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Abstract

We study charmonium production at high-energy colliders (Tevatron, HERA, and LEP2) in

the framework of the kT -factorization approach and the factorization formalism of non-relativistic

quantum chromodynamics at leading order in the strong-coupling constant αs and the relative

velocity v. The transverse-momentum distributions of direct and prompt J/ψ-meson production

measured at the Fermilab Tevatron are fitted to obtain the non-perturbative long-distance matrix

elements for different choices of unintegrated gluon distribution functions in the proton. Using

the matrix elements thus obtained, we predict charmonium production rates in γγ, γp, and deep-

inelastic ep collisions including the contributions from both direct and resolved photons. The

results are compared with the known ones obtained in the conventional parton model and with

recent experimental data from HERA and LEP2.
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I. INTRODUCTION

Charmonium production at high energies has provided a useful laboratory for testing the

high-energy limit of quantum chromodynamics (QCD) as well as the interplay of perturbative

and non-perturbative phenomena in QCD. The factorization formalism of non-relativistic

QCD (NRQCD) [1] is a theoretical framework for the description of heavy-quarkonium

production and decay. The factorization hypothesis of NRQCD assumes the separation of the

effects of long and short distances in heavy-quarkonium production. NRQCD is organized

as a perturbative expansion in two small parameters, the strong-coupling constant αs and

the relative velocity v of the heavy quarks.

The phenomenology of strong interactions at high energies exhibits a dominant role of

gluon interactions in quarkonium production. In the conventional parton model [2], the

initial-state gluon dynamics is controlled by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) evolution equation [3]. In this approach, it is assumed that S > µ2 ≫ Λ2
QCD,

where
√
S is the invariant collision energy, µ is the typical energy scale of the hard in-

teraction, and ΛQCD is the asymptotic scale parameter. In this way, the DGLAP evolution

equation takes into account only one big logarithm, namely ln(µ/ΛQCD). In fact, the collinear

approximation is used, and the transverse momenta of the incoming gluons are neglected.

In the high-energy limit, the contribution from the partonic subprocesses involving t-

channel gluon exchanges to the total cross section can become dominant. The summation of

the large logarithms ln(
√
S/µ) in the evolution equation can then be more important than

the one of the ln(µ/ΛQCD) terms. In this case, the non-collinear gluon dynamics is described

by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation [4]. In the region under

consideration, the transverse momenta (kT ) of the incoming gluons and their off-shell proper-

ties can no longer be neglected, and we deal with reggeized t-channel gluons. The theoretical

framework for this kind of high-energy phenomenology is the so-called kT -factorization ap-

proach [5, 6], which can be based on effective quantum field theory implemented with the

non-abelian gauge-invariant action, as was suggested a few years ago [7].

This paper is organized as follows. In Sec. II, the kT -factorization approach is briefly

reviewed and compared with the collinear parton model. The NRQCD formalism applied

to heavy-quarkonium production is briefly recapitulated in Sec. III. In Sec. IV, we present

in analytic form the squared amplitudes for S- and P -wave quarkonium production via the
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fusion of reggeized gluons at leading order (LO) in αs and v. In Sec. V, we perform fits to the

transverse-momentum (pT ) distributions of inclusive charmonium production measured at

the Fermilab Tevatron to obtain numerical values for the non-perturbative matrix elements

(NMEs) of the NRQCD factorization formalism. In Secs. VI and VII, we compare our

theoretical predictions with recent experimental data of charmonium production in γγ, γp,

and deep-inelastic ep scattering at the DESY HERA and CERN LEP2 colliders. Section VIII

contains our conclusions.

II. THE kT -FACTORIZATION APPROACH

In the phenomenology of strong interactions at high energies, it is necessary to describe

the QCD evolution of the gluon distribution functions of the colliding particles starting

from some scale µ0, which controls the non-perturbative regime, to the typical scale µ

of the hard-scattering processes, which is typically of the order of the transverse mass

MT =
√

M2 + |pT |2 of the produced particle (or hadron jet) with (invariant) mass M

and transverse two-momentum pT . In the region of very high energies, the typical ratio

x = µ/
√
S becomes very small, x ≪ 1. This leads to large logarithmic contributions of

the type [αs ln(1/x)]n, which need to be resummed. This is conveniently done by adopting

the high-energy factorization scheme, which also known as the kT -factorization approach,

in which the incoming t-channel gluons have a finite transverse two-momentum kT and

are off mass shell. This implies the notion of an unintegrated gluon distribution function

Φ(x, |kT |2, µ2). The resummation is then implemented by the BFKL evolution equation [4].

Effective Feynman rules for processes involving incoming off-shell gluons were provided

in Ref. [6]. The special trick is to choose the polarization four-vector of the incoming gluon

as

εµ(kT ) =
kµT
|kT |

, (1)

where kµT = (0,kT , 0) is the transverse four-momentum of the gluon. In the case of gluon-

gluon fusion, the four-momenta of the incoming gluons can be written as

kµ1 = x1P
µ
1 + kµ1T ,

kµ2 = x2P
µ
2 + kµ2T , (2)

where P µ
1 = (

√
S/2)(1, 0, 0, 1) and P µ

2 = (
√
S/2)(1, 0, 0,−1) are the four-momenta of the
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colliding protons in the center-of-mass frame. In the following, we shall also use the short-

hand notation pT = |pT | etc. for the absolute of the transverse two-momentum.

In Ref. [8], the incoming off-shell gluons are considered as Reggeons (or reggeized gluons),

which are interacting with quarks and on-shell Yang-Mills gluons in a specific way. Recently,

in Ref. [9], the Feynman rules for the effective field theory based on the non-abelian gauge-

invariant action [7] were derived for the vertices RRg, Rgg, RRgg, Rggg, and RRggg, where

R is an off-shell reggeized gluon and g is an on-shell Yang-Mills gluon. The interaction of a

reggeized gluon with a quark is mediated via the transition vertex Rg. For the relevant LO

amplitudes, which are calculated below, both approaches [6, 8] give the same answers. As

was shown in Ref. [10], the effective vertex RRg [8] can be obtained using the prescription

[6] for the off-shell gluon polarization four-vector of Eq. (1).

In the kT -factorization approach, which is based on the high-energy limit of QCD, the

hadronic cross section of quarkonium (H) production through the process

p+ p→ H +X (3)

and the partonic cross section for the reggeized-gluon fusion subprocess

R +R → H +X (4)

are related as

dσKT(p+ p→ H +X,S) =
∫

dx1

x1

∫

d|k1T |2
∫

dϕ1

2π
Φ(x1, |k1T |2, µ2)

×
∫

dx2

x2

∫

d|k2T |2
∫

dϕ2

2π
Φ(x2, |k2T |2, µ2)dσ̂(R +R→ H +X,k1T ,k2T , ŝ), (5)

where ŝ = x1x2S − (k1T + k2T )2, x1,2 are the fractions of the proton momenta passed on

to the reggeized gluons, and ϕ1,2 are the angles enclosed between k1,2T and the transverse

momentum pT of H, which we take to point along the x axis.

