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We compare fully differential exact results for the virtual photon correction to single hard photon
bremsstrahlung obtained using independent calculations, both for e�e� annihilation at high-energy
colliders and for radiative return applications. The results are compared using Monte Carlo evaluations
of the matrix elements as well as by direct analytical evaluation of certain critical limits. Special attention
is given to the issues of numerical stability and the treatment of finite-mass corrections. It is found that
agreement on the order of 10�5 or better is obtained over most of the range of hard photon energies, at
CMS energies relevant to both high-energy collisions and radiative return experiments.
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I. INTRODUCTION

The single hard bremsstrahlung process is critical in
precision studies of standard model physics over a wide
range of scales, from the 1 GeV regime, where it is
exploited in radiative return studies of intermediate-energy
hadron physics, to the 100 GeV regime and beyond, where
it is used for radiative return studies of the Z resonance.
Construction of a future linear collider would push the
energy range of interest toward the TeV regime.
Precision studies of per mille level effects in any of these
regimes requires exact calculations of all QED effects at
order �2. For radiative return, this means that the virtual
photon corrections to single hard photon radiation must be
included.

Exact results for the virtual corrections to single hard
bremsstrahlung have been studied by a number of groups
[1–4]. Comparisons of these results are important to be
certain of their correctness at a high level of precision. In
Ref. [3], we have previously presented comparisons of the
results in Refs. [1–3], and in general a very good agree-
ment was found. However, it is clear from the comparisons
in Ref. [3] that small differences appear at the level of the
next-to-next-to-leading-log (NNLL), suggesting differ-
ences in the levels of ‘‘exactness’’ in the calculations.

These differences are largely due to how differential the
results are, and how the mass corrections are included.
Both Ref. [3] (JMWY) and Ref. [1] include mass correc-
tions, but the former is fully differential, while the latter
averages over the photon angle. The results of Ref. [2] are
fully differential, but the mass corrections are neglected.
These comparisons therefore are not a complete test of the
results in Ref. [3] at the NNLL level.

Another calculation of the exact virtual corrections to
single hard bremsstrahlung has appeared recently. An exact
differential result including mass corrections needed for an
accurate calculation of collinear emission is presented in
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Ref. [4] (KR). This result was obtained for use in radiative
return studies of hadronic final states [5–7]. The virtual
correction without explicit mass terms [8] was obtained for
use in tagged photon experiments, and this was extended to
the small angle regime for untagged experiments with the
inclusion of finite-mass corrections [4], which become
significant in collinear emission, even in very high-energy
collisions.

The results of KR have been implemented in the
PHOKHARA MC [4,8–10], while the results of Ref. [3]
have been implemented in the KK MC [11]. In Ref. [12],
an indirect comparison of the JMWY and KR results has
been reported via comparison of the PHOKHARA and
KK MC’s. Agreement at the per mille level was reported
for selected observables. Further comparisons of these
MC’s were reported in Ref. [13], where the effect of
including YFS (Yennie-Frautschi-Suura) exponentiation
[14] in the KK MC versus the unexponentiated approach
of PHOKHARA plays an important role in the differences
found.

Presently, our interest is not in comparing the MC’s but
in comparing the order �2 matrix elements for hard photon
emission used in each. A direct comparison of the matrix
elements JMWYand KR was reported in Ref. [15], using a
common MC evaluation of both expressions. It was found
that the expressions agree to 1:5� 10�5 units of the Born
cross section for a photon energy below 95% of the beam
energy at 200 GeV CMS energy.

This level of agreement was the result of careful ana-
lytical work to cancel large terms in the expressions of KR.
The published matrix elements of KR and JMWY have
very different forms, which is evident in part from the
appearance of mass corrections proportional to �pi � k��2

and �pi � k��3 in the expressions of KR, where pi is an
incoming fermion momentum and k is the emitted hard
photon momentum. Such terms are absent in the JMWY
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expression, and we have verified that they cancel exactly in
the KR expression as well, although this is not immediately
obvious. This cancellation should be implemented analyti-
cally to obtain a stable MC comparison of the results. Such
an analytical cancellation is presented here.

The functions used to construct the stable comparisons
were introduced in Ref. [16]. A proof that the massless
limits of the KR and JMWY expressions agree at next-to-
leading-log (NLL) order was sketched and the size of the
difference in the mass corrections was calculated in
Ref. [17]. MC results for a comparison of the matrix
elements in the 1 GeV radiative return regime were also
obtained [18]. In this paper, we will present details of the
stabilization procedure needed for very high precision
comparisons, and present new MC comparisons which
use these versions of the matrix elements, which have
been improved since the publication of Refs. [15–18] for
better behavior at lower CMS energies.

An important part of this comparison is an examination
of the finite-mass corrections used in the virtual corrections
of KR and JMWY. The electron mass terms containing
denominators of the form pi � k give contributions of the
same order as some of the ‘‘massless’’ contributions upon
integration. Therefore, the finite-mass corrections of both
calculations are compared explicitly, and it is shown that
both mass corrections are identical to NLL order. This
supplements the result that the massless results agree to
NLL order, showing that the complete virtual corrections
agree up to NNLL terms. These NNLL terms are the
subject of the numerical comparisons, both with and with-
out mass terms.

We need to point out that both approaches to the exact
mass corrections discussed here, that used by JMWY and
that used by KR, should have the property that, upon
integrating over the final phase space, the resulting inte-
grated cross section should contain all finite terms that do
not vanish for m2

e=s! 0. Both approaches use expansions
therefore in the parameterm2

e=s. The JMWYapproach uses
the expansion constructed by Ref. [19]. The KR approach
uses the expansion of the respective leptonic tensor coef-
ficients through terms of order m4

es=�2k � pi�3, where k is
the radiated real photon four momentum and pi is an
incoming e� or e� four momentum. It is therefore impor-
tant to know the relationship between these expansions
both numerically and theoretically. We address this rela-
tionship matter in what follows.

