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We present an algorithm to analyze numerically the bounce solution of first-order

phase transitions. Our approach is well suited to treat phase transitions with several

fields. The algorithm consists of two parts. In the first part the bounce solution

without damping is determined, in which case energy is conserved. In the second

part the continuation to the physically relevant case with damping is performed.

The presented approach is numerically stable and easily implemented.

I. INTRODUCTION

The problem of calculating properties of a first-order phase transition from a false vacuum

to an energetically lower vacuum appears in different contexts of physics, as for example con-

densed matter physics [1, 2], particle physics [3, 4], and cosmology [5, 6, 7]. In a cosmological

context, one of the interesting features of a first-order phase transition is that it can proceed

by bubble nucleation. The subsequently expanding bubbles can be utilized as a source that

drives the hot plasma in the early Universe out of equilibrium. This is in turn one of the

Sakharov conditions, the requirements for a viable baryogenesis mechanism. Employing the

electroweak phase transition, the corresponding baryogenesis mechanism was suggested in

Ref. [8] and named electroweak baryogenesis. Even though this scenario of the generation

of the baryon asymmetry of the Universe (BAU) is excluded in the Standard Model (SM)

because of a lack of CP violation and the cross-over nature of the phase transition, this

possibility is still open in the Minimal Supersymmetric Standard Model (MSSM) [9, 10, 11].
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An essential input parameter of the determination of the produced BAU is the wall shape

of the expanding bubbles. While in the SM the phase transition is described by a single vev

of the Higgs field v, there are already two dynamical fields during the phase transition in

the MSSM, namely two vevs, v1 and v2, or equivalently, v =
√

v2
1 + v2

2 and tan(β) = v2/v1.

Notice that the initial value of β cannot be inferred without studying the dynamics of the

phase transition, since v vanishes in the symmetric phase. This is especially important,

because some CP violating sources are proportional to the change of β during the phase

transition.

Examining extensions of the MSSM, one has eventually to deal with more than two scalar

fields. This is the case e.g. in the MSSM extended by an additional singlet [12, 13, 14],

which provides the interesting feature of transitional CP violation [15]. Further examples

are provided by models that equip this singlet with a U(1)′ gauge symmetry [16] or by the

SM with two Higgs doublets [17, 18].

The theoretical basis for the determination of the tunneling rates in particle physics

and the explicit solution for one scalar field was given in [3, 4]. However to calculate

the properties in the case of several scalar fields is analytically not accessible, and even

numerically a non-trivial task. We present a numerical solution to this problem.

II. THE PROBLEM

Before the numerical treatment of the multi field case is discussed, we will briefly review

the results of [3, 4] and clarify our notation. Given the Lagrangian

L =
1

2
∂µφ∂µφ − V (φ), (1)

the transition probability per unit time and unit volume from a false vacuum to an energet-

ically lower vacuum is, in the semi-classical approximation, given by

Γ =
S[φ̄]2

4π2~2
exp(−S[φ̄]/~)

∣

∣

∣

∣

det′[−∂2 + V
′′

(φ̄)]

det[−∂2 + V ′′(0)]

∣

∣

∣

∣

−
1

2

× (1 + O(~)). (2)

The primed determinant indicates that the zero-modes, corresponding to translation in-

variance, have been omitted, leading to the factor S[φ̄]2 in the formula. The function φ̄ is

the classical Euclidean solution of the equations of motion derived from the Lagrangian in
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Eq. (1) with inverted potential and the boundary conditions

lim
τ→∞

φ̄(τ, ~x) = φ−, (3)

where φ− denotes the false vacuum and

∂τ φ̄(0, ~x) = 0. (4)

In addition the solution should be non-trivial in the sense that φ̄(0, ~x) = φb is close to

the new vacuum. The corresponding solution is usually called bounce configuration and a

typical potential is illustrated in Fig. 1.

V

φ+φ- φ
b

FIG. 1: The potential for a theory with a false vacuum.

The present work aims at determining numerically the bounce configuration φ̄ in theories

with several scalar fields. Thus, the parameters that are inferred about the phase transition

rely on the semi-classical expansion in Eq. (2), which can break down, e.g. for very weak

first-order phase transitions [19].