In our numerical calculations, we use the unintegrated gluon distribution functions by

Blümlein (JB) [11], by Jung and Salam (JS) [12], and by Kimber, Martin, and Ryskin (KMR)

[13]. A direct comparison between different unintegrated gluon distributions as functions

of x, |kT |2, and µ2 may be found in Ref. [14]. Note, that the JB version is based on the

BFKL evolution equation [4]. On the contrary, the JS and KMR versions were obtained using

the more complicated Catani-Ciafaloni-Fiorani-Marchesini (CCFM) evolution equation [15],

which takes into account both large logarithms of the types ln(1/x) and ln(µ/ΛQCD).
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For µ≫ ΛQCD and not too small x = µ/
√
S, the collinear approximation of the conven-

tional parton model is recovered. In the collinear parton model, the hadronic cross section

dσ(p + p → H + X,S) and the relevant partonic cross section dσ̂(g + g → H + X, ŝ) are

related as

dσPM(p+ p→ H +X,S) =
∫

dx1G(x1, µ
2)
∫

dx2G(x2, µ
2)dσ̂(g + g → H +X, ŝ), (6)

where ŝ = x1x2S and G(x, µ2) is the collinear gluon distribution function of the proton,

which satisfies the DGLAP [3] evolution equation. The collinear and the unintegrated gluon

distribution functions are formally related as

xG(x, µ2) =
∫ µ2

0
d|kT |2 Φ(x, |kT |2, µ2), (7)

so that the normalizations of Eqs. (5) and (6) agree.

III. NRQCD FORMALISM

In the framework of the NRQCD factorization approach [1], the cross section of heavy-

quarkonium production via a partonic subprocess a + b → H + X may be presented as a

sum of terms in which the effects of long and short distances are factorized as

dσ̂(a+ b→ H +X) =
∑

n

dσ̂(a + b→ QQ̄[n] +X)〈OH[n]〉, (8)

where n denotes the set of color, spin, orbital and total angular momentum quantum numbers

of the QQ̄ pair and the four-momentum of the latter is assumed to be equal to the one of the

physical quarkonium state H. The cross section dσ̂(a+ b → QQ̄[n] +X) can be calculated

in perturbative QCD as an expansion in αs using the non-relativistic approximation for

the relative motion of the heavy quarks in the QQ̄ pair. The non-perturbative transition

of the QQ̄ pair into H is described by the NMEs 〈OH[n]〉, which can be extracted from

experimental data.

To LO in v, we need to include the cc̄ Fock states n = 3S
(1)
1 , 3S

(8)
1 , 1S

(8)
0 , 3P

(8)
J if

H = J/ψ, ψ′ and n = 3P
(1)
J , 3S

(8)
1 if H = χcJ , where J = 0, 1, 2. Their NMEs satisfy

the multiplicity relations

〈Oψ(nS)[3P
(8)
J ]〉 = (2J + 1)〈Oψ(nS)[3P

(8)
0 ]〉,

〈OχcJ [3P
(1)
J ]〉 = (2J + 1)〈Oχc0[3P

(1)
0 ]〉,

〈OχcJ [3S
(8)
1 ]〉 = (2J + 1)〈Oχc0[3S

(8)
1 ]〉, (9)
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which follow to LO in v from heavy-quark spin symmetry. For example, in the case of J/ψ

production, the wave function of the physical orthocharmonium state can be presented as a

superposition of the Fock states:

|J/ψ〉 = O(v0)|cc̄[3S(1)
1 ]〉 + O(v1)|cc̄[3P (8)

J ]g〉 + O(v2)|cc̄[3S(1,8)
1 ]gg〉

+ O(v2)|cc̄[1S(8)
0 ]g〉 + · · · , (10)

where we use usual spectroscopic notation for the angular-momentum quantum numbers of

the QQ̄ pair and the index in parentheses (1, 8) denotes the color state, either color singlet

or color octet. The color-singlet model (CSM) [16] only takes into account the first term

in Eq. (10), which is of order v0. In this case, the NME 〈OJ/ψ[3S
(1)
1 ]〉 is directly related to

the J/ψ wave function at the origin Ψ(0), which can be calculated in the framework of the

quark potential model [17], as

〈OJ/ψ[3S
(1)
1 ]〉 = 2Nc(2J + 1)|Ψ(0)|2, (11)

where Nc = 3 and J = 1. Similarly, the color-singlet P -wave NME reads

〈OχcJ [3P
(1)
J ]〉 = 2Nc(2J + 1)|Ψ′(0)|2, (12)

where Ψ′(0) is the derivative of the χcJ wave function at the origin.

In the general case, the partonic cross section of quarkonium production receives from

the QQ̄ Fock state n = 2S+1L
(1,8)
J the contribution [1, 18]

dσ̂(a + b→ QQ̄[2S+1L
(1,8)
J ] → H) = dσ̂(a+ b→ QQ̄[2S+1L

(1,8)
J ])

〈OH[2S+1L
(1,8)
J ]〉

NcolNpol

, (13)

where Ncol = 2Nc for the color-singlet state, Ncol = N2
c − 1 for the color-octet state, and

Npol = 2J + 1. The partonic cross section of QQ̄ production is defined as

dσ̂(a+ b→ QQ̄[2S+1L
(1,8)
J ]) =

1

I
|A(a+ b → QQ̄[2S+1L

(1,8)
J ])|2dΦ, (14)

where I is the flux factor of the incoming particles, which is taken as in the collinear parton

model [6] (for example, I = 2x1x2S for process (4)), A(a + b → QQ̄[2S+1L
(1,8)
J ]) is the

production amplitude, the bar indicates average (summation) over initial-state (final-state)

spins and colors, and dΦ is the phase space volume of the outgoing particles. This convention

implies that the cross section in the kT -factorization approach is normalized approximately

to the cross section for on-shell gluons when k1T = k2T = 0.
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The production amplitude A(a + b → QQ̄[2S+1L
(1,8)
J ]) can be obtained from the one for

an unspecified QQ̄ state, A(a+ b→ QQ̄), by the application of appropriate projectors. The

projectors on the spin-zero and spin-one states read [19]:

Π0 =
1√
8m3

(

p̂

2
− q̂ −m

)

γ5

(

p̂

2
+ q̂ +m

)

,

Πα
1 =

1√
8m3

(

p̂

2
− q̂ −m

)