The structure of this paper is as follows. In Section II, the
matrix elements of JMWY and KR are displayed explicitly
in a compatible format appropriate for comparisons, with-
out the mass corrections in each case. Both forms of the
matrix elements are shown in a form explicitly stable in
collinear limits, which is suitable both for MC evaluation at
very high precision, and for an analytical investigation of
the collinear limits. A comparison of the collinear limits is
presented in Section III, demonstrating that both matrix
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elements agree to NLL order when the explicit mass terms
are omitted. Section IVexamines the mass terms which are
added in each case, and verifies that these both agree as
well to NLL order, and to NNLL order in the soft limit. A
numerical comparison of the matrix elements is presented
in Section V, both at 1 GeV and 500 GeV CMS energies.
Finally, Section VI summarizes our conclusions, and the
appendix presents details on the special functions intro-
duced to stabilize the collinear limits.
II. VIRTUAL CORRECTIONS TO INITIAL-STATE
RADIATION

The process we consider is initial-state radiation (ISR)
in e�e� ! ����, where one real and one virtual photon
are radiated on the electron-positron line. In Ref. [3], the
matrix element was evaluated using helicity amplitude
techniques of CALKUL [20], Xu et al. [21], and Kleiss-
Stirling [22], together with algebraic simplification using
FORM [23]. The mass corrections were then added follow-
ing the methods in Ref. [19], after checking that the exact
expression for the mass corrections differs from the result
obtained by the latter methods by terms which vanish as
m2
e=s! 0 in the integrated cross section, where me is the

electron mass and s is the squared CMS energy.
In Ref. [4], the same ISR matrix element’s interference

with the Born process is calculated in terms of a leptonic
tensor in such a way that all mass effects relevant in the
collinear limits are obtained using an expansion in powers
of m2

e=pi � k. Thus, comparison of the two sets of results
gives important information on the two different methods
of calculation and on the two different treatments of the
mass corrections.

The JMWY result used in these comparisons will be
evaluated without Z boson exchange, to match the calcu-
lation of KR. We denote the four momenta and helicity of
the e�, e�, f, and �f as pj and �j, j � 1; . . . ; 4, respec-
tively. The tree-level cross section for single hard ISR for
QED alone may be written as

d�ISR�0�
1

d�dr1dr2

�
1

16�4��4
X
�i;�

jMISR�0�
1 j2; (1)

where the squared matrix element, summed over helicities,
is

X
�i;�

jMISR�0�
1 j2 �

16e6

s2s0r1r2

�
�t21 � u

2
1�

�
1�

2m2
er1

s0r2

�

� �t22 � u
2
2�

�
1�

2m2
er2

s0r1

��
; (2)

with s � �p1 � p2�
2, s0 � �p3 � p4�

2, t1 � �p1 � p3�
2,

t2 � �p2 � p4�
2, u1 � �p1 � p4�

2, u2 � �p2 � p3�
2, ri �

2pi � k=s, and the solid angle d� refers to the direction of
p3 � p4 relative to p1 � p2 in the CM frame of the out-
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going fermions. The explicit mass corrections in Eq. (2) are
those obtained using the method of Ref. [19].

The same tree-level matrix element may be expressed in
terms of the leptonic tensor L�� of Refs. [4,8]. In the same
notation, the leading-order contribution to the leptonic
tensor may be written (in the normalization of Ref. [8])

L��0 �
e4

s�s0�2r1r2

fa�0�00 s�
�� � a�0�11p

�
1 p

�
1 � a

�0�
22p

�
2 p

�
2

� a�0�12 �p
�
1 p

�
2 � p

�
2 p

�
1�g (3)

with

a�0�00 � ��1� r1�
2 � �1� r2�

2 �
2m2

ezv
2

sr1r2
;

a�0�11 � �4z�
8m2

er1

sr2
;

a�0�22 � �4z�
8m2

er2

sr1
;

a�0�12 �
�8m2

e

s
;

(4)

where z � s0=s � 1� v with v � r1 � r2. This may be
contracted with a final state tensor for a muon line,

M�� � e2fp�3 p
�
4 � p

�
4 p

�
3 � �p3 � p4����g; (5)
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to obtain the same squared matrix element as in Eq. (2),
X
�i;�

jMISR�0�
1 j2 � 16L�0���M��

�
8e6

s�s0�2r1r2

f�ss0�2a�0�00 � a
�0�
12 � � a

�0�
11 t1u1

� a�0�22 t2u2 � a
�0�
12 �t1t2 � u1u2�g; (6)

where the coefficient is chosen to match the normalization
of Eq. (2), and explicit mass terms are kept only when
enhanced by collinear factors. The mass terms in Eqs. (2)
and (6) agree in the collinear limits where ri is of order
m2
e=s.
The initial-state virtual photon corrections to the cross

section may be expressed as

d�ISR�1�
1

d�dr1dr2

�
1

16�4��4
X
�i;�

2 Re��MISR�0�
1 �	MISR�1�

1 
; (7)

where the matrix element for hard photon initial-state
emission with one virtual photon may be expressed as

M ISR�1�
1 �

�
4�

MISR�0�
1 �f0 � f1I1 � f2I2�; (8)

where fi are scalar form factors and Ii are spinor factors
defined in Ref. [3]:
I1 � ��3s�1
�p1; k�s��1

�p2; k�
s�3
�p4; p2�s��3

�p2; p3� � s�3
�p4; p1�s��3

�p1; p3�

s���p1; p2�s���p3; p4�s2
��p21; p34�

; (9a)

