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ABSTRACT

The equilibrium states for an infinite system
of quantum mechanics may be represented by states over
suitably chosen C¥* algebras. We consider the problem
of associating an entropy with these states and finding
its properties, positivity, sub-additivity, etc. For the
states of a quantum spin system a mean entropy is de-
fined and it is demonstrated that this entropy has cer-

tain properties of affinity, upper semi-continuity, etc.
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0. INTRODUCTION

In the algebraic theory of statistical mechanics the class of

possible equilibrium states is defined as the subclass K of states F 5
over the C* algebra Cﬂp of local observables, which satisfy certain
subsidiary conditions of a physical-origin. Firstly it is assumed that
the theory is invariant under a symmetry group G (the translation
group Ro , Tfor example) then the states ?Q K considered are taken
to be G invariant. Secondly, as one wishes to describe only systems
with a finite number of particles in each finite subsystem, extra condi-
tions must be introduced. The consequence of these latter "finite mean
density" conditions can be described as follows. If /\C Rq is an
open set of compact closure and (| (A )C QL the corresponding sub-
algebra of strictly local observables then a state 5’6 K must be such
that its restriction to each  (OL(A) “is described by a density matrix

fA acting on a Hilbert space 'BQA. As a direct result of this last
property we may introduce, for each Pe K, a family of entropies
s( Fa ) by the definition S( Pa ):=—wa9£A_( Pa 108 Pa ). Consequently
we may study properties of §( Pa ), attempt to introduce for each

Pel( an entropy per unit volume '§(P ), and, subsequently, analyse

the linearity and continuity properties etc., of g(? ).

The programme outlined above was recently completed by Ruelle,

in collaboration with one uf the present authors (D°W°R°)9 in the frame-

1)_

paper is to attempt the same programme for quantum statistical mechanics.

work of classical statistical mechanics The purpose of the present

In this latter setting many difficulties arise due to non-commutativity

and our resulls are complete only in the case of quantum spin systems.

In the general case many interesting problems remain open.
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GENERAL FORMULATION

We want to investigate both continuous infinite quantum statis-

tical systems and lattice systems. Thus, we consider a (¥ algebra
0L and a collection 2 ol (/\)g of C* sub-algebras of (] |,

where /\ runs over

1) the bounded open sets in R for continuous systems;

ii) .the finite subsets of 7} for lattice systems.

We s;ipposeihat these sub-algebras satisfy the following axioms:

O)‘ GL (A1)C_ O’L (/\2) if A1CA2'
1) For each AN , Ol (N) is isomorphic to‘ 5(, ( ’?fe,\) for some

Hilbert space "M, . Ve will usually identify (| (A) with
,',(, ( '3?,\) although this is not strictly compatible with 0).

2) O’b is the norm closure of L/e al(n).

z) O[,(/\1U/\2) is generated bym\(M) AN /\2) in the weak opera-

-

tor topology on :3\1(}{ A v /\2) ’

4) TLet G denote the group of translations, i.e., G:Z‘J for

N

lattice systems and G=F for continuous systems. Then

G acts on (O, by automorphisms T, 1in such a way that
’ij( GL(AN))= OL(A+x), for all regions N  and transla-

tions x.



Finally, we need a condition expressing the independence of

observables belonging to disjoint regions. This condition may take one

of two forms, depending on whether we are considering bosons or fermions:

5)

1)

3)
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Either

a. If A , end /\0 are any two disjoint regions, then

OL (A,) commutes with G‘L(/\Q)

or

b. Bach Cﬂ,(/\) is generated by a set of creation and anni-
hilation operators satisfying the canonical anticommutation
relations, and, if /\1 and /\2 are disjoint regions,
the creation and annihilation operators for ;& ] anti-

°

commute with those for /\ o

These axioms describe several kinds of physical systems:

Ordinary continuous quantum systems, either bosons or fermions.

Quantum lattice systems, again either bosons or fermions, with
finitely many creation and annihilation operators associated
with each lattice site. TFor fermion lattice systems, *BQA is
finite dimensional for each finite set /\ ;  but for boson

systems this is, of course, not true.