γα
(

p̂

2
+ q̂ +m

)

, (15)

respectively, where p̂ = γµpµ, p
µ is the four-momentum of the QQ̄ pair, qµ is the four-

momentum of the relative motion, m = M/2 is the mass of the quark Q, and M is the

mass of the quarkonium state H. In our numerical calculations, we use mc = 1.55 GeV. The

projection operators for the color-singlet and color-octet states read:

C1 =
δij√
Nc

,

C8 =
√

2T aij, (16)

respectively, where T a with a = 1, . . . , N2
c − 1 are the generators of the color gauge group

SU(3). To obtain the projection on a state with orbital-angular-momentum quantum number

L, we need to take L times the derivative with respect to q and then put q = 0. For the

processes discussed here, we have

A(a+ b→ QQ̄[1S
(1,8)
0 ]) = Tr

[

C1,8Π0A(a+ b→ QQ̄)
]

q=0
,

A(a+ b→ QQ̄[3S
(1,8)
1 ]) = Tr

[

C1,8Π
α
1A(a+ b→ QQ̄)εα(p)

]

q=0
,

A(a+ b → QQ̄[3P
(1,8)
J ]) =

d

dqβ
Tr
[

C1,8Π
α
1A(a+ b→ QQ̄)εαβ(p)

]

q=0
, (17)

where εα(p) is the polarization four-vector of a spin-one particle with four-momentum pµ

and mass M = p2 and εαβ(p) is its counterpart for a spin-two particle. For the 3S1 state,

the polarization sum reads

∑

Jz

εα(p)ε
∗
α′(p) = Pαα′(p) = −gαα′ +

pαpα′

M2
. (18)

For the 3PJ states with J = 0, 1, 2, we have

ε
(0)
αβ(p)ε

(0)∗
α′β′(p) =

1

3
Pαβ(p)Pα′β′(p),

∑

Jz

ε
(1)
αβ(p)ε

(1)∗
α′β′(p) =

1

2
[Pαα′(p)Pββ′(p) − Pαβ′(p)Pα′β(p)] ,

∑

Jz

ε
(2)
αβ(p)ε

(2)∗
α′β′(p) =

1

2
[Pαα′(p)Pββ′(p) + Pαβ′(p)Pα′β(p)] −

1

3
PαβPα′β′(p). (19)
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The subprocesses relevant for our analysis read: R + R → QQ̄, R + R → QQ + g,

R + γ → QQ, R + γ → QQ+ g, R + e→ e+QQ, and R + e→ e+QQ+ g.

IV. CHARMONIUM PRODUCTION BY REGGEIZED GLUONS

In this section, we obtain the squared amplitudes for inclusive charmonium production

via the fusion of two reggeized gluons or a reggeized gluon and a real or virtual photon in

the framework of NRQCD. We work at LO in αs and v and consider the following partonic

subprocesses:

R +R → H[3P
(1)
J , 3S

(8)
1 , 1S

(8)
0 , 3P

(8)
J ], (20)

R +R → H[3S
(1)
1 ] + g, (21)

R + γ → H[3S
(8)
1 , 1S

(8)
0 , 3P

(8)
J ], (22)

R + γ → H[3S
(1)
1 ] + g, (23)

R + e → e+ H[3S
(8)
1 , 1S

(8)
0 , 3P

(8)
J ], (24)

R + e → e+ H[3S
(1)
1 ] + g. (25)

Notice that, in the collinear parton model, subprocesses (20), (22), and (24) only contribute

for pT ≈ 0. Therefore, to LO in the collinear parton model, we need to take into account

the corresponding subprocesses with an additional hard gluon in the final state, for example

g+g → H[3S
(8)
1 ]+g. The amplitudes of these color-octet subprocesses, after replacing g → R

in the initial state, are of next-to-leading order (NLO) in the kT -factorization approach and

suffer from infrared divergences, in contrast to the subprocesses (21) and (23) in the color-

singlet channel. The analysis of NLO contributions to inclusive charmonium production by

reggeized gluon-gluon fusion in the kT -factorization approach is beyond the scope of this

paper and needs a separate investigation.

The phenomenological procedure, adopted in Ref. [20], to regularize infrared divergences

due to propagators getting on-shell with the help of some cut parameter, which is unknown

a priori, is likely to be problematic. The analysis of NLO corrections in the kT -factorization

approach is currently an open issue, which has been consistently solved only in part, e.g. in

Ref. [21], where NLO corrections to the subprocess R +R → g were studied.

According to the prescription of Ref. [6], the amplitude of R +R → c+ c̄(+g) is related
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to the one of g + g → c+ c̄(+g) by

A(R+ R→ c+ c̄(+g)) = εµ(k1)ε
ν(k2)Aµν(g + g → c+ c̄(+g)), (26)

where εµ(k1) and εµ(k2) are defined according to Eq. (1). Analogous relations hold for

R + γ → c + c̄(+g) and R + e → e + c + c̄(+g). The amplitudes of the relevant QCD

subprocesses g+ g → c+ c̄(+g), g+ γ → c+ c̄(+g), and g+ e→ e+ c+ c̄(+g) are evaluated

using the conventional Feynman rules of QCD.

We now present and discuss our results for the squared amplitudes of subprocesses (20)

and (21), contributing to hadroproduction. In the case of the 2 → 1 subprocesses (20), we

obtain

|A(R +R→ H[3P
(1)
0 ]|2 =

8

3
π2α2

s

〈OH[3P
(1)
0 ]〉

M5
F [3P0](t1, t2, ϕ),

|A(R +R→ H[3P
(1)
1 ]|2 =

16

3
π2α2

s

〈OH[3P
(1)
1 ]〉

M5
F [3P1](t1, t2, ϕ),

|A(R +R→ H[3P
(1)
2 ]|2 =

32

45
π2α2

s

〈OH[3P
(1)
2 ]〉

M5
F [3P2](t1, t2, ϕ),

|A(R+R → H[3S
(8)
1 ]|2 =

1

2
π2α2

s

〈OH[3S
(8)
1 ]〉

M3
F [3S1](t1, t2, ϕ),

|A(R+R → H[1S
(8)
0 ]|2 =

5

12
π2α2

s

〈OH[1S
(8)
0 ]〉

M3
F [1S0](t1, t2, ϕ),

|A(R +R→ H[3P
(8)
0 ]|2 = 5π2α2

s

〈OH[3P
(8)
0 ]〉

M5
F [3P0](t1, t2, ϕ),

|A(R +R→ H[3P
(8)
1 ]|2 = 10π2α2

s

〈OH[3P
(8)
1 ]〉

M5
F [3P1](t1, t2, ϕ),

|A(R +R→ H[3P
(8)
2 ]|2 =

4

3
π2α2

s

〈OH[3P
(8)
2 ]〉

M5
F [3P2](t1, t2, ϕ), (27)

where

F [3S1](t1, t2, ϕ) =
(M2 + |pT |2)