I2 � �1�3

s�1
�p1; k�s��1

�p2; k�s�3
�p4; k�s��3

�p3; k�

s���p1; p2�s���p3; p4�s2
��~p12; p34�

; (9b)

where �i is the helicity of the fermion with momentum pi and � is the photon helicity. The spinor product is s��p; q� �
�u���p�u��q�, and

�pij; ~pij� �
�
�pi; pj�
�pj; pi�

for � �
�
�i
�j

: (10)

The form factors fi are given (without mass corrections) by

f0 � 4�BYFS�s� � 2�L� 1� i�� �
r2

1� r2
�

r2�2� r1�

�1� r1��1� r2�

�
ln
�
r2

z

�
� i�

�
�

�
3v�

2r2

1� r2

�
Lf1��v�

�
v

�1� r2�
R1�r1; r2� � r2R1�r2; r1�; (11a)

f1 �
r1 � r2

2�1� r1��1� r2�
�

z
�1� r1��1� r2�

�
r2 �

1� z
2�1� r1�

��
ln
�
r2

z

�
� i�

�
�

z
1� r2

�
1

2
R1�r1; r2� � r2R2�r1; r2�

�

�
v
4
fR1�r1; r2���;1 � R1�r2; r1���;�1g; (11b)

f2 � v�
r1r2 � v=2

�1� r1��1� r2�
� 2vzLf3��v� �

z
�1� r1��1� r2�

�
2� r2 �

r2 � r1

2�1� r1�

��
ln
�
r2

z

�
� i�

�

�
z

1� r2

�
1

2
R1�r1; r2� � �2� r2�R2�r1; r2�

�
�
r1 � r2

4
fR1�r1; r2���;1 � R1�r2; r1���;�1g (11c)

for photon helicity � � �1. When � � ��1, r1, and r2 must be interchanged. Here, L � ln�s=m2
e� is the ‘‘large

logarithm’’ which may be used in a leading log expansion of the results. Thus, leading log (LL) refers to order L2,
-3
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NLL to order L, and NNLL to order L0 � 1 in this expansion.
The infrared divergence is contained in the virtual YFS form factor defined by [14]
4�BYFS�s� �
�
2 ln

m2
	

m2
e
� 1

�
�L� 1� i�� � L2 � 1�

4�2

3
� i��L� 1�: (12)
We also make use of functions
R1�x; y� � Lf1��x�
�
ln
�
1� x

y2

�
� 2�i

�
�

2�1� x� y�
1� x

Sf1

�
y

1� x
;
x�1� x� y�

1� x

�
; (13a)

R2�x; y� � Lf1��x� �
1

2
Lf2

1��x� �
x

x� y
Lf2��x� �

y
�x� y��1� x� y�

Lf2

�
y

1� x� y

�
� Lf2��x��lny� i��

�

�
1� x� y

1� x

�
2
Sf2

�
y

1� x
;
x�1� x� y�

1� x

�
; (13b)
with Lfn�x�, Sfn�x; y� defined in Eq. (A1a) of the appendix.
The functions Lfn and Sfn play an important role in

canceling large factors in differences between logarithms
or dilogarithms with slightly different arguments.
Therefore, although the expressions for f0, f1, f2 are
analytically equivalent to those of Ref. [3], they are more
stable when evaluated numerically. The functions R1 and
R2 are related to the function R used in Ref. [3] by

R1�x;y� �
1

x
R�x;y�;

R2�x;y� �
1

x

�
1

2
R1�x;y��Lf1��x�� ln

�
y

1� x� y

�
� i�

�
:

(14)

The functions Ri are defined so that both are finite for
x; y! 0 with x, y positive. This implies that f1 and f2 are
finite for r1; r2 ! 0. The spinor products I1 and I2 vanish in
this limit, since js��pi; k�j2 � sri. Therefore, the f1 and f2

terms are absent in the collinear limits.
The virtual corrections a�1�ij to the coefficients aij are

calculated without explicit mass terms in Ref. [8]. The
infrared divergence in that result is canceled by adding
the contribution of an additional soft real photon with
energy below a cutoff vmin as a fraction of the beam energy.
To facilitate comparisons, the additional soft photon con-
tribution will be removed, so that the pure virtual correc-
tions are compared in each case. This requires
decomposing the infrared-divergent term

aIR
ij � a�0�ij

�
2�L� 1� lnvmin �

3

2
�L� lnz� � 2�

�2

3

�

(15)
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in Ref. [8] into a virtual contribution a�0�ij FIR and a con-
tribution due to an additional real soft photon. The correct
decomposition is found to be

aIR
ij � a�0�ij �FIR � 2� ~BYFS�s; vmin�� (16)

with

FIR � 2�ReBYFS�s� � L� 1� 3
2 lnz (17)

and the real YFS soft photon form factor

2� ~BYFS�s;vmin� � �L� 1�
�
ln
m2
e

m2
	
� 2 lnvmin

�
�

1

2
L2�

�2

3
:

(18)

This can be verified by comparing the soft limit of the
virtual correction to the known result, as is done at the end
of this section.