In addition, the potential is treated as static and it is assumed that the phase transition

occurs at some fixed temperature. Issues concerning the timing of the phase transition can

be decided on by comparing the nucleation rate with the corresponding cooling time scales,

such as the expansion rate of the Universe. This includes, for instance, the questions to

know if the vacuum resides in a metastable state until today or if the phase transition is

performed before the Universe cools down to a temperature where only a second-order phase

transition is possible [20].



4

A crucial question in this context, relevant to electroweak baryogenesis, is to see if the

phase transition is strong enough to avoid the washout of the generated baryon asymme-

try [21]. Fortunately, it turns out that the perturbative effective potential even slightly

underestimates the strength of the phase transition in the MSSM [22, 23].

Finally, for certain physical problems the knowledge of the prefactor in the decay rate of

Eq. (2) might be necessary, which we do not attempt to achieve. For a recent development

and a review on the topic, see Refs. [24, 25]. Since all these considerations are model-

dependent, we will focus in the following on the numerical determination of the bounce

solution.

The solution for one scalar field in the thin-wall regime can be analytically determined

by using the saddle-point method [3, 4]. Using the fact that there exists a solution that is

invariant under Euclidean four-dimensional rotations, and hence that only depends on the

combination

ρ =
√

τ 2 + x2, (5)

the corresponding action and equation of motion (EoM) read

S[φ(ρ)] = 2π2

∫

∞

0

dρ ρ3

[

1

2

(

dφ

dρ

)2

+ V (φ)

]

(6)

and
d2φ

dρ2
+

3

ρ

dφ

dρ
=

d

dφ
V (φ). (7)

Numerically, in the case with one field, this solution can be easily found by the

“overshooting–/undershooting” method. Varying the initial point φb and testing if the

configuration after integration of the EoM over– or undershoots the position φ−, the bounce

point φb and the corresponding configuration can be determined. Clearly this method can-

not be generalized to the multi field case, since starting at φ+ there is no viable strategy to

find the bounce point φb.

For tunneling in a thermal system, the O(4) symmetry is replaced by an O(3) symmetry

and the required solution is constant in time [5, 6, 7]. The corresponding action and EoM

read

S[φ(ρ)] = 4π

∫

∞

0

dρ ρ2

[

1

2

(

dφ

dρ

)2

+ V (φ, T )

]

(8)

and
d2φ

dρ2
+

2

ρ

dφ

dρ
=

d

dφ
V (φ, T ), (9)
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and the “overshooting–/undershooting” method can be utilized in a similar fashion. Gen-

eralizing these two cases and allowing for n scalar fields, the corresponding action yields

S̃α[φ(ρ)] =

∫

∞

0

dρ ρ(α−1)

[

1

2

(

dφ

dρ

)2

+ V (φ)

]

, (10)

where α = 3 (α = 4) in the temperature (vacuum) case, φ denotes a vector with n entries,

and a constant prefactor of the action is neglected. The n equations of motion read

d2φ

dρ2
+

(α − 1)

ρ

dφ

dρ
= ∇V (φ) (11)

and can be interpreted as a classical particle moving in the n-dimensional inverted potential

with a time-dependent damping term. In the thin-wall regime, where the maxima are almost

degenerate, V (φ+) ≈ V (φ−), one can determine the action analogously to that in Ref. [6],

as

S̃α[ρ̄] = − ρ̄α δV

α
+ ρ̄(α−1)S̃1, (12)

where δV denotes the potential difference between the two maxima and ρ̄ the radius of the

bubble. Minimization of the action leads to the radius of the bubble

ρ̄ = (α − 1)
S̃1

δV
, (13)

and yields the following estimate of the action in the thin-wall regime

S̃α[φ(ρ)] =
(α − 1)(α−1) S̃α

1

α δV α−1
. (14)

The problem is now to determine the bounce solution apart from the thin-wall regime.

Even with only two fields, it is a challenging task to find numerically the position φb where

the fields bounce. One possibility is, starting at φ−, to “scan” into different directions. For

two fields this seems to be feasible, but it clearly fails for more than two fields.

Alternatively, one could try to obtain the bounce solution by minimizing the action.