[

(t1 + t2)
2 +M2

(

t1 + t2 − 2
√
t1t2 cosϕ

)]

(M2 + t1 + t2)2
,

F [1S0](t1, t2, ϕ) = 2
M2

(M2 + t1 + t2)2

(

M2 + |pT |2
)2

sin2 ϕ,

F [3P0](t1, t2, ϕ) =
2

9

M2 (M2 + |pT |2)2
[

(3M2 + t1 + t2) cosϕ+ 2
√
t1t2

]2

(M2 + t1 + t2)4
,

F [3P1](t1, t2, ϕ) =
2

9

M2 (M2 + |pT |2)2
[

(t1 + t2)
2 sin2 ϕ+M2

(

t1 + t2 − 2
√
t1t2 cosϕ

)]

(M2 + t1 + t2)4
,

F [3P2](t1, t2, ϕ) =
1

3

M2

(M2 + t1 + t2)4

(

M2 + |pT |2
)2 {

3M4 + 3M2(t1 + t2) + 4t1t2

9



+ (t1 + t2)
2 cos2 ϕ+ 2

√
t1t2

[

3M2 + 2(t1 + t2)
]

cosϕ
}

. (28)

Here pT = k1T +k2T , t1,2 = |k1,2T |2, and ϕ = ϕ1 −ϕ2 is the angle enclosed between k1T and

k2T , so that

|pT |2 = t1 + t2 + 2
√
t1t2 cosϕ. (29)

It is interesting to consider the contribution of the diagram involving a three-gluon vertex

separately. It is equal to

|A3(R +R → H[3S
(8)
1 ])|2 = π2α2

s

〈OH[3S
(8)
1 ]〉

2M3
(M2 cos2 ϕ+ |pT |2). (30)

For |pT |2 ≫M2, one has

|A3(R +R → H[3S
(8)
1 ])|2 ≈ π2α2

s

〈OH[3S
(8)
1 ]〉

2M3
|pT |2, (31)

which makes up the bulk of the contribution and can be interpreted as being due to the

fragmentation production of the H meson. In fact, the right-hand side of Eq. (31) can be

written in the factorized form

|A3(R +R → H[3S
(8)
1 ])|2 ≈ |A(R+R → g)|2P (g → H[3S

(8)
1 ]), (32)

where

|A(R+R → g)|2 =
3

2
παs|pT |2 (33)

refers to real-gluon production by reggeized-gluon fusion [10] and

P (g → H[3S
(8)
1 ]) = παs

〈OH[3S
(8)
1 ]〉

3M3
(34)

is the probability for the fragmentation of a gluon to a H meson, which may be gleaned

from the result for the corresponding fragmentation function at the starting scale µ0 [22],

D
g→H[3S

(8)
1 ]

(z, µ0) = παs
〈OH[3S

(8)
1 ]〉

3M3
δ(1 − z). (35)

The counterparts of Eq. (27) in the collinear parton model of QCD emerge through the

operation

|A(g + g → H[2S+1L
(1,8)
J ]|2 = lim

t1,t2→0

∫ 2π

0

dϕ1

2π

∫ 2π

0

dϕ2

2π
|A(R+R → H[2S+1L

(1,8)
J ]|2. (36)
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In this way, we recover the well-known results [23]:

|A(g + g → H[3P
(1)
0 ]|2 =

8

3
π2α2

s

〈OH[3P
(1)
0 ]〉

M3
,

|A(g + g → H[3P
(1)
1 ]|2 = 0,

|A(g + g → H[3P
(1)
2 ]|2 =

32

45
π2α2

s

〈OH[3P
(1)
2 ]〉

M3
,

|A(g + g → H[3S
(8)
1 ]|2 = 0,

|A(g + g → H[1S
(8)
0 ]|2 =

5

12
π2α2

s

〈OH[1S
(8)
0 ]〉

M
,

|A(g + g → H[3P
(8)
0 ]|2 = 5π2α2

s

〈OH[3P
(8)
0 ]〉

M3
,

|A(g + g → H[3P
(8)
1 ]|2 = 0,

|A(g + g → H[3P
(8)
2 ]|2 =

4

3
π2α2

s

〈OH[3P
(8)
2 ]〉

M3
. (37)

In the case of the 2 → 2 subprocess (21), we find

|A(R+R → H[3S
(1)
1 ] + g|2 = π3α3

s

〈OH[3S
(1)
1 ]〉

M3

× −320M4

81(M2 − ŝ)2(M2 + t1 − t̂)2(M2 + t2 − û)2
(4t1t2M

2(t1 + t2 +M2)2 cos4(ϕ1 − ϕ2)

− 2
√
t1t2(t1 + t2 +M2) cos3(ϕ1 − ϕ2)(−t22M2 − 3M6 + t22t̂+ 3M4t̂+ t2M

2û+ 3M4û

+ t2t̂û−M2t̂û+ t21(t2 −M2 + û) + t1(t
2
2 + t̂(M2 + û) + t2(5M

2 + t̂+ û))

− 2
√
t2|pT |(t21 − (t2 −M2)(M2 − t̂) + t1(t2 + 2M2 + t̂)) cosϕ2)

− (−M2 + t̂+ û)2(t22M
2 + t2M

4 + t21(t2 +M2) + t2t̂
2 +M2t̂2 +M2û2

+ t1(t
2
2 +M4 + û2 + 2t2(4M

2 + t̂+ û)) − 2
√
t2|pT |(t21 + (t2 +M2)(M2 − t̂)

+ t1(t2 + 8M2 + t̂+ 2û)) cosϕ2 + (t21 + (t2 +M2)2 + 2t1(t2 + 5M2))|pT |2 cos2 ϕ2)

+ cos2(ϕ1 − ϕ2)(t
3
2M

4 − 2t22M
6 + 5t2M

8 − 2t32M
2 t̂+ 4t22M

4 t̂− 10t2M
6t̂+ t32t̂

2

− 2t22M
2t̂2 + 5t2M

4 t̂2 − t32M
2û− 7t2M

6û+ t32t̂û− t22M
2t̂û+ 11t2M

4t̂û− 3M6t̂û

+ t22t̂
2û− 4t2M

2t̂2û+ 3M4t̂2û+ 2t2M
4û2 + t22t̂û

2 + 3M4t̂û2 − 2M2t̂2û2

+ t31(−4t22 + (M2 − û)(M2 − t̂− û) + t2(−5M2 + t̂+ û)) + t21(−4t32 − 2M6 + 4M4û

+ t̂û(t̂+ û) − 2t22(12M2 + t̂+ û) −M2û(t̂+ 2û) + t2(−25M4 + t̂2 + 7t̂û+ 2û2

+M2(8t̂+ 15û))) + t1(5M
8 − 4M2t̂û2 + t32(−5M2 + t̂+ û) −M6(7t̂+ 10û)