We will use the functions Lfn and Sfn defined in the
appendix to stabilize the results and clarify the collinear
behavior. Then aij � a�0�ij �

�
� a
�1�
ij , with

a�1�ij �
�
�
�a�0�ij FIR � a

�1;0�
ij � a�1;m�ij �; (19)

where the massless parts a�1;0�ij of the non-IR-divergent part
of the virtual corrections are given by
-4
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a�1;0�00 �
vz
4
�
r1r2

2
�
z
2

lnz� r1r2Lf1��v��
r2

2

�
4� r2�

3�1� z�
1� r1

�
ln
�
r2

z

�
�

�
r1�

r2

z
�1��1� r2�

2


�

�

�
z ln

�
r2

z

�
Lf1��r1��Sf1

�
�
r1

z
;�

r2

z

��
��r1$ r2�; (20a)

a�1;0�11 � 3� z�
�1� z�2

1� r1
� 6 lnz� 4Lf1��v�� 4�1� r1� r1r2�fLf1��v��Lf2��v�g

� 2
�
v
z
� z�1� r2�

�
Lf1

�
r1r2

z

�
� 2�1� z�

�
�1� r2�Lf1��r2��Lf1

�
�r1

1� r2

�
�
v
z

Lf1

�
r2

z

��
� 2Lf1��r1�

�
2

z
Lf1

�
r1

z

�
� 2r2z ln

�
r1

z

�
fLf1��r2��Lf3��r2�g� r1z ln

�
r2

z

��
r1

�
1� r2

1� r1

�
2
� 4Lf1��r1�� 2�1� r2�

2Lf3��r1�

�

� 2r2Sf1

�
�r1

z
;
�r2

z

�
�

2

z
Sf2

�
�r1

z
;
�r2

z

�
� 2�2� r1� 2r2�Sf1

�
�r2

z
;
�r1

z

�
� 2zSf2

�
�r2

z
;
�r1

z

�
; (20b)

a�1;0�22 � a�1;0�11 �r1$ r2�; (20c)

a�1;0�12 �
z�1� z�

2�1� r1��1� r2�
� 2r1r2�

v
2
� zLf1��v�� 2z�1� r1r2�Lf2��v�� zLf1

�
r1r2

z

�

� 2z�r1r2� r2� 1�
�

1

1� r1
�Lf2��r1�

�
ln
�
r2

z

�
�

z2

�1� r2�
2 ln

�
r2

z

�
� 2�1� r1�Sf1

�
�r1

z
;
�r2

z

�

� 2Sf2

�
�r1

z
;
�r2

z

�
��r1$ r2�: (20d)
These expressions are exactly equal to those of Ref. [8], but
written in terms of the functions Lfn and Sfn.

A comparison of the collinear limits of the two matrix
elements will be presented in the following section. A
numerical study comparing these two forms of the virtual
photon correction to hard bremsstrahlung will be presented
in Section V, together with a comparison of the mass
corrections added to obtain the complete matrix elements
in each case.

III. NLL COMPARISON OF THE MATRIX
ELEMENTS

In this section, we will verify that the expressions of
Refs. [3,8] agree analytically to NLL order, meaning that
they agree through order Lwhen integrated over ri. For this
purpose, we may examine both expressions in the limit of
collinear emission, which is sufficient to determine the
NLL result. We will consider the particular limit where
r1 becomes small, so that the photon is collinear with the
incoming electron.

In the collinear limits, the virtual correction to the
squared matrix element is proportional to the tree-level
result,
X
�i;�

2 Re�MISR�0�	

1 MISR�1�
1 � �

�
2�

RehfNLL
0 i

X
�i;�

jMISR�0�
1 j2;

(21)
073001
where hfNLL
0 i is the average of f0 over helicities, evaluated

for small r1 or r2 small, [3]
RehfNLL
0 i � 2�ReBYFS�s� � L� 1� 3 ln�1� r1�

� 2 lnr1 ln�1� r2� � ln2�1� r1� � 2Sp�r1�

�
r1�1� r1�

1� �1� r1�
2 � �r1 ! r2�: (22)
Since the f1, f2 terms in Eq. (8) both vanish in collinear
limits, they do not contribute to NLL order. In the limit
when r1 ! 0, the NLL expression may be written in the
form
RehfNLL
0 �r1 ! 0�i � FIR � 2 lnz lnr1 � ln2z� 2Sp�v�

�
vz

1� z2 : (23)
The result of Ref. [8] can be compared to this expression
using Eq. (6) with a�0�ij replaced by a�1�ij in the collinear
limit. The virtual correction to the squared matrix element
may be written
X
�i;�

2 Re�MISR�0�	

1 MISR�1�
1 � � 16L�1���M�� �

�
2�

�
2FIR

X
�i;�

jMISR�0�
1 j2 �

8e6

s�s0�2r1r2

��ss0�2a�1;0�00 � a�1;0�12 � � a
�1;0�
11 t1u1

� a�1;0�22 t2u2 � a
�1;0�
12 �t1t2 � u1u2�


�
: (24)
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In the collinear limit, this expression should again be proportional to the tree-level result, Eq. (2) without the mass terms.
When r1 is small, t2 � zt1 �O�r1� and u2 � zu1 �O�r1�, allowing Eq. (24) to be written as

X
�i;�

2 Re�MISR�0�	

1 MISR�1�
1 � �

�
2�

�
f0
X
�i;�

jMISR�0�
1 j2 �

4e6�

szr1r2

�
(25)

with

f0 � 2FIR �
1

a�0�00

�
a�1;0�00 �

�

4

�
; � �

a�1;0�11

z
� za�1;0�22 � 2a�1;0�12 � 4a�1;0�00 ; (26)

where a�0�00 � ��1� z
2� is the massless limit of the tree-level coefficient. When r2 is small, the same form is obtained with

a11 and a22 interchanged.
We may check that � � 0 and f0 � Re f0 in the collinear limits. Evaluating the coefficient functions in the limit when k

is collinear with p1 gives

a�1;0�00 �r1 ! 0� � �
vz
2
� �1� z2�f12ln

2z� lnz lnr1 � Sp�v�g; (27a)

a�1;0�11 �r1 ! 0� � 3� 2z� 2 lnr1fz lnz� Lf1��v� � Lf2��v� �
1
2�1� v�g � lnzfLf1��v� � 2Lf2��v� � 8g