Quantum spin systems. In this case; YaQA is finite dimen-
sional for each bounded region /\ ,  but the different unit

rays in F&eﬁx ;, where x 1s a lattice point, are interpreted
as describing different polarization states of a particle loca-
lized at x rather than varying occupation numbers for that

point. We will assume that such systems satisfy axiom E)a.
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The statistical mechanical states of (J{, are those which,
when restricted to an OL (A), are given by a density matrix. In
other words, such a state P defines, for each region /\ s a positive

operator 53,\ on '3@;\ s with Tr 20, (f,\ ) =1, such that

})('\\ - T‘*&QA(}’A A)

it Ao e GUL(A) =J: (%®\ ). This statement imposes no restriction on
poif "AQA is finite dimensional; otherwise, it corresponds to the

requirement that there be only finitely many particles in each region

A

Every statistical mechanical state 5) defines a family
Ey/\% of density matrices. Conversely, the assignment of a density
matrix to each bounded region defines a statistical mechanical state on
G'(J, provided that the assignment satisfies the obvious compatibility
condition that, if /\1('_/\2 md 12 A € Ob(A,), then

T;’Mm (J’A, A\ = T‘;}QAI (f/\L P\)

We can reformulate the compatibility condition as follows: If /\ C/\

then Gl (/\ ) is a type I factor contained in Ol (/\ )—éc( YB‘PA2

Hence,; we may factorize

Ry, = *W,“ ® }Q'



in such a way that an operator A in GL ( A1) = 3(4( T‘WM) is identified
with the operator A @ 1 on ‘3@/\1 @‘}E,. [‘j.‘he space }ﬁ' may be
identified with ‘3QA pm Ay’ but operators in  OL ( Ao- Ay) do not
factorize so nicely as those in Ol ( /\1) unless algebras for disjoint
regions commute. See below;f The compatibility condition may now be

formulated as:

Pa, = Trw(y,\,_\

where Tr npi means the partial trace with respect to }}Q' ; l.e., if
N . . \ '2 . -
EQ i% is an orthonormal basis for 3Q/\1 and ELPJ_ S is an ortho

!
normal basis for 3@ s then

o0
<

(?A.@hq}ﬁ) = {\g’/\z(‘?;‘g‘q}j)) QR@NP&)

N

e

The condition that a state be translation invariant may easily
be formulated in terms of the corresponding system of density matrices.
For any region /\ and any translatich x, ™ % is an isomorphism
of OL(A) onto OL(A+x). since Ol (A) is identified with
{L ( '39}\) and Ol (N+x) with oﬂ (qQ/\Hr)’ there is a unitary operator

A . . . . .
U A x from QQA to JQA+X which induces “ghls isomorphism, gnd
U/\ x is determined up to a multiplicative constant. Then the state
-y 7
defined by the system Ey,‘% of density matrices is translation-

invariant if and only if

\

j)/\ﬁ—)‘ = UA,)( 5)/\ U/\,X_

for all regions /\ and translations x.
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We now want to make a more careful analysis of the relation

of P/\1U!\2 to P(\’I and JP/\2 when /\1 and /\2 are disjoint
regions. We have already remarked that the inclusion of =~ (3, (/\ ) in

O ( /\1()A2) gives a factorization of ‘3{/\ As as "&Q @‘a{ ,
where operators in 6(; (A1) go over into operators of the form
A® Ll . If we are considering a boson system or a spin system, then
the commutant of (J], (/\1) in (] ( /\1\)/\2) is precisely UXL (/\2)
In this case, there is an essentially unique way to identify "6@ with
"}QA and operators in (] (/\2) take the form | ® A on

'AQM ® "AQ,\ Hence we have

o Tog )+ = T

For fermion systems, although ?E' has the same dimension as
’QQAZ, there is no unique sensible way to identify ¥ ' with ‘},@I\z
Nevertheless, by using the special structure of fermion systems, we can
construct a useful identification of ‘%Q with ‘aQA 5" This we do as
follows: Let N1 and N2 denote the number operators for the regions
[\1 and /\ > respectively. .Then a simple calculation with the anti-
commutation relations shows that the commutant of OL(/\ ) in
Ol ( /\1UA2) is precisely (- 1)N1'N2 OL([\ ) (- 1)N'I N2 Therefore,
we can identify ‘?}‘e with t}@ in such a way that, if A is in

al (/\ ) = (f\( EW}\ )y then A goes over into (-1)"1° N2(1 ®A)( 1)N1°N2

in d{. (%QM ® '}}Q ) With this identification we have

Pa,= —“‘aeul(y Aon, ) P, = TrseA (g, CY)
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The second of these equations can be simplified if we assume
that SD is an even state of Gl) . By definition, an element A of
some OL(A) is odd if