However, it was already pointed out by Coleman that the bounce is not a minimum of the

action but a saddle point [26]. In the following paragraphs we will briefly review former

techniques to solve this problem, before we discuss our approach in Sections III to V.

The first improvement was made in Ref. [27], where a tunneling amplitude in supergravity

is discussed. The authors identified the direction of the negative eigenvalue of the action

to be the scaling mode of the field φ. Accordingly, they minimized the action in several
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iterations and maximized it with respect to scaling, simultaneously. However, to determine

the directions orthogonal to scaling is numerically a difficult task. The authors reported

errors of 3–5% in the solution, which is due to the fact that the system converges to a point

where scaling and minimizing balance, and not to the real bounce solution.

This weakness was criticized in Ref. [28], where another paradigm was followed, the so-

called improved-action approach. The direction of the negative eigenvalue was lifted in the

vicinity of the bounce by using a generalized version of the viral theorem. To implement

this procedure successfully, one needs a configuration that is already close to the bounce.

Further approaches are based on minimizing an action that consists of the squared equa-

tions of motion [29, 30]. This method also depends on a good anticipation of the bounce. In

addition, it was reported in Ref. [30] that in certain cases the implementation is numerically

not stable in the sense that convergence to the bounce is not guaranteed and an oscillatory

behavior and unphysical solutions can evolve.

The last two methods are not well suited to problems with more than two fields, since a

good anticipation of the bounce is in this case usually not possible.

Another method based on performing a certain order of gradient descent and ascent steps

was applied in Ref. [31]. In this algorithm, the ascent steps ensure that the configuration

approaches a local extremum and not just a local minimum. Additionally, a second algorithm

based on a combination of the shooting and the gradient-descent method was presented in

this work. This second algorithm is slightly more technically involved than our proposal,

since it uses spline interpolation. These two algorithms have a similar range of validity

as our approach, but they are slower, so it is more numerically expensive to achieve high

accuracy.

To find the bounce solution, we split the problem into two parts. First, we determine the

solution without damping (α = 1). Subsequently, we perform a smooth transition to the

damped case of interest (α = 3 or α = 4). Neglecting the “damping” term is essential in

the first part, since the corresponding approach is based on the assumption that energy is

conserved and the bounce point φb is on the submanifold with potential equal to V (φ−) (as

already indicated in Fig. 1).
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III. IMPROVED POTENTIAL APPROACH

In this section we will present our approach to find the bounce solution in the undamped

case, α = 1.

First, notice that, even in the undamped case, the initial problem remains and the bounce

configuration is only a saddle point of the action. Intuitively, this can be understood as

follows. The undamped case can be interpreted as a particle moving freely in a potential.

To minimize the action, the system tries to avoid valleys, and hence moves fast in them. If

the system has a long time to evolve, the global minimum of the action is given by a field

configuration that shoots up to the maximum of the inverted potential φ+ and stays there

as long as possible, only restricted by the boundary conditions. Thus, the bounce solution

cannot be a global minimum of the action.

Furthermore, close to the bounce solution that fulfills the boundary conditions:

φ(0) = φb, φ(∞) = φ−, (15)

the action can be reduced by increasing ∂ρφ(0) in the direction of maximal slope (towards

φ+). Hence the bounce configuration constitutes a saddle point of the action, even though

the “damping” term is neglected. Notice that in the case of degenerate minima the negative

eigenvalue corresponding to the instability of the saddle point [27] becomes zero and reflects

the invariance under translation in the coordinate ρ. The solution of the degenerate case

without damping can be easily obtained by minimization of the action, and the subtlety of

instabilities appears only if the minima are non-degenerate.

Our starting point for the determination of the bounce solution is the configuration

restricted by the following boundary conditions at the maxima of the inverted potential:

φ(0) = φ+, φ(T ) = φ−, (16)

where T is a time scale that is sent to ∞ iteratively. Given that φ+ is the global maximum

of the inverted potential, there exists a solution with these boundary conditions that indeed

is a minimum of the action in Eq. (10) and can therefore be found by simply discretizing

the field configuration and minimizing the action using the Newton method.

