

11Contributing authors: T. Carli, G. Salam, F. Siegert.
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8.1 PDF-independent representation of cross-sections
Representing the PDF on a grid

We make the assumption that PDFs can be accurately represented by storing their values on a two-
dimensional grid of points and using nth-order interpolations between those points. Instead of using
the parton momentum fraction x and the factorisation scale Q2, we use a variable transformation that
provides good coverage of the full x andQ2range with uniformly spaced grid points:12

y(x)=ln
1

x
and τ(Q2)=lnln

Q2

Λ2
. (16)

The parameter Λ is to be chosen of the order of ΛQCD, but not necessarily identical. The PDFq(x,Q2)
is then represented by its values qiy,iτ at the 2-dimensional grid point(iy δy,iτδτ), where δy and δτ
denote the grid spacings, and obtained elsewhere by interpolation:

q(x,Q2)=

n∑

i=0

n′∑

ι=0

qk+i,κ+ιI
(n)
i

(
y(x)

δy
−k
)
I(n
′)
ι

(
τ(Q2)

δτ
−κ
)
, (17)

where n, n′ are the interpolation orders. The interpolation function I(n)i (u)is 1 for u= iand otherwise
is given by:

I
(n)
i (u)=

(−1)n−i
i!(n−i)!

u(u−1)...(u−n)
u−i . (18)

Defining int(u)to be the largest integer such that int(u)≤u, k andκare defined as:

k(x)= int
(
y(x)
δy − n−12

)
, κ(x)=int

(
τ(Q2)

δτ
−n
′−1
2

)
. (19)

Given finite grids whose vertex indices range from 0 ...Ny−1for the y grid and 0 ...Nτ−1for theτ
grid, one should additionally require that eq. (17) only uses available grid points. This can be achieved
by remapping k→max(0,min(Ny−1−n,k))andκ→max(0,min(Nτ−1−n′,κ)).

Representing the final state cross-section weights on a grid (DIS case)

Suppose that we have an NLO Monte Carlo program that produces events m =1...N. Each event m
has an x value, xm , a Q2 value, Q2m , as well as a weight, wm , and a corresponding order in αs, pm .
Normally one would obtain the final resultWof the Monte Carlo integration from:13

W=

N∑

m=1

wm

(
αs(Q

2
m)

2π

)pm
q(xm,Q

2
m). (20)

Instead one introduces a weight gridW(p)iy,iτand then for each event updates a portion of the grid
with:
i=0 ...n,ι=0 ...n′ :

W
(pm)
k+i,κ+ι→W

(pm)
k+i,κ+ι+wm I

(n)
i

(
y(xm)

δy
−k
)
I(n
′)
ι

(
τ(Q2m)

δτ
−κ
)
, (21)

wherek≡k(xm),κ≡κ(Q2m).
12An alternative for the x grid is to use y=ln1/x+a(1−x)withaa parameter that serves to increase the density of points

in the large x region.
13Here, and in the following, renormalisation and factorisation scales have been set equal for simplicity.
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The final result forW, for an arbitrary PDF, can then be obtained subsequent to the Monte Carlo run:

W=
∑

p

∑

iy

∑

iτ

W
(p)
iy,iτ



αs

(
Q2
(iτ)
)

2π



p

q
(
x(iy),Q2

(iτ)
)
, (22)

where the sums index with iy and iτrun over the number of grid points and we have have explicitly
introduced x(iy)andQ2(iτ)such that:

y(x(iy))= iy δy and τ
(
Q2
(iτ)
)
= iτδτ. (23)

Including renormalisation and factorisation scale dependence

If one has the weight matrix W(p)iy,iτ determined separately order by order in αs, it is straightforward
to vary the renormalisation µR and factorisation µF scales a posteriori (we assume that they were kept
equal in the original calculation).