+M4(2t̂2 + 11t̂û+ 5û2) + t22(−25M4 + 2t̂2 + 7t̂û+ û2 +M2(15t̂+ 8û))

+ t2(−11M6 + 15M4(t̂+ û) + 6t̂û(t̂+ û) − 2M2(4t̂2 + 3t̂û+ 4û2)))
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+ 2
√
t2|pT |(t41 + t31(3t2 + 11M2 + ŝ+ t̂) + t21(3t

2
2 + 7M4 + ŝt̂+ t2(33M2 − 2ŝ+ 3t̂)

+M2(11ŝ+ 4t̂)) + t1(t
3
2 − 3M6 − 4M2t̂2 + 7M4(ŝ+ t̂) + t22(5M

2 + ŝ+ 3t̂)

+ t2(27M4 + 2M2(ŝ− 10t̂) + 6ŝt̂)) − (M2 − t̂)(t32 − t2M
4 + t22ŝ

+M2(−4t̂(ŝ+ t̂) +M2(3ŝ+ 4t̂)))) cosϕ2 − 4t2|pT |2(t31 + 2t21(t2 + 2M2) + 2(M3 −Mt̂)2

+ t1(t
2
2 + 2t2M

2 + 5M4 − 4M2t̂)) cos2 ϕ2) − |pT |2 cos2 ϕ1(2t
3
1t2 + 4t21t

2
2 + 2t1t

3
2

+ 4t21t2M
2 + 8t1t

2
2M

2 + t21M
4 + 12t1t2M

4 + t22M
4 + 6t1M

6 + 10t2M
6 +M8

+ 4M6|pT |2 − 2t21M
2t̂− 4t1t2M

2 t̂− 2t22M
2t̂− 4t1M

4t̂− 20t2M
4t̂− 2M6t̂

− 8M4|pT |2t̂+ t21t̂
2 + 2t1t2t̂

2 + t22t̂
2 + 2t1M

2t̂2 + 10t2M
2 t̂2 +M4 t̂2 + 4M2|pT |2t̂2

− 2t21M
2û− 12t1t2M

2û− 2t22M
2û− 12t1M

4û− 20t2M
4û− 2M6û− 8M4|pT |2û

+ 2t21t̂û+ 4t1t2t̂û+ 2t22t̂û+ 4t1M
2t̂û+ 20t2M

2t̂û+ 2M4t̂û+ 8M2|pT |2t̂û+ t21û
2

+ 2t1t2û
2 + t22û

2 + 6t1M
2û2 + 10t2M

2û2 +M4û2 + 4M2|pT |2û2

− 8
√
t1M

2|pT |(t2 +M2 − û)(M2 − t̂− û)
(

cosϕ1 + cos(ϕ1 − 2ϕ2)
)

+ 4
√
t1t2 cos(ϕ1 − ϕ2)

(

M2 − t̂− û
)(

(t1 + t2)
2 +M2(5M2 + 2t1 + 6t2 − 4û)

)

+ 2t1 cos(2(ϕ1 − ϕ2))
(

t2
(

(t1 + t2)
2 +M2(2t1 + 4t2 + 5M2 − 4û)

)

+ 2M2
(

M2 − û
)2)

− 16M2|pT |
√
t2 cosϕ2

(

M2 − t̂− û
)2

+4M2|pT |2 cos(2ϕ2)
(

M2(M2 − 2t̂− 2û) + (t̂+ û)2
)

− 2
√
t1(M

2 − t̂− û) cos(ϕ1 − ϕ2)(−2|pT |(2t21t2 −M6 + 2t22(M
2 − t̂) +M4 t̂+M4û− 2M2t̂û

+ t2(8M
4 − 7M2t̂− t̂(t̂+ û)) + t1(2t

2
2 +M2(3M2 − t̂− 3û) + t2(11M2 + t̂+ 3û))) cosϕ2

+
√
t2(2t

2
2M

2 + 7t2M
4 −M6 + t22|pT |2 + 2t2M

2|pT |2 + 5M4|pT |2

+ t21(2t2 + 2M2 + |pT |2) − 4t2M
2 t̂− 4M2|pT |2t̂+ t2t̂

2 + 3M2t̂2 − t2M
2û− t2t̂û

−M2 t̂û− t̂2û+ 3M2û2 − t̂û2 + t1(2t
2
2 + 7M4 +M2(6|pT |2 − t̂− 4û) + û(−t̂+ û)

+ t2(13M2 + 2|pT |2 + 3(t̂+ û))) + |pT |2(t21 + t22 + 2t2M
2 + 5M4 + 2t1(t2 + 3M2)

− 4M2t̂) cos(2ϕ2))) + 2|pT | cosϕ1(2t1
√
t2(t1 + t2 +M2)(t22 +M4 −M2û

+ t1(t2 −M2 + û) + t2(2M
2 + û)) cos3(ϕ1 − ϕ2) +

√
t1 cos2(ϕ1 − ϕ2)(t

4
2 + 11t32M

2 + 7t22M
4

− 3t2M
6 + t32ŝ+ 11t22M

2ŝ+ 7t2M
4ŝ− 3M6ŝ+ t32û+ 4t22M

2û+ 7t2M
4û− 4M6û

+ t22ŝû+ 7M4ŝû− 4t2M
2û2 + 8M4û2 − 4M2ŝû2 − 4M2û3 + t31(t2 −M2 + û)

+ t21(3t
2
2 + ŝ(−M2 + û) + t2(5M

2 + ŝ+ 3û)) + t1(3t
3
2 +M6 −M4û

+ t22(33M2 − 2ŝ+ 3û) + t2(27M4 + 2M2(ŝ− 10û) + 6ŝû)) + 2
√
t2|pT |(−5M6 + 5M4t̂

− 4t2(M
4 −M2t̂) + t21(M

2 − t̂− û) + t22(M
2 − t̂− û) + 5M4û− 2t1(2M

2(M2 − û)
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+ t2(M
2 + t̂+ û))) cosϕ2) +

√
t1(−M2 + t̂+ û)2(t1t2 + t22 + t1M

2 + 8t2M
2 +M4

+ 4M2|pT |2 + 2t2t̂− t1û+ t2û−M2û− 2
√
t2|pT |(7M2 + t̂+ û) cosϕ2 + 4M2|pT |2 cos(2ϕ2))

− (M2 − t̂− û) cos(ϕ1 − ϕ2)(−(|pT |(3M6 − 3M4t̂− 12t2(M
4 −M2t̂) + t21(M

2 − t̂− û)

+ t22(M
2 − t̂− û) − 3M4û+ 4M2t̂û− 2t1(6M

2(M2 − û) + t2(11M2 + 3(t̂+ û)))) cosϕ2)

− 2
√
t2(2t

2
1(t2 +M2 − û) −M2(M4 + 2t̂(|pT |2 + û) −M2(2|pT |2 + t̂+ û)

+ t2(−3M2 + 3t̂+ û)) + t1(2t
2
2 + 8M4 +M2(2|pT |2 − 7û) − û(t̂+ û)

+ t2(11M2 + 3t̂+ û)) + 2M2|pT |2(t1 +M2 − t̂) cos(2ϕ2))))), (38)

where ŝ = (k1+k2)
2, t̂ = (k1−p)2, and û = (k2−p)2 are the standard Mandelstam variables.