In the case of non-degenerate minima the resulting configuration is not the bounce. Our

goal is to modify the potential in such a way that the minimization of the standard action
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with modified potential leads first to a good prediction of φb and finally to the bounce

configuration. With respect to the original problem, only changes in the potential are

performed, and an interpretation in terms of a classically moving particle is viable throughout

the present discussion.

In a first step the potential is changed by performing the following transformation:

Uǫ(φ) =
V (φ) − V (φ−)

2
+

√

(V (φ) − V (φ−))2

4
+ ǫ2. (17)

For finite ǫ, this modifies the potential in a differentiable way and in the limit ǫ → 0

transforms the potential in such a way that it is unchanged (besides a constant) for V >

V (φ−) and develops a constant plateau in the region with V 6 V (φ−).

In the simultaneous limits

ǫ → 0, T → ∞, (18)

the minimum of the modified action will determine the bounce solution. Here, the uniqueness

of the minimum of the action is assumed, even though in some cases this is not valid [32].

To show that this minimum determines the bounce configuration, the configuration that

corresponds to the minimum of the modified action is split into two parts. The first part

consists of the path in the plateau, while the second part is outside the plateau, and both

are connected by a point φe = φ(te) that is defined by V (φe) = V (φ−). The path in the

plateau does not contribute to the action in the limit te → ∞, ǫ → 0, and hence does not

restrict the point φe or the path outside. In the limit ǫ → 0, the path outside the plateau

fulfills the Euler–Lagrange equations in the original potential V (φ). Using the fact that,

in this limit, Uǫ(φ−) and Uǫ(φe) both approach the global maximum Uǫ(φ+) of the inverted

potential, leads to the fact that

∂ρφ(te) → 0, ∂ρφ(T ) → 0 (19)

in the limit (T − te) → ∞. Hence, the path outside the plateau defines a bounce solution in

this limit according to Eqs. (3) and (4).

For finite ǫ and T , the field configuration will move very slowly in the plateau from φ+

to φe (a point at a distance O(ǫ, 1/T ) to φb) and then move from φe to φ−, much as the

bounce solution. This way, a fairly good estimate of the bounce configuration and of φb

is obtained even for finite ǫ and T . On the other hand, this configuration still misses one

typical feature of the bounce, namely the exponential behavior of φ̄ close to φ−. Of course,
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this feature appears in the limit of Eq. (18), but the numerical stability and performance

of the algorithm can be improved by an additional change of the potential. The reason for

the absence of the exponential behavior is that, since the global minimum of the potential

is still close to φ+, the configuration spends most of the time in the plateau. To avoid this

effect, another term can be added to the potential, of the form

Ũǫ(φ) = Uǫ(φ) + ∆Uǫ(φ) (20)

∆Uǫ(φ) = −2ǫ
|φ − φ−|3
|φ+ − φ−|3

+ 3ǫ
|φ − φ−|2
|φ+ − φ−|2

. (21)

This additional contribution is designed to lift the potential so that

0 . Ũǫ(φ+) − Ũǫ(φ−) . O(ǫ) (22)

and the corresponding solution shows the exponential behavior close to φ−. This lifting

is in principle not necessary, but it improves the performance of the algorithm drastically.

Initially, a reasonable choice for ǫ is

ǫinit = V (φ+) − V (φ−), (23)

while for T a time that approximately corresponds to 20 times the thickness of the wall is

appropriate. The wall thickness can be anticipated by determining the local minimum of

the inverted potential and |φ− − φ+|

Tinit = 20 × |φ− − φ+|
√

8|Vmax − Vmin|
. (24)

By the procedure described above one obtains a good estimate φe of the bounce point

φb and a configuration close to the desired bounce configuration. The convergence can be

further improved by truncating the part of the configuration in the plateau. The boundary

conditions are accordingly changed to

φ(0) = φe, φ(T ) = φ−, (25)

where φe initially denotes the position that corresponds to the point with V (φe) = V (φ−)

on the field configuration that was obtained by taking the previously described steps. In

the next minimization procedure, φe is allowed to move freely on the submanifold with

V (φe) = V (φ−) so that φe → φb is ensured. While minimizing the action with the potential
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FIG. 2: The bounce configuration in the one-dimensional degenerate case. The deviations from

the exact analytic result are O(10−4).