It is helpful to introduce some notation relating to the DGLAP evolution equation:

dq(x,Q2)

dlnQ2
=
αs(Q

2)

2π
(P0 ⊗q)(x,Q2)+

(
αs(Q

2)

2π

)2
(P1⊗q)(x,Q2)+..., (24)

where theP0 andP1are the LO and NLO matrices of DGLAP splitting functions that operate on vectors
(in flavour space) qof PDFs. Let us now restrict our attention to the NLO case where we have just two
values ofp,pLOandpNLO. Introducing ξRandξF corresponding to the factors by which one variesµR
andµF respectively, for arbitraryξRandξF we may then write:

W(ξR,ξF)=
∑

iy

∑

iτ



αs

(
ξ2RQ

2(iτ)
)

2π



pLO

W
(pLO)
iy,iτ
q
(
x(iy),ξ2FQ

2(iτ)
)
+



αs

(
ξ2RQ

2(iτ)
)

2π



pNLO[(

W
(pNLO)
iy,iτ

+2πβ0pLOlnξ
2
RW

(pLO)
iy,iτ

)
q
(
x(iy),ξ2FQ

2(iτ)
)

(25)

−lnξ2FW
(pLO)
iy,iτ
(P0 ⊗q)

(
x(iy),ξ2FQ

2(iτ)
)]
,

whereβ0 =(11Nc−2nf)/(12π)andNc (nf) is the number of colours (flavours). Though this formula is
given for x-space based approach, a similar formula applies for moment-space approaches. Furthermore
it is straightforward to extend it to higher perturbative orders.

Representing the weights in the case of two incoming hadrons

In hadron-hadron scattering one can use analogous procedures with one more dimension. Besides Q2,
the weight grid depends on the momentum fraction of the first (x1) and second (x2) hadron.

In the case of jet production in proton-proton collisions the weights generated by the Monte Carlo
program as well as the PDFs can be organised in seven possible initial state combinations of partons:

gg: F(0)(x1,x2;Q
2)= G1(x1)G2(x2) (26)

qg: F(1)(x1,x2;Q
2)=

(
Q1(x1)+Q1(x1)

)
G2(x2) (27)

gq: F(2)(x1,x2;Q
2)= G1(x1)

(
Q2(x2)+Q2(x2)

)
(28)

qr: F(3)(x1,x2;Q
2)= Q1(x1)Q2(x2)+Q1(x1)Q2(x2)−D(x1,x2) (29)

qq: F(4)(x1,x2;Q
2)= D(x1,x2) (30)
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q̄q: F(5)(x1,x2;Q
2)= D(x1,x2) (31)

q̄r: F(6)(x1,x2;Q
2)= Q1(x1)Q2(x2)+Q1(x1)Q2(x2)−D(x1,x2), (32)

where gdenotes gluons,qquarks andrquarks of different flavourq6=rand we have used the generalized
PDFs defined as:

GH(x)=f0/H(x,Q
2), QH(x)=

6∑

i=1

fi/H(x,Q
2), QH(x)=

−1∑

i=−6
fi/H(x,Q

2),

D(x1,x2)=

6∑

i=−6
i6=0

fi/H1(x1,Q
2)fi/H2(x2,Q

2), (33)

D(x1,x2,µ
2
F)=

6∑

i=−6
i6=0

fi/H1(x1,Q
2)f−i/H2(x2,Q

2),

where fi/His the PDF of flavour i=−6...6 for hadron H and H1(H2) denotes the first or second
hadron14 .

The analogue of eq. 22 is then given by:

W=
∑

p

6∑

l=0

∑

iy1

∑

iy2

∑

iτ

W
(p)(l)
iy1,iy2,iτ



αs

(
Q2
(iτ)
)

2π



p

F(l)
(
x
(iy1)
1 ,x

(iy1)
2 ,Q

2(iτ)
)
. (34)

Including scale depedence in the case of two incoming hadrons

It is again possible to choose arbitrary renormalisation and factorisation scales, specifically for NLO
accuracy:

W(ξR,ξF)=

6∑

l=0

∑

iy1

∑

iy2

∑

iτ



αs

(
ξ2RQ

2(iτ)
)

2π



pLO

W
(pLO)(l)
iy1,iy2,iτ

F(l)
(
x
(iy1)
1 ,x

(iy1)
2 ,ξ

2
FQ
2(iτ)
)
+



αs

(
ξ2RQ

2(iτ)
)

2π



pNLO[(

W
(pNLO)(l)
iy1,iy2,iτ

+2πβ0pLOlnξ
2
RW

(pLO)(l)
iy1,iy2,iτ

)
F(l)
(
x
(iy1)
1 ,x

(iy1)
2 ,ξ

2
FQ
2(iτ)
)

(35)

−lnξ2FW
(pLO)(l)
iy1,iy2,iτ

(
F
(l)
q1→P0⊗q1

(
x
(iy1)
1 ,x

(iy1)
2 ,ξ

2
FQ
2(iτ)
)
+F
(l)
q2→P0⊗q2

(
x
(iy1)
1 ,x

(iy1)
2 ,ξ

2
FQ
2(iτ)
))]
,

whereF(l)q1→P0⊗q1is calculated asF(l), but withq1replaced wtihP0⊗q1, and analogously forF(l)q2→P0⊗q2.