With the aid of Eq. (36), we recover from Eq. (38) the well-known collinear-parton-model

result [23],

|A(g + g → H[3S
(1)
1 ] + g|2 = π3α3

s

〈OH[3S
(1)
1 ]〉

M3

320M4

81(M2 − t̂)2(M2 − û)2(t̂+ û)2

× (M4t̂2 − 2M2t̂3 + t̂4 +M4 t̂û− 3M2t̂2û+ 2t̂3û+M4û2

− 3M2t̂û2 + 3t̂2û2 − 2M2û3 + 2t̂û3 + û4). (39)

We now turn to subprocesses (22) and (23), with one real photon in the initial state. For

the 2 → 1 subprocesses (22), which are pure color-octet processes, we find

|A(R+ γ → H[3S
(8)
1 ]|2 = 0,

|A(R+ γ → H[1S
(8)
0 ]|2 = 8π2ααse

2
Q

〈OH[1S
(8)
0 ]〉

M
,

|A(R + γ → H[3P
(8)
0 ]|2 =

32

3
π2ααse

2
Q

〈OH[3P
(8)
0 ]〉

M3

(3M2 + t1)
2

(M2 + t1)2
,

|A(R + γ → H[3P
(8)
1 ]|2 =

64

3
π2ααse

2
Q

〈OH[3P
(8)
1 ]〉

M3

t1(2M
2 + t1)

(M2 + t1)2
,

|A(R + γ → H[3P
(8)
2 ]|2 =

64

15
π2ααse

2
Q

〈OH[3P
(8)
2 ]〉

M3

6M4 + 6M2t1 + t21
(M2 + t1)2

, (40)

where eQ is electric charge of the heavy quark Q. Application of Eq. (36) to Eq. (40) yields

the well-known results of the collinear parton model [24],

|A(g + γ → H[3S
(8)
1 ]|2 = 0,

|A(g + γ → H[1S
(8)
0 ]|2 = 8π2ααse

2
Q

〈OH[1S
(8)
0 ]〉

M
,

|A(g + γ → H[3P
(8)
0 ]|2 = 96π2ααse

2
Q

〈OH[3P
(8)
0 ]〉

M3
,
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|A(g + γ → H[3P
(8)
1 ]|2 = 0,

|A(g + γ → H[3P
(8)
2 ]|2 =

128

5
π2ααse

2
Q

〈OH[3P
(8)
2 ]〉

M3
. (41)

For the 2 → 2 subprocess (23), which is a color-singlet process, we find

|A(R + γ → H[3S
(1)
1 ] + g|2 = π3αα2

se
2
Q

〈OH[3S
(1)
1 ]〉

M3

2048M2

27(M2 − ŝ)2(M2 − û)2(t1 +M2 − t̂)2

×
(

t41M
2 +M2(ŝ2 + ŝû+ û2 −M2(ŝ + û))2 + t31(M

2(5ŝ+ 3û) − 7M4 − ŝû)

+ t21(ŝû(û− ŝ) +M4(3û− 11ŝ) +M2(7ŝ2 + 2ŝû− 3û2)) + t1ŝ(ŝû
2 +M4(û− 6ŝ)

+M2(4ŝ2 + ŝû− û2)) − 2
√
t1|pT |(t31M2 + t21(−7M4 − ŝû+M2(3ŝ+ 4û))

+ t1(M
4(−7ŝ+ 2û) − ŝ2û+M2(2ŝ2 + ŝû− 2û2)) −M2(2M4(ŝ+ û) − 2M2û(3ŝ+ 2û)

+ û(3ŝ2 + 4ŝû+ 2û2))) cosϕ− 2M2|pT |2(t31 +M2ŝ2 + t21(M
2 + 2ŝ)

+ t1(2M
2ŝ+ ŝ2 − 2t̂2)) cos2 ϕ

)

, (42)

where kµ2 now represents the photon four-momentum and ϕ2 = 0. Equation (42) agrees with

the corresponding result in Ref. [25], but has a more compact form. By means of Eq. (36),

Eq. (42) collapses to the well-known collinear-parton model result [26],

|A(g + γ → H[3S
(1)
1 ] + g|2 = π3αα2

se
2
Q

〈OH[3S
(1)
1 ]〉

M3

2048M4

27(M2 − t̂)2(M2 − û)2(t̂+ û)2

× (M4t̂2 − 2M2t̂3 + t̂4 +M4t̂û− 3M2t̂2û+ 2t̂3û+M4û2

− 3M2t̂û2 + 3t̂2û2 − 2M2û3 + 2t̂û3 + û4). (43)

Finally, we turn to subprocesses (24) and (25), through which electroproduction proceeds

at LO. As for the 2 → 2 subprocesses (24), which are all color-octet processes, we have

|A(R+ e→ e+ H[3S
(8)
1 ]|2 = 0,

|A(R+ e→ e+ H[1S
(8)
0 ]|2 = 64π3α2αse

2
Q

〈OH[1S
(8)
0 ]〉

M3

1

y2
2Q

2(M2 +Q2 + t1)2

×
(

(2 + (y2 − 2)y2)
(

(M2 + t1)
2 +Q4 + 2Q2M2 − 2Q2t1y2

)

+ 4Q2t1

+4Q
√

t1(1 − y2)(M
2 +Q2 + t1)(y2 − 2)y2 cos (ϕ1 − ϕ2)

+ 2(y2 − 1)
(

Q4 + (M2 + t1)
2 +Q2(2M2 + 2t1 − t1y

2
2)
)

cos (2(ϕ1 − ϕ2))
)

M2,

|A(R+ e→ e+ H[3P
(8)
0 ]|2 =

256

3
π3α2αse

2
Q

〈OH[3P
(8)
0 ]〉

M5

1

y2
2Q

2(M2 +Q2 + t1)4

×
(

(2 + (y2 − 2)y2)
(

9M8 + 24M6(Q2 + t1) + 22M4Q4 + 22M4t21 + (Q2 + t1)
2(Q4 + t21)
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+ 8M2(Q2 + t1)(Q
4 + t21)