Ũǫ(φ), ǫ can be iteratively sent to zero until the numerical uncertainties inhibit further

improvement of the bounce configuration.

To truncate the configuration in the plateau is helpful for two reasons. First, the energy is

conserved and is exactly V (φ−) for the bounce solution. The motion in the plateau from φe

to φ+ contributes at least (φe − φ+)2/2T 2 to the kinetic energy, which requires very large T

for accurate results. This would lead to large lattices, provided the physical lattice spacing

is kept constant. This effect is avoided by starting at φe. Secondly, since Ũǫ(φ) is very flat

in the plateau for ǫ → 0, the convergence of the Newton method is very poor in this region.

Starting at φe, the field never enters the plateau.

Even though the changes outside the plateau are only marginal for ǫ → 0, it is clear, from

classical reasoning, that this procedure stabilizes the unstable mode of the original action.

IV. NUMERICAL RESULTS OF THE UNDAMPED CASE

As a first example, the degenerate case is demonstrated. Our approach is applied to the

following potential with one scalar field and degenerate minima

V (φ) = 2(φ − 1)2φ2. (26)
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FIG. 3: Potential V and kinetic energy Ekin of the one-dimensional configuration. The total

energy E = Ekin − V is conserved up to 0.1%.

The resulting configuration and the deviation from the exact analytic result are plotted in

Fig. 2. The deviation from the exact solution is O(10−4) and mostly due to the finite lattice

spacing. Another test is provided by the kinetic energy that should vanish in the limits

ρ → 0 and ρ → T . This was not enforced by the boundary conditions since the start and

end-point of the configuration are used as boundary conditions of the discretized action, as

given in Eq. (16) or Eq. (25). In addition one can analyze the conservation of energy. These

tests are displayed in Fig. 3.

In the second example, a non-degenerate potential for the multi scalar case is analyzed,

namely

V (φ) = 16(φ1 − 1)2φ2
1 + 2 φ2

2 + c1 φ1 + c2 φ2φ1(φ1 − 1). (27)

The third term dissolves the degeneracy of the minima and is chosen to be rather small

(c1 = −0.1). The last term gives a non-trivial dynamics in the φ2 direction (c2 = 8.0). The

numerical results are depicted in Figs. 4 and 5. The results show the expected exponential

behavior close to φ− and a parabolic shape near φb. The energy is again conserved up to

the per mille level. Especially the parabolic shape with ∂ρφ = 0 at the bounce point φb in

Fig. 4 is a clear indication of the high precision of our numerical approach, since because of

the lift of the potential in Eq. (21), the kinetic energy is there O(ǫ).

Note that the shape of the field φ2 is not of the usual hyperbolic tangent form, and
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FIG. 4: The bounce configuration in the two-dimensional non-degenerate case. The exponentially

decreasing tail [0, 250] has been cut off.
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FIG. 5: Potential V and kinetic energy Ekin of the two-dimensional configuration. The total

energy E = Ekin −V is conserved up to 0.1%. The exponentially decreasing tail [0, 250] has again

been cut off.

not even monotonically increasing; hence one cannot obtain a good estimate of the bounce

configuration by minimizing the action with respect to a specific ansatz, as was done in

Ref. [30].
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V. CONTINUATION TO THE DAMPED CASE

To perform the continuation from the undamped case (α = 1) to the damped case, a

numerical method to solve the discretized version of Eq. (11) with the boundary conditions

as given in Eqs. (3) and (4) is needed. In the present work the following discretized form of

the EoM has been used:

φi+1 − 2φi + φi−1

dρ2
+

α − 1

(i + ∆i)dρ

φi+1 − φi−1

2 dρ
= ∇V (φi), i ∈ [1, n − 1], (28)

with the boundary conditions

φ0 = φ1, φn = φ−, (29)

where φi constitutes the one-dimensional lattice (i ∈ [0, n]). This discretization has the

virtue to be derived from the energy functional

H =
∑

i

i2V (φi) +
∑

i

(i2 + i)
(φi+1 − φi)

2

2dρ2
(30)

and reproduces the continuum energy with an error of O(dρ2).

The offset parameter ∆i has been introduced to improve the performance of the algorithm,

since an initial value of ∆i = 0 can easily lead to a pathological behavior close to i = 0.