8.2 Technical implementation
To test the scheme discussed above we use the NLO Monte Carlo program NLOJET++ [67] and the
CTEQ6 PDFs [4]. The gridW(p)(l)iy1,iy2,iτ

of eq. 34 is filled in a NLOJET++ user module. This module
has access to the event weight and parton momenta and it is here that one specifies and calculates the
physical observables that are being studied (e.g. jet algorithm).

Having filled the grid we construct the cross-section in a small standalone program which reads
the weights from the grid and multiplies them with an arbitrary αs and PDF according to eq. 34. This
program runs very fast (in the order of seconds) and can be called in a PDF fit.

14In the above equation we follow the standard PDG Monte Carlo numbering scheme [17] where gluons are denoted as 0 ,
quarks have values from1-6 and anti-quarks have the corresponding negative values.

EXPERIMENTAL DETERMINATION OF PARTON DISTRIBUTIONS

113



The connection between these two programs is accomplished via a C++ class, which provides
methods e.g. for creating and optimising the grid, filling weight events and saving it to disk. The classes
are general enough to be extendable for the use with other NLO calculations.

The complete code for the NLOJET++ module, the C++ class and the standalone job is available
from the authors. It is still in a development, testing and tuning stage, but help and more ideas are
welcome.

The C++ class

The main data members of this class are the grids implemented as arrays of three-dimensional ROOT
histograms, with each grid point at the bin centers15:

TH3D[p][l][iobs](x1,x2,Q
2), (36)

where the landpare explained in eq. 34 and iobsdenotes the observable bin, e.g. a given PT range16 .

The C++ class initialises, stores and fills the grid using the following main methods:

– Default constructor: Given the pre-defined kinematic regions of interest, it initializes the grid.
– Optimizing method: Since in some bins the weights will be zero over a large kinematic region in
x1,x2,Q

2, the optimising method implements an automated procedure to adapt the grid bound-
aries for each observable bin. These boundaries are calculated in a first (short) run. In the present
implementation, the optimised grid has a fixed number of grid points. Other choices, like a fixed
grid spacing, might be implemented in the future.

– Loading method: Reads the saved weight grid from a ROOT file
– Saving method: Saves the complete grid to a ROOT file, which will be automatically compressed.

The user module for NLOJET++

The user module has to be adapted specifically to the exact definition of the cross-section calculation. If a
grid file already exists in the directory where NLOJET++ is started, the grid is not started with the default
constructor, but with the optimizing method (see 8.2). In this way the grid boundaries are optimised for
each observable bin. This is necessary to get very fine grid spacings without exceeding the computer
memory. The grid is filled at the same place where the standard NLOJET++ histograms are filled. After
a certain number of events, the grid is saved in a root-file and the calculation is continued.

The standalone program for constructing the cross-section

The standalone program calculates the cross-section in the following way:

1. Load the weight grid from the ROOT file
2. Initialize the PDF interface17 , loadq(x,Q2)on a helper PDF-grid (to increase the performance)
3. For each observable bin, loop over iy1,iy2,iτ,l,pand calculate Fl(x1,x2,Q2)from the appropri-

ate PDFsq(x,Q2), multiplyαs and the weights from the grid and sum over the initial state parton
configuration l, according to eq. 34.

15ROOT histograms are easy to implement, to represent and to manipulate. They are therefore ideal in an early development
phase. An additional advantage is the automatic file compression to save space. The overhead of storing some empty bins
is largely reduced by optimizing the x1, x2 and Q2 grid boundaries using the NLOJET++ program before final filling. To
avoid this residual overhead and to exploit certain symmetries in the grid, a special data class (e.g. a sparse matrix) might be
constructed in the future.

16For the moment we construct a grid for each initial state parton configuration. It will be easy to merge the qg and the gq
initial state parton configurations in one grid. In addition, the weights for some of the initial state parton configurations are
symmetric in x1and x2. This could be exploited in future applications to further reduce the grid size.

17We use the C++ wrapper of the LHAPDF interface [56].
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8.3 Results
We calculate the single inclusive jet cross-section as a function of the jet transverse momentum (PT)
for jets within a rapidity of |y|< 0.5. To define the jets we use the seedless cone jet algorithm as im-
plemented in NLOJET++ using the four-vector recombination scheme and the midpoint algorithm. The
cone radius has been put toR=0.7, the overlap fraction was set to f=0.5. We set the renormalisation
and factorization scale to Q2= P2T,max, where PT,max is the PT of the highest PT jet in the required
rapidity region18.