)

+ 2M4Q2t1(52 + y2((43 − 9y2)y2 − 64))

+ 2Q2t1(Q
2 + t1)

2(10 − y2(14 + (y2 − 6)y2))

+ 4M2Q2t1(Q
2 + t1)(16 − 3y2(8 + (y2 − 5)y2))

+ 4Q
√

t1(1 − y2)(M
2 +Q2 + t1)(Q

4(4 + (y2 − 2)y2) + 2Q2(t1(4 + (y2 − 6)y2)

+M2(8 + y2(−4 + 3y2))) + (3M2 + t1)(t1(4 + (y2 − 2)y2)

+M2(4 + y2(3y2 − 2)))) cos (ϕ1 − ϕ2) − 2(3M2 +Q2 + t1)(y2 − 1)

× (3M6 + 7M4(Q2 + t1) + (Q2 + t1)(Q
4 + t21 +Q2t1(2 + (y2 − 4)y2))

+M2(5Q4 + 5t21 +Q2t1(10 + y2(3y2 − 4)))) cos (2(ϕ1 − ϕ2))
)

M2,

|A(R+ e→ e+ H[3P
(8)
1 ]|2 =

512

3
π3α2αse

2
Q

〈OH[3P
(8)
1 ]〉

M5

1

y2
2Q

2(M2 +Q2 + t1)4

×
(

(2 + (y2 − 2)y2)
(

Q8 + t1(M
2 + t1)

2(2M2 + t1)
)

+ 2Q6(y2 − 2)(M2(y2 − 2) − t1(2 − y2 + y2
2))

+Q4(4M2t1(y2 − 3)(y2 − 2) +M4(10 + (y2 − 10)y2) − 2t21(y2(6 + y2(−5 + 2y2)) − 6))

+ 2Q2(M4t1(10 + (−8 + y2)y2) − 2M6(y2 − 1) − t31(y2 − 2)(2 + (y2 − 1)y2)

−M2t21(y2(10 + y2(2y2 − 5)) − 12)) + 4Q
√

t1(1 − y2)(M
2 +Q2 + t1)(M

4(y2 − 2)

+ (Q2 + t1)
2(y2 − 2)y2 −M2(Q2(2 + y2) + t1(2 + y2 − 2y2

2))) cos (ϕ1 − ϕ2)

+ 2(y2 − 1)((Q2 + t1)
4 −Q2t1(Q

2 + t1)
2y2

2 +M4((Q2 + t1)
2 − 2Q2t1y2) + 2M2((Q2 + t1)

3

−Q2t1(Q
2 + t1)y2 −Q2t21y

2
2)) cos (2(ϕ1 − ϕ2))

)

M2,

|A(R+ e→ e+ H[3P
(8)
2 ]|2 =

512

15
π3α2αse

2
Q

〈OH[3P
(8)
2 ]〉

M5

1

y2
2Q

2(M2 +Q2 + t1)4

×
(

(2 + (y2 − 2)y2)
(

Q8 + (M2 + t1)
2(6M4 + 6M2t1 + t21)

)

+ 2Q6(M2(8 + (y2 − 8)y2)

− t1(y2 − 3)(y2 − 2)2) +Q4(M4(38 + y2(7y2 − 38)) + 4M2t1(20 + y2(8y2 − 25))

+ t21(44 − 2y2(30 + y2(2y2 − 13)))) + 2Q2(−(t31(y2 − 3)(y2 − 2)2) + 6M6(3 + (y2 − 3)y2)

−M2t21(y2(50 + y2(6y2 − 25)) − 40) −M4t1(y2(52 + y2(6y2 − 25)) − 46))

+ 4Q
√

t1(1 − y2)(M
2 +Q2 + t1)(Q

4(4 + (y2 − 2)y2)

+ t21(4 + (y2 − 2)y2) + 3M4(2 + y2(2y2 − 3)) +M2t1(10 + y2(6y2 − 11))

+Q2(M2(10 − 11y2) + 2t1(4 + (y2 − 6)y2))) cos (ϕ1 − ϕ2)

− 2(y2 − 1)(2M2((Q2 + t1)
3 − 5Q2t1(Q

2 + t1)y2 + 3Q2t21y
2
2)
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+ (Q2 + t1)
2(Q4 + t21 +Q2t1(2 + (y2 − 4)y2))

+M4(Q4 + t21 + 2Q2t1(1 + 3(y2 − 1)y2))) cos (2(ϕ1 − ϕ2))
)

M2. (44)

As usual, Q2 = −q2 and y2 = (q · P )/(k · P ), where P µ, kµ, k′µ, and qµ = kµ − k′µ are the

four-momenta of the incoming proton, the incoming lepton, the outgoing lepton, and the

virtual photon, respectively, ϕ1 is the angle between k1T and pT , and ϕ2 is the angle between

qT and pT . The corresponding formulas in the collinear parton model [27] are recovered as

explained in Eq. (36) and read:

|A(g + e→ e+ H[3S
(8)
1 ]|2 = 0,

|A(g + e→ e+ H[1S
(8)
0 ]|2 = 64π3α2αse

2
Q

〈OH[1S
(8)
0 ]〉

M

y2
2 − 2y2 + 2

y2
2Q

2
,

|A(g + e→ e+ H[3P
(8)
0 ]|2 =

256

3
π3α2αse

2
Q

〈OH[3P
(8)
0 ]〉

M3

× (y2
2 − 2y2 + 2)(Q2 + 3M2)2

y2
2Q

2(Q2 +M2)2
,

|A(g + e→ e+ H[3P
(8)
1 ]|2 =

512

3
π3α2αse

2
Q

〈OH[3P
(8)
1 ]〉

M3

× ((y2
2 − 2y2 + 2)Q2 − 4(y2 − 1))M2

y2
2(Q

2 +M2)2
,

|A(g + e→ e+ H[3P
(8)
2 ]|2 =

512

15
π3α2αse

2
Q

〈OH[3P
(8)
2 ]〉

M3

× ((y2
2 − 2y2 + 2)(Q4 + 6M4) − 12(y2 − 1)M2Q2)

y2
2Q

2(Q2 +M2)2
. (45)

Our analytic result for the 2 → 3 color-singlet subprocess (25) is rather lengthy, and we

refrain from listing it here.