� zln2z� 2zSp�v� � 11Lf1��v� � Lf2
1��v� � 5Lf2��v� � 2Sf1�0; v� � 2Sf2�0; v�; (27b)

a�1;0�22 �r1 ! 0� �
1

z
� 2z� lnr1

�
1

z
� 4z lnz� 2Lf1��v� � 2Lf2��v�

�
� lnz

�
Lf1��v� � 2Lf2��v� �

3

z
� 4

�

� 2zln2z� Lf1��v�
�
2

z
� 7

�
� 4zSp�v� � Lf2

1��v� � 5Lf2��v� � 2Sf1�0; v� � 2Sf2�0; v�; (27c)

a�1;0�12 �r1 ! 0� � 3� z� lnr1f1� 2Lf1��v� � 2Lf2��v�g � lnzfLf1��v� � 2Lf2��v� � 6� 2zg � 10Lf1��v�

� Lf2
1��v� � 5Lf2��v� � 2Sf1�0; v� � 2Sf2�0; v�: (27d)
Combining these relations confirms that � � 0 and f0 �
Re f0, so the results have the same collinear limits without
explicit mass terms. This implies that the results without
mass terms agree to NLL order.

Since the collinear limits agree, the soft limits also
agree. Specifically, for v! 0,

a�1;0�00 � 0; a�1;0�11 � a�1;0�22 � a�1;0�12 � �3; (28)

and f0 � Re f0 � 4�ReBYFS�s� � 2�L� 1�. This verifies
that the virtual part of the infrared contribution was iden-
tified correctly in Eq. (16).

IV. COMPARISON OF MASS CORRECTIONS

Explicit mass corrections are added in the JMWY result
via the prescription of Ref. [19] and Sec. 3 of Ref. [24],
leading to a correction which may be expressed as

X
�i;�

2 Re�MISR�0�	

1 MISR�0�
1 �m � �

m2
e

s0
�
�
fNR�s

0�
16e6

s0

�

�
t22 � u

2
2

s2r2
1

�
t21 � u

2
1

s2r2
2

�
;

(29)

where the nonradiative virtual correction factor is
073001
fNR�s0� � 4�BYFS�s0� � 2 ln
�
s0

m2
e

�
� 2 (30)

with

4�BYFS�s0� � 4�BYFS�s� � lnz
�
2 ln

m2
	

m2
e
� 2L� i�

�

� ln2z: (31)

The first term in brackets in Eq. (29) is due to e� line
emission, and the second is due to e� line emission.

This mass prescription is designed to produce the essen-
tial mass corrections in the collinear limits when the pho-
ton is emitted along the electron or positron line. In these
limits, ri � m2

ev=s, where i labels the momentum of the
collinear incoming fermion line. The mass corrections of
Ref. [4] may be compared analytically in this limit.

The explicit mass correction of KR is given by

X
�i;�

2 Re�MISR�0�	

1 MISR�0�
1 �m � 16L�1;m��� M��; (32)

where only the mass corrections to the virtual part of the
leptonic tensor are included, so that it is calculated using
the coefficient functions
-6
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a�m�ij �
�
�
�a�0;m�ij FIR � a

�1;m�
ij � (33)

with FIR as in Eq. (17) and a�0;m�ij given by the explicit mass
073001
terms in Eq. (4). The functions a�1;m�ij are given in Ref. [4],
and may be written in terms of 
i � sri=m2

e and the
stabilized functions Lfn and Sfn as
a�1;m�00 �
zr2


1
f� lnz�2L� 4 ln
1 � lnz� � 4Sp�v�g � zr2Sf1�1;�
1� �

1

2
zr2N1

�

1;

1

z
� 4

�
� vr2N3�
1�

� �r1; 
1 $ r2; 
2�; (34a)

a�1;m�11 �
4r1


2
f� lnz�2L� 4 ln
2 � lnz� � 4Sp�v�g � 4r1

�
z
v
� 2

�
Sf1�1;�
1�

�
r1

v

�
4zN3�
2� �

�
2z�

1

z

�
N1

�

2;

2�1� 2z�2

1� 2z2

�
� 6N2�
2� � 2N4�
2�

�
�
zr2

v
f4N3�
1� � N1�
1; 0�

� 2z�N2�
1� � N4�
1��g; (34b)

a�1;m�22 � a�1;m�11 �r1; 
1 $ r2; 
2�; (34c)

a�1;m�12 �
zr2

v
f4N3�
1� � 4N2�
1� � 2N4�
1� � 2Sf1�1;�
1�g � r2N1

�

1;

z
v

�
� �r1; 
1 $ r2; 
2�; (34d)
where the functions Ni are defined by

N1�
;w� �Lf2�
�1��wLf2�
�1�; (35a)

N2�
� � Sf1�z;v�
��Lf1��v�Lf1

�


v
�1

�

� Sf1�v;
�v��
1

z
ln
Lf1

�
v�

z

�
�
<1�;

(35b)

N3�
� �
1



�1� ln
�Sf1�1;�
��

�� ln
Lf2��
��Sf2�0;
� �
<1�; (35c)

N4�
� � Sf2�z;v�
��
1

v
Lf1��v�Lf2

�


v
�1

�

�
1

vz
Lf1

�


v
�1

�

��Sf2�v;
�v��
1

z2 ln
Lf2

�
v�

z

�
�
<1�:

(35d)
All of the expressions Ni are finite in the collinear limit

! v:

N1�v;w� �
1

z
� Lf1��z�

�
1

z
� w

�
; (36a)

N2�v� � Lf1��v� � Lf1��z�; (36b)

N3�v� � �Sf2�0; v� � lnvLf2��v�; (36c)

N4�v� � �
1

2

�
Lf2��v� �

1

z
�1� Lf1��z��

�
: (36d)

Also, Sf1�1;�
� ! Sf1�0; v� � lnvLf1��v� in the collin-
ear limit. All of the functionsNi vanish in the limit 
! 1,
where masses are completely neglected.