(~1)N(A\ A (—I}N(M - - A

where N(/\) is the number operator for the region /\ . A state )’3
of Gb is even if )"3 vanishes on every 0dd element of every

GL ( f\). If, now, is an even state and A is an element of

Gl ( f\2)9 then

P(AY = T oy ((onon, (V™ (10A) (M)

- Trrsm\@*as@n ( Phon, (1 M)

PY

To prove this equation, note that we can write A as the sum of an even
part and an odd part, that the odd part contributes nothing to j) (1),

-No

and that the even part commutes with (-1 )N1 Collecting these

results we have:

Proposition 1. Let [° be a statistical-mechanical state of the C¥
algebra 078 , and let % A% be the corresponding system of

density matrices. If S is the algebra for a fermion system,

we further assume that P is even. Then if /\1 and /\2 are

disjoint regions, we may identify Y with ®
MYUN2 T %Q/H Y}{)/\2

in such a way that




Y "T' (FAUA1) ?Az: —“%RA|(fAAM2\

Note that, if we are dealing with a fermion system, then trans-
lation invariance implies that the state P is even. To show this
let A be an odd element of some GL(A) and let x be a translation
large enough so that /\+—nx does not intersect /\ for n=1,2,3...-

Let
N-1
|

A N - N" 1 tn_x A

nzg
Now

..

HANH H AA € \%AI\U Ay JH OH ek Ty A?)\\

M~

2
= |[Af]
where the last inequality is a consequence of

%(Qﬂ“ﬁ@@A%:‘O dor nFmM

However due to translation invariance

o(A) = 7 (A :»Mw p(A)

* .
) This proof was independently discovered by R.T. Powers
(unpublished).
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But as 1nnﬂéu=o then lim (/(Ay) =0 and thus SXA):O.
Néa) : ) h

Given a statistical-mechanical state ‘? , and a region /\,

we can define the entropy of the region /\ as follows;

s( Pa )=+ ® if falogpy  is mot of trace class on ‘}QA
=-Tr M, ( P log_YA ) otherwise.

In defining the operator y%\log{fA we use the usual con-

vention xlogx=0 for x=0.

2. BASIC INEQUALITIES FOR THE ENTROPY

*)

Lemma 1 Tet A and B be positive, self-adjoint, trace class opera-
tors on a Hilbert space W then

Troe LAloA - AlB - A+B ] > O

Proof Let q)i(®i) be a complete orthonormal set of eigenfunctions

of A(B) and let aﬁ(bi) be the corresponding eigenvalues. Let
UH:(uij) be a unitary mapping defined by

o
\\)L - %‘ Uij(bj

——— . . - T ——— ) " o~ —— e - o - > S b - W o - - W " - o S o -

This lemma, together with its proof, was communicated to one of
us (D.W.R.) by Professor R. Jost who attributed it to 0. Klein.
1f Tr(A) =Tr(B) =1 this lemma is z particular case of theorem 1

of Ref.
67/722/5
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10.

Now

(4] Alggh ~#\l0313|44) Lgqu - li,OSE %

2 a;E o - Lan)U;JPLJ.% |
i lu;;\lb-

= (bia-81Y)

where t0 obtain the first inequality we have used the concavity of

DZJ

the logarithm and to obtain the second inequality we used
logx > | -+ (x>0)
The result follows by éUjmhét'i'oﬁ;.”

Lemma 2 TLet A and B be positive, self-adjoint operators on a
Hilbert space & +then for 12 20

(o(F\ 1 (\MB) Lotﬁ(dl\ : (\-003) g A(:%A;r;:(\‘dﬁgiﬂag

and, further

A>/ B}O implies ‘\aﬂA 2« ]‘088
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11.

The statements of the lemma are special consequences of the
theory“of convex and monotone operator functions initially deVelopéd
by Ldwner 3). For further results the reader may consult Ref. . The
details of the application of the general theory to the case at hand

5)’6). Moreover we need the first inequality of the

are worked out in
lemma, (nly with the operators replaced by their traces, and this can be
proved without use of the general theory of convex operator functions

6)97)'J°

[See

We remark that Lemma 1 may be deduced from the first statement
of TLemma 2. We preferred, however, to give the simple straightforward

proof reproduced aboves.

The preceding lemmas mey now be used to deduce the following

o
results for the quantum entropy, specializations of which appear in 8)”).