Finally, this parameter has to be sent to zero.

One way to obtain a solution of this system, is to use the method of squared equations

of motion, as was done in Refs. [29, 30]. However, since the algorithm in the last sections

provides fairly good estimates φ̃i of the solution, we pursue another possibility. Using the

Taylor expansion of the gradient field

∇V (φi) ≈ ∇V (φ̃i) + (φi − φ̃i) · ∇(∇V (φ̃i)), (31)

we can linearize the system of equations and iteratively solve the equations by inversion

of the linear system. Since the matrix corresponding to this system of equations is band

diagonal, its inversion is easily performed. The original system of equations in Eq. (28) is

then solved iteratively by using the linearized system. Notice that the original potential is

used and not the modified potential that has been utilized in the minimization of the action

in the last section.

This method has been applied to the non-degenerate example of the last section and

the results are briefly displayed in the following. Starting point of the continuation are the
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FIG. 6: The fields φ1 and φ2 during the continuation for several values of α and ∆i = 300.
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FIG. 7: Contour plot of the potential and several trajectories.

damping parameter α = 1, an offset ∆i = 300, a time scale dt = 0.0158, and a lattice of

size n = 400. As initial configuration, the one generated by the improved-potential method

is used, as discussed in the last section.

The parameter α is increased by steps of size δα = 5 × 10−3 and the linear system in

Eq. (28) is solved iteratively for each parameter set and some obtained configurations are

plotted in Fig. 6. The contour of the potential and several trajectories are depicted in Fig. 7.

As soon as the size of the bubble

ρ̄ = (α − 1)
S̃1

δV
− ∆i dt, (32)
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lattice sites S3 ∆S3

100 725.819

200 726.957 1.137

400 727.239 0.282

800 727.309 0.070

1600 727.326 0.017

TABLE I: The action S3 for different numbers of lattice sites. The change in the action ∆S3

behaves as O(δρ2). The error of the largest lattice can be estimated to be 5×10−3 what corresponds

to a relative error of 7 × 10−6.

is larger than the wall thickness, an increase in α or a decrease in ∆i results almost only in

a translation of the configuration. If this translation is anticipated, a faster continuation in

the parameters α and ∆i becomes possible.

Since solving the linearized system of equations is not very time consuming, the accuracy

of the result is in principle only limited by the finite size of the lattice and the accuracy of

the numerical representation. This can be demonstrated by increasing the number of lattice

sites and the results are summarized in Table I. The relative error in the action S3 behaves

as expected as O(δρ2) and reaches approximately 7 × 10−6 for the largest lattice that was

used. Errors of O(δρ4) can be obtained by extrapolation of the action to vanishing δρ. In

comparison, using the method of squared EoM or one of the algorithms of Ref. [31] is much

more time consuming and leads to inferior accuracy.

VI. CONCLUSION

We presented a numerically stable and easily implemented algorithm to determine prop-

erties of phase transitions with several scalar fields. We demonstrated our approach in the

simplest one-dimensional and in a non-trivial two-dimensional example. The approach we

suggest converges with high precision to the bounce configuration. During the minimiza-

tion neither oscillatory nor unphysical solutions have been encountered, in contrast to the

approach followed in Ref. [30].

Our approach was based on a procedure consisting of two steps. First, we determined the
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bounce solution in the undamped case, using a novel algorithm. Secondly, a smooth contin-

uation was performed to the physical case, turning on the damping term in the EoM. Note

that the sole purpose of the undamped solution is to serve as an initial configuration for the

continuation. In contrast to the configuration without damping, the damped configuration

usually shares more characteristics with the typical solution in the degenerate case, namely

a bubble size much larger than the bubble wall thickness and an exponential behavior close

to both maxima. Hence the action determined in the thin-wall regime as given in Eq. (14)

is typically more accurate than using the configuration of the undamped case in the action.

The main advantage of our approach, besides the very high accuracy, is the large range

of applicability. The convergence of our algorithm does not rely on a good anticipation of

the bounce and is hence well suited to treat multi dimensional phase transition problems. In

a forthcoming publication the method we presented will be used to analyze the electroweak

phase transition in the nMSSM [33].
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