In the collinear limit 
1 ! v, corresponding to e� line
emission, the total mass correction functions a�m�ij (includ-
ing the infrared part) simplify to
a�m�00 �
m2
ev
sr1

�
2zFIR � �3z� 1��lnv lnz� Sp�v�� � 2zL lnz�

v2

z
lnv� zln2z�

v
2

�
; (37a)

a�m�11 � �
m2
ev
sr1

�
lnv

�
v
z
� 2z� 4zLf2��v�

�
� 1� z� 2z2Lf1��v� � z

2Lf2��v� � 4zSf2�0; v�
�
; (37b)

a�m�22 �
m2
ev
sr1

�
8FIR � 8L lnz�

1

z3 �1� z� 4z2 � 8z3� lnv� 8 lnv lnz� 8Sp�v� � 4z lnv�Lf1��v� � Lf2��v��

� 4ln2z� 6Lf1��v� � Lf2��v� � 4z�Sf1�0; v� � Sf2�0; v�� �
1

z2 �1� z� 2z2�

�
; (37c)

a�m�12 �
m2
ev
sr1

�
2z lnv�Lf1��v� � 2Lf2��v�� �

�
4�

v2

z2

�
lnv� 4zLf1��v� � zLf2��v� � 2zSf1�0; v� � 4zSf2�0; v� �

1

z

�
:

(37d)
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Note that there are no terms proportional to m4=r2
1, so that

all such factors in Ref. [4] cancel when the terms are
combined into the stabilized functions used here.

To verify that this result agrees with the JMWY result to
NLL order, it is necessary to check all terms with explicit
logarithms L in the collinear limit. In the e� line emission
case, where k is collinear with p1,

X
�i;�

2 Re�MISR�0�	

1 MISR�0�
1 �m �

�4e6

s2�s0�2r1r2

�
4

z
�t22 � u

2
2�f
0
m

� zs2�m

�
(38)

with

f0m �
a�m�11

4z
�
za�m�22

4
�
a�m�12

2
� 2FIR � 2L lnz�O�L0�

� 2L
�
ln
m2
	

m2
e
� 1� lnz

�
� L2 �O�L0� (39)

and

�m �
a�m�11

z
� za�m�22 � 4a�m�00 � O�L0�: (40)

Therefore,

X
�i;�

2 Re�MISR�0�	

1 MISR�0�
1 �m � �

m2
e

s0
�
�

16e6

s0

�
t22 � u

2
2

s2r2
1

�

�

�
2L
�
ln
m2
	

m2
e
� 1� lnz

�

� L2

�
(41)

to NLL order. This agrees with the e� line emission part of
Eq. (29) to the same order, since

fNR�s0� � 2L ln
m2
	

m2
e
� L2 � 2L�1� lnz� �O�L0�: (42)

Therefore, both expressions for the explicit mass terms
agree analytically through NLL order.

We can also check that the mass terms agree exactly in
the soft collinear limit. Taking v! 0 in the collinear
results for the coefficients a�m�ij gives

a�m�00 � 2FIR; a�m�11 � �1=2;

a�m�22 � 8FIR � 3=2; a�m�12 � 1=2;
(43)

which gives to Eq. (38) with f0m � 2FIR and �m � 0. In
the soft limit, fNR � FIR, so the mass corrections are
identical in the soft collinear limit.

V. MONTE CARLO COMPARISONS

Since both of the results compared are fully differential,
they are well suited to MC implementation. The JMWY
073001
results were developed for the KK MC described in
Ref. [11], which is for high-energy fermion pair produc-
tion. The results from Ref. [4] are implemented in the
PHOKHARA MC developed for radiative return applica-
tions at � and B factories. Structurally, these MC’s are
considerably different, with KK MC implementing a
YFS-exponentiated algorithm, and PHOKHARA unexpo-
nentiated. Some comparisons of the MC’s have been re-
ported [12,13]. Here, we will not compare the MC’s, since
that would test not just the comparison of the matrix
elements, but also be affected by the presence or absence
of exponentiation. Instead, we will implement both virtual
photon corrections in the same MC, with the sole purpose
of comparing the two matrix elements.

Since the results of JMWY were developed for use in the
YFS-based Monte Carlo (MC) program KK MC [11], we
will look at how the results of KK MC would change if
the virtual correction of KR are substituted for those of
JMWY in the same program. We calculate the YFS resid-
uals ���i�1 as defined in Refs. [11,15]. The residuals of
interest here are for single photon emission, ��i�1 for i �
1, 2 which were compared previously for several different
virtual photon corrections in Refs. [15–18]. The super-
script (i) denotes the power of � relative to the born level,
��0�0 � d�Born=d�. Thus, i � 1 corresponds to tree-level
hard photon emission, and i � 2 corresponds to the virtual
corrections. The residuals are integrated up to a cutoff vmax

on the photon energy fraction to produce cross sections
denoted ��i��1

.
Results for comparisons of these YFS residuals were

previously reported in Refs. [3,15–18] for the virtual pho-
ton corrections of Refs. [1,2] at a CMS energy of 200 GeV.
Some results were also reported in Ref. [15] for 500 GeV. It
was found in Ref. [15] that at 200 GeV, all of the fully
differential results (excluding Ref. [1], which is not fully
differential) agreed to within 5� 10�5 units of the Born
cross section across the full range of v investigated (up to
vmax � 0:9999). Agreement to within 2� 10�4 units of
the Born cross section was found at 500 GeV.