Theorem 1. Let be a statistical-mechanical state of the C¥* algebra

GL, and let %E?K% be the corresponding system of density matrices.

If CL  is the algebra for a fermion system we assume further that

P _is an even state. Then the associated entropy s ( £a ) _is a posi-

tive set function, i.e.,

S(pa) > O

which is sub-additive, i.e.,

S(}(?-’\.U'r\z.) é C‘)(‘;}".\ ki\"(g}’\z\ \ Aum\z: ¢



120 :

Further if Ef (1)g and g (2)@ are two families of densit
A SO EN ty
matrices and 12 o« >0 then ’

o S(y,f“\, + () S(?(\"’) < (d?ﬁ.u( &) m)

,{ bt S@ﬁ)) + (\—o{) S/JY,%)) - o([oﬂo( - (i-o() Lga (t—o()

Proof The positivity of S( A ) is an immediate consequence of the

normalization of . ?N and the fact that

\J
>

“Moc\y\ > O RN

The sub-additivity property follows from Lemma 1, Proposition 1 and
the identification ' = 3@ ® *\WAQ b= HUp. BT iy ®
& Ao The final 1nequalltv is a consequence of Lemma 2. The
lower bound is immedigtely obtained from the first statement of
that lemma whilst the upper bound is obtained from the second

statement as follows. We have

j’ G- 7 5 quj\ >0

and hence

Lo% (“?2} + (\—oz\ym > LG%O( Sﬁ”

67/722/5
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13.

Thus

~0(T\~IS’§\ LO?)(&? +(r- oz\\f‘] < - T\“S Q bﬁo‘}”(‘q]
-mwm ] - M@d

and similarly

Q\Tkyy L@ﬁ(dy +{\uqﬁ)!'§ ~Om0v\ Qﬂ(l@ Qi}:
.z (—o(\ h 1)@3 (ﬂ] (\ o()to%(\ma)

Adding the last two inequalities yields the desired result.

MEAN ENTROPY - THE QUANTUM LATTICE SYSTEM

The next desirable aim would be tO'define an entropy per unit

~volume, or mean entropy, by establishing, under suitable restrictions,

’the ‘existence of .S( On )/V(A) in the 1limit of N  increasing such

67/722/5

H;that”thejvglgmg'wy(j\)—fq>,L”Unfortunately”wg“are at presentiable"to do

this solely for the case of a quantum lattice sYsﬁem;and1qvenAth§n,it
is not possible to establish the existence of the limit in the most
desirable generality. - A possible means of -improving our results is

discussed in the concluding section.

Let us define for a::(a19ooe9a0)e 2V ana a1:>o,...,a°)'0
the parallelepiped /\(a) by
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14.

/\(d\ = 2><eZ°;*0<><¢ <a; for ;:"\;z,..o%

N
and the measure (volume) V( A(a)) of N(a) is then given by ;rr}aia

Theorem 2.

= §[§AE% of density matrices of a

guantum lattice system satisfies the conditions of normalization, compa-

tibility, and translation invariance then the mean entropy

5(@ S S(Yfmny
B BTy @)

exists, and in fact

S) = nf  S(Pw)

Further, is an affine function. Explicitly, if j3(1) §~Y(1)%)
y(27~ %_Y(Z)%> are two appropriate families of density matrices

and 12020 then

Sl s s
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Proof Due to translation invariance S( A(a)) is a function of
a“.”?av only. Moreover, if we are dealing with a fermion
system translation invariance implies that the state 5‘3 is even
(see Section 1). But if we introduce a function S(a1,°“9a\, )

through the definition
(0, ) = S(A@)

the sub-additivity of S( A) implies that S(a1,.,.9a J) 1is sub-

additive in each argument ai(‘] <1V ) separately, i.e.,

' (:}‘ &) ,
S(a,,- afval OV} < S(a.,_..,a‘f,-»-QQ)W»S@\)-,».,q‘j‘,_. ow)

A standard argument ch.,.Lemma A1 10)_-] establishes the existence

of

s(§§:ahm S(a,. a4) - inf  S(a,-ay)

\7"'a\1ﬁ00 B qlaz,i G\) d\f G|Q2’ O‘\}

The affine property of S(jb) follows from the last statement of
Theorem 1 if one takes A= /\(a)9 divides by V(A(a)) and takes

the appropriate limit.

67/722/5
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16.