In our test runs, to be independent from statistical fluctuations (which can be large in particular
in the NLO case), we fill in addition to the grid a reference histogram in the standard way according to
eq. 20.

The choice of the grid architecture depends on the required accuracy, on the exact cross-section
definition and on the available computer resources. Here, we will just sketch the influence of the grid
architecture and the interpolation method on the final result. We will investigate an example where
we calculate the inclusive jet cross-section in Nobs =100bins in the kinematic range100≤PT ≤
5000GeV. In future applications this can serve as guideline for a user to adapt the grid method to
his/her specific problem. We believe that the code is transparent and flexible enough to adapt to many
applications.

As reference for comparisons of different grid architectures and interpolation methods we use the
following:

– Grid spacing in y(x):10−5≤x1,x2≤1.0 withNy =30
– Grid spacing inτ(Q2):100GeV≤Q≤5000GeVwithNτ=30
– Order of interpolation: ny =3,nτ=3

The grid boundaries correspond to the user setting for the first run which determines the grid boundaries
for each observable bin. In the following we call this grid architecture 302x30x100(3,3). Such a grid
takes about 300Mbyte of computer memory. The root-file where the grid is stored has about50Mbyte.

The result is shown in Fig. 27a). The reference cross-section is reproduced everywhere to within
0.05%. The typical precision is about 0.01%. At low and high PT there is a positive bias of about
0.04%. Also shown in Fig. 27a) are the results obtained with different grid architectures. For a finer
x grid (502x30x100(3,3)) the accuracy is further improved (within 0.005%) and there is no bias. A
finer (302x60x100(3,3)) as well as a coarser (302x10x100(3,3)) binning in Q2 does not improve the
precision.

Fig. 27b) and Fig. 27c) show for the grid (302x30x100) different interpolation methods. With an
interpolation of order n =5the precision is 0.01%and the bias at low and high PT observed for the
n = 3interpolation disappears. The result is similar to the one obtained with finer x-points. Thus by
increasing the interpolation order the grid can be kept smaller. An order n = 1interpolation gives a
systematic negative bias of about1%becoming even larger towards high PT .

Depending on the available computer resources and the specific problem, the user will have to
choose a proper grid architecture. In this context, it is interesting that a very small grid102x10x100(5,5)
that takes only about10Mbyte computer memory reaches still a precision of 0.5%, if an interpolation of
order n=5is used (see Fig. 27d)).

We have developed a technique to store the perturbative coefficients calculated by an NLO Monte
Carlo program on a grid allowing for a-posteriori inclusion of an arbitrary parton density function (PDF)

18Note that beyond LO the PT,max will in general differ from the PT of the other jets, so when binning an inclusive jet
cross section, the PT of a given jet may not correspond to the renormalisation scale chosen for the event as a whole. For this
reason we shall need separate grid dimensions for the jet PT and for the renormalisation scale. Only in certain moment-space
approaches [62] has this requirement so far been efficiently circumvented.
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Fig. 27: Ratio between the single inclusive jet cross-section with 100 PT bins calculated with the grid technique
and the reference cross-section calculated in the standard way. Shown are the standard grid, grids with finer x and
Q2 sampling (a) with interpolation of order 1, 3 and 5 (b) (and on a finer scale in c)) and a small grid (d).

set. We extended a technique that was already successfully used to analyse HERA data to the more
demanding case of proton-proton collisions at LHC energies.

The technique can be used to constrain PDF uncertainties, e.g. at high momentum transfers, from
data that will be measured at LHC and allows the consistent inclusion of final state observables in global
QCD analyses. This will help increase the sensitivity of LHC to find new physics as deviations from the
Standard Model predictions.

Even for the large kinematic range for the parton momentum fractions x1and x2and of the squared
momentum transfer Q2 accessible at LHC, grids of moderate size seem to be sufficient. The single
inclusive jet cross-section in the central region |y| < 0.5can be calculated with a precision of 0.01%
in a realistic example with100bins in the transverse jet energy range100≤PT ≤5000GeV. In this
example, the grid occupies about 300Mbyte computer memory. With smaller grids of order10Mbyte
the reachable accuracy is still 0.5%. This is probably sufficient for all practical applications.
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