Here, we will restrict our comparisons to the two fully
differential results including mass corrections, JMWY and
KR, discussed in the present paper. In addition to a com-
parison of the full results, we will compare the massless
limits in which explicit mass terms in the virtual photon
correction are omitted in both expressions. This will be
useful in judging the size of the contribution of the mass
corrections alone to the difference in the cross sections.
Comparisons are made at CMS energies of 1 GeV and
500 GeV. The 1 GeV scale was chosen as representative
of some of the radiative return experiments for which
PHOKHARA was designed, while the 500 GeV scale
anticipates applications at a future linear collider (ILC).
The 1 GeV comparisons are essentially new, since the only
previously reported comparisons at low energy [18] were
made before the matrix elements were completely imple-
-8



FIG. 1 (color online). The virtual photon contribution to the �1 residual for muon pair production, integrated up to a cut vmax.
Case (a) is for a CMS energy of 1 GeV, and case (b) is for a CMS energy of 500 GeV.
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mented in their final form: it was found that some changes
were needed to render the results sufficiently stable nu-
merically when calculated for lower energy scales. The
expressions shown in the previous sections are adequate for
these calculations.

Figure 1 shows the virtual correction ��2��1
� ��1��1

, which
is the pure O��2� contribution to the single hard photon
cross section. The results are obtained from 108 events
created using the YFS3ff generator, which is the EEX3
option in the KK MC. The exact expressions are com-
pared to a NLL approximation obtained from the expres-
sion Eq. (22). All cross sections in these comparisons are
normalized by dividing by the radiationless Born cross
section �Born for e�e� ! ����. It is seen that at both
1 GeV and 500 GeV, the agreement is very close between
all the results compared.

To see the differences between the various matrix ele-
ments, it is necessary to look at the NNLL contribution,
since we know from the analytical results in the previous
sections that these expressions agree to NLL order.
Figure 2 examines the differences between the JMWY
and KR results and the NLL contribution of Eq. (22) at
1 GeV. This is a constant contribution (NNLL) to the cross
FIG. 2 (color online). The differences between the exact results an
(a) a cross section integrated to a cutoff vmax and for (b) a partially

073001
section at O��2� with no factors of the big logarithm L �
ln�s=m2

e�. In FIG. 2(a), the difference between the inte-
grated YFS residuals is shown, while in Fig. 2(b), the
differences d� ��1

=dv are plotted. In other words,
Fig. 2(b) is the derivative of the plot in Fig. 2(a), showing
the difference between the virtual corrections at each pho-
ton energy v. It is found that the complete results of JMWY
and KR differ by at most 2:2� 10�5 units of the Born cross
section when integrated over the full range of v.

The differential plot shows that the difference in the
complete virtual correction is essentially zero at both end-
points v � 0, 1 and reaches a maximum of 3:3� 10�5

units of the Born cross section for v � 0:8. Most of the
difference is found to be due to the mass correction terms.
Without these terms, the results would agree to within at
most 10�5, and much less over most of the range. The mass
corrections agree in both the soft and hard limits at 1 GeV.
The soft agreement mirrors that found analytically in the
previous section.

Figure 3 examines the NNLL contribution to the JMWY
and KR results at 500 GeV. Figure 3(a) shows the inte-
grated distributions with the NLL contribution from
Eq. (22) subtracted. It is seen that the complete results,
d the NLL result are shown at a CMS energy of 1 GeV both for
differential cross section in v.
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FIG. 3 (color online). The differences between the exact results and the NLL result are shown at a CMS energy of 500 GeV both for
(a) a cross section integrated to a cutoff vmax and for (b) a partially differential cross section in v.
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including mass corrections, differ by at most 1:6� 10�5

units of the Born cross section. Again, the bulk of the
difference is seen to be due to the mass corrections.
Without these, the results would agree to within 10�6,
except for the last bin. The last bin shows that the inte-
grated contribution of the virtual photon factors over the
entire range of photon energies differs by 5� 10�6 units of
the Born cross section.

Differential results are compared in Fig. 3(b) up to v �
0:975. The final data point is omitted to permit the rest of
the plot to be shown in better resolution. For the last data
point (v � 0:9875), the KR result was 7:0� 10�4 for the
complete expression and 6:6� 10�4 for the massless part,
while the JMWY result was 11:4� 10�4 for the complete
expression and 11:3� 10�4 for the massless part. The
difference between the differential results at this point is
likely to be enhanced due the steepness of the distribution.
For the remaining points, the difference is less than 3�
10�5. In the limit when v! 1, additional numerical issues
may arise which are separate from the collinear singular-
ities, so it is possible that some of the difference in this
limit may be numerical.

The absolute sizes of the NNLL contributions to the
integrals in Figs. 2(a) and 3(a) are also of interest, since
these determine the range of v for which the much simpler
NLL expression can be substituted for the complete result.
For the JMWY results at 500 GeV, the NNLL contribution
does not exceed 4� 10�6 units of the Born cross section
for cuts up to vmax � 0:95, while for larger v, the NLL
contribution can reach the 3:2� 10�5 level. At 1 GeV, the
NNLL contribution to the JMWY result does not exceed
7� 10�6 for the full range of photon energies.

The fact that the NNLL contributions to the KR result
are typically larger is mostly due to the mass corrections,
which are considerably greater in the KR expression over
most of the range of v. The mass corrections in the JMWY
expression reach a level of at most 10�6 at 1 GeV, and are
smaller at 500 GeV. In contrast, the KR mass corrections
073001
are typically of the order of 2� 10�5 at intermediate
photon energies.