PROPERTIES OF THE MEAN ENTROPY

Por fermion lattice systems and spin systems we can exploit the
finite dimensionality of the ‘}QA'S to prove some additional pro-

perties of the mean entropy-.

Theorem 3. Let OL  pe the C* algebra for a fermion lattice system

or a spin lattice systém° If x is a-lattice point, let . N denote

the dimension of BQU% . Bquip the set of states of OL - with the
weak * topology. Then

1) For any invariant state of GL , 0<£535(wn )< logl.
P /208

2) The mean entropy is an upper semi-continuous function on the

set of invariant states of (L, . If F is any closed sub-

set of the set of invariant states of OL__, then the restric-

tion of the mean entropy to F attains its maximum..

3) If § _is an invarient state of OL_, _end if My _is the

unique probability measure with barycentre 55 concentrated

on the extremal invariant states of (L , then

SG) = Ydp () 560

In physical language, statement 3 says that if 53 is an ave-

rage of pure phases then the mean entropy of j? is the same average of
the entropies of the pure phases making up _? . For the e;istenoe and
unigueness of the measure /Jy , See 11), Theorem 2, Or 13)9 Theorem 3.
We remark that, under the hypotheses of this theorem, CﬂJ is separable
so there are no technical difficulties about the sense in which the

measure is concentrated on the extremal invariant states.
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Proof For any finite set /\ of lattice points, the dimension of
W, is NV(A), Now
N‘)("‘\,’

N ~7

SS(?A) = - {?% X; st%;

where the x ; are the eigenvalues of fA « By elementary esti-

. . ' . S _
mates, if )41,oao,)in are positive real numbers with 55}41._1,
then

~§Mgtoo)}4; £ Laadn

Hence,

S(0r) < Log N2 () Log N

Dividing by V( A) and taking the limit of infinite volume gives:
S(@\ < LCsC‘ N
) J

Since S(g)) is non-negative by definition, we have proved 1).

To prove 2), observe first that the PA 's are continuous
functions of SD and that the eigenvalues of ?A vary conti-
nuously with A Dby perturbation theory. Since -) log) 1is a

continuous function of ) ,

S(S’A\ = - Z AL LM} by

67/722/5
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- - -
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*
) Note that the uniqueness proofs given in Refs.

is a continuous function of S) But
< ey ™
lﬂ NGV ASTA 4
Q(O\ = U pbiil! X
D ) —e— .
J SRR

where the infimum is %o be taken over all rectangles. Thus, S(? )
is the infimum of a family of continuous functions and is therefore
upper semi-continuous. In particular, if F is any closed set of
invariant states on (|, , then the restriction of § to F

takes on its maximum, since any upper semi-continuous function on

a compact set takes on its maximum.

Furthermore, since S(y ) is both affine and upper semi-conti-
nuous, it respects barycentric decompositions. More precisely, if
}{ is any probability measure on the set of invariant states of

Gl 5 and if the barycentre of M is 53 , then

‘/l

(This follows from Lemma 10 of Ref. 13)0) In particular, if ﬂf
*

is the unique decomposition of {3 into extremal invariant states )

then the above equation holds. This proves 3) and completes the

proof of the theorem.

- - o £ 7 = - - 3 o - = S - G S S e A S T M e S e e S e e e

for such
decompositions are valid even for Fermi systems. In the Fermi
case (J|, is R (or 7’ ) Lbelian, in the sensé bf 12)

as an argument similar to that appearing after Proposition 1

readily establishes.
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5. CONCLUSION

Whilst in the case of a quantum spin system we have been able
to obtain most of the desired results concerning the cuantum entropy the
position is less satisfactory in other cases. The main gap in the
development is the failure to establish the existence of the mean entropy
S(;)) under general circumstances. In classical statistical mechanics 1)
these existence problems were solved by showing that the entropy satis-
fied a condition of strong sub-additivity. One could believe, and even
support one's belief by heuristic physical arguments, that the same

condition holds for the quantum entropy.

Conjecture. The quantum entropy S( On ) satisfies the inequality

$(5non, )+ S(gnan.) €SG50 + S, )

A satisfactory discussion of the existence of the mean entropy
would ensue if this conjecture were proved. There would, however, still
exist a problem in establishing a barycentric decomposition of the mean
entropy in the general case because although it would clearly be an
affine function it could not be expected to be an upper semi-continuous

function.

We have not discussed in any detail the physical relevance of
the mean entropy which we have introduced but postpone this to a forth-
14)

coming publication
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