While we have expressed the comparisons in units of the
nonradiative Born cross section, it is also useful to express
them in units of the integrated cross section �ISR

1 for single
real initial-state radiation, since there is always at least one
photon in the radiative return context. Integrating the dif-
ferential cross section of Ref. [25], including the virtual
photon contribution which cancels the IR divergence in the
real emission cross section, gives �ISR

1 � 0:113�Born at���
s
p
� 1 GeV and �ISR

1 � 0:980�Born at
���
s
p
� 500 GeV.

Dividing by �ISR
1 instead of �Born would give essentially

the same comparisons at 500 GeV, but increase the differ-
ences by a factor on the order of 10 at 1 GeV.
VI. CONCLUSIONS

In this paper, we have compared two versions of the
exact virtual corrections to initial-state bremsstrahlung in
fermion pair production in detail, examining the collinear
limits (NLL behavior) analytically both with and without
the explicit mass corrections in each case. We found that
the results of JMWYand KR agree to NLL order, both with
and without masses, and that both results have the same
soft limits.

Numerical comparisons of the two virtual photon ex-
pressions were made by integrating them with the KK
MC. The results were presented both in terms of integrated
YFS residuals, to match comparisons made earlier, and in
differential form, to permit comparison of the virtual pho-
ton corrections as a function of photon energy. It was found
that the differential results agree to within 3� 10�5 units
of the Born cross section across almost all photon energies,
for both high energy (500 GeV) and lower energy (1 GeV)
scattering. The difference between the integrals of the YFS
beta functions over the full photon energy range are also on
the order of 10�5. This level of agreement is compatible
with that found in earlier studies at 200 GeV [15–18].
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The two virtual photon expressions compared agree
much better when the mass corrections are omitted from
both. This is because the mass corrections in the KR
expression are typically of order 10�5, while the JMWY
mass corrections tend to be of order 10�6 units of the Born
cross section over most of the photon energy range. Part of
this difference could be due to the structure of the expres-
sions, since the JMWY expression was created with the
expectation of using it in the KK MC, while the KR result
is foreign to this MC. However, some difference is not
surprising, due to the difference in approach to the mass
corrections. The JMWY result follows the approach of
Berends et al. [19], adding the essential mass corrections
for the collinear limits, and KR use an expansion in powers
of m2

e=pi � k. The results are very different analytically,
with the KR expressions containing many more terms.

The results found in this paper give a clear estimate of
the size of the difference in two exact, mass-corrected
matrix elements for initial-state radiation in fermion pair
production. We have also found that these matrix elements
073001
agree to NLL order, and have compared two approaches to
adding mass corrections to the matrix element. Such infor-
mation is important for estimating the precision of these
matrix elements in applications to such processes as the
LEP2 final data analysis, radiative return at � and B
factories, and anticipated future ILC physics.
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APPENDIX: STABILIZED FUNCTIONS

The stabilized expressions in this paper depend on two
sets of functions introduced to handle cancellations in
differences of logarithms and dilogarithms with very simi-
lar arguments. The functions Lfn�x� and Sfn�x; y� are de-
fined recursively by
Lf0�x� � ln�1� x�; Lfn�1�x� �
1

x
�Lfn�x� � Lfn�0��; (A1a)

Sf0�x; y� � Sp�x� y�; Sfn�1�x; y� �
1

y
�Sfn�x; y� � Sfn�x; 0�� (A1b)
with Sp�x� the Spence dilogarithm function, which is also
denoted Li2�x�.

Expansions can be used to evaluate Lfn�x� for x small or
Sfn�x; y� for y small. For the logarithmic difference func-
tion Lfn,

Lf n�x� � �
X1
k�n

��1�k

k
xk�n: (A2)

Differences between the functions Lfn�x� for similar argu-
ments may be calculated using the identity

1

y
fLfn�x� y� � Lfn�x�g �

1

�x� y�n

�
1

1� x
Lf1

�
y

1� x

�

�
Xn
k�1

�x� y�k�1Lfk�x�
�

(A3)

valid for n � 1. Some identities for arguments containing
ratios are

�x� y�Lf1

�
y
x

�
� xLf1

�
�y
x� y

�
; (A4a)

�x� y�2Lf2

�
y
x

�
� �x2Lf2

�
�y
x� y

�
� x�x� y�; (A4b)

�x� y�3Lf3

�
y
x

�
� x3Lf3

�
�y
x� y

�
�

1

2
xy�x� y�: (A4c)
For the dilogarithmic difference function Sfn,

Sf n�x; y� �
X1
k�n

yk�n

k!
Sp�k��x�; (A5)

where Sp�k��x� is the kth derivative of Sp�x�, which may be
calculated recursively using

Sp �1��x� � Lf1��x�;

Sp�n�1��x� �
1

x

�
�n� 1�!

�1� x�n
� nSp�n��x�

�
for n � 1:

(A6)

In the limit where both x and y are small, a double
expansion is useful,

Sf n�x; y� �
X1
k�n

Xk
l�n

1

k2

k
l

� �
xk�lyl�n: (A7)

The functions Lfn�x� have a logarithmic singularity at
x � �1. The functions Sfn�x; y� are singular at x � 1 for
n � 1, but can be calculated in for x approaching 1 with
x� y < 1 using the identity
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Sf n�x; y� � ��1�n�1Sfn�1� x;�y� �
1

xn�1 Lf1��x�Lfn

�
y
x

�
�

1

�x� 1�n�1 Lf1�x� 1�Lfn

�
y

x� 1

�
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where n � 1, p is the integer part of �n� 1�=2 and q � 1 for n even, q � 0 for n odd. A useful special case is
Sf 1�x; y� � Sf1�1� x;�y� � Lf1�x� 1�Lf1
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