V. CHARMONIUM PRODUCTION AT THE TEVATRON

During the last decade, the CDF Collaboration at the Tevatron [28, 29] collected data on

charmonium production at energies
√
S = 1.8 TeV (run I) and

√
S = 1.96 TeV (run II) in

the central region of pseudorapidity |η| < 0.6. The data cover a large interval in transverse

momentum, namely 5 < pT < 20 GeV (run I) and 0 < pT < 20 GeV (run II). The data

sample of run I [28] includes pT distributions of J/ψ mesons that were produced directly in

the hard interaction, via radiative decays of χcJ mesons, via decays of ψ′ mesons, and via

decays of b hadrons. That of run II [29] includes pT distributions of prompt J/ψ mesons, so
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far without separation into direct, χcJ -decay, and ψ′-decay contributions, and of J/ψ mesons

from b-hadron decays.

As is well known, the cross section of charmonium production measured at the Tevatron

is more than one order of magnitude larger than the prediction of the CSM evaluated

within the collinear parton model [30]. Switching from the collinear parton model to the

kT -factorization approach [20, 31, 32] somewhat ameliorates the situation, but still does not

lead to agreement at all. On the other hand, a successful description of the data could be

achieved with the NRQCD factorization formalism [1] implemented in the collinear parton

model, including the fusion and fragmentation mechanisms of charmonium hadroproduction

[33, 34].

Charmonium hadroproduction was studied some time ago using the NRQCD factorization

formalism implemented in the kT -factorization approach invoking both the fusion [20, 31, 32]

and fragmentation pictures [10]. It was found [20, 31, 32] that, in order to describe the

experimental data from the CDF Collaboration [28], it is necessary to employ a set of NMEs

that greatly differs from the one favored by the collinear parton model. In this paper, we

confirm this conclusion only to some degree.

On the other hand, the polarization of prompt J/ψ mesons measured at the Tevatron

[35] also provides a sensitive probe of the NRQCD mechanism. This issue was carefully

investigated both in the collinear parton model [36] and in the kT -factorization approach [37].

None of these studies was able to prove or disprove the NRQCD factorization hypothesis.

In contrast to previous analyses in the collinear parton model or the kT -factorization

approach, we perform a joint fit to the run-I and run-II CDF data [28, 29] to obtain the color-

octet NMEs for J/ψ, ψ′, and χcJ mesons. We use three different versions of unintegrated

gluon distribution function. Our calculations are based on exact analytical expressions for

the relevant squared amplitudes, which were previously unknown in literature. Our fits

include five experimental data sets, which come as pT distributions of J/ψ mesons from

direct production, prompt production, χcJ decays, and ψ′ decays in run I and from prompt

production in run II.

We now describe how to evaluate the differential hadronic cross section from Eq. (5) in

combination with the squared matrix elements of the 2 → 1 and 2 → 2 subprocesses (20)

and (21), respectively. The rapidity and pseudorapidity of a charmonium state with four-
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momentum pµ = (p0,pT , p
3) are given by

y =
1

2
ln
p0 + p3

p0 − p3
, η =

1

2
ln

|p| + p3

|p| − p3
, (46)

respectively. For the 2 → 1 subprocess (20), we have

dσKT(p+ p→ H +X)

d|pT |dy
=

|pT |
(|pT |2 +M2)2

∫

d|k1T |2
∫

dϕ1

× Φp(ξ1, |k1T |2, µ2)Φp(ξ2, |k2T |2, µ2)|A(R+R → H)|2, (47)

where

ξ1 =
p0 + p3

√
S

, ξ2 =
p0 − p3

√
S

, (48)

and k2T = pT − k1T . In our numerical analysis, we choose the factorization scale to be

µ = MT . For the 2 → 2 subprocess (21), we have

dσKT(p + p→ H +X)

d|pT |dy
=

|pT |
(2π)3

∫

d|k1T |2
∫

dϕ1

∫

dx2

∫

d|k2T |2
∫

dϕ2

× Φp(x1, |k1T |2, µ2)Φp(x2, |k2T |2, µ2)
|A(R+R → H + g)|2

(x2 − ξ2)(2x1x2S)2
, (49)

where

x1 =
1

(x2 − ξ2)S

[

(k1T + k2T − pT )2 −M2 − |pT |2 + x2ξ1S
]

. (50)

We now present and discuss our results. In Table I, we list out fit results for the relevant

color-octet NMEs for three different choices of unintegrated gluon distribution function,

namely JB [11], JS [12], and KMR [13]. The color-singlet NMEs are not fitted, but deter-

mined from the measured partial decay widths of ψ(nS) → l+ + l− and χc2 → γ + γ.

The numerical values are adopted from Ref. [34] and read: 〈OJ/ψ[3S
(1)
1 ]〉 = 1.3 GeV3,

〈Oψ′

[3S
(1)
1 ]〉 = 6.5 × 10−1 GeV3, and 〈OχcJ [3P

(1)
J ]〉 = (2J + 1) × 8.9 × 10−2 GeV5. They

were obtained using the vacuum saturation approximation and heavy-quark spin symmetry

in the NRQCD factorization formulas and including NLO QCD radiative corrections [38].

The relevant branching ratios are taken from Ref. [39] and read B(J/ψ → µ++µ−) = 0.0601,

B(ψ′ → J/ψ + X) = 0.576, B(χc0 → J/ψ + γ) = 0.012, B(χc1 → J/ψ + γ) = 0.318, and

B(χc2 → J/ψ+ γ) = 0.203. They somewhat differ from the values used previously [40]. For

comparison, we list in Table I also the NMEs obtained in Ref. [34] for the collinear parton

model with the LO parton distribution functions of the proton by Martin, Roberts, Stirling,

and Thorne (MRST98LO) [41].
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We first study the relative importance of the different intermediate states in direct J/ψ

and ψ′ production. In previous fits to CDF data from run I [28], with pT > 5 GeV, the

linear combinations

MH
r = 〈OH[1S

(8)
0 ]〉 +

r

m2
c

〈OH[3P
(8)
0 ]〉 (51)

for H = J/ψ, ψ′ were fixed because it was infeasible to separate the contributions propor-

tional to 〈OH[1S
(8)
0 ]〉 and 〈OH[3P

(8)
0 ]〉. By contrast, the new run-II data [28], which reach

down to pT = 0, allow us to determine 〈OH[1S
(8)
0 ]〉 and 〈OH[3P

(8)
0 ]〉 separately because

the respective contributions exhibit different pT dependences for pT < 5 GeV. This feature

is nicely illustrated in Fig. 1, where the shapes of the relevant color-octet contributions to

prompt J/ψ production, proportional to 〈OH[3S
(8)
1 ]〉, 〈OH[1S

(8)
0 ]〉, and 〈OH[3P

(8)
0 ]〉, are com-

pared with that of the CDF data from run II [29]. Notice that the color-octet contributions

differ in the peak position, by up to 1 GeV. Apparently, this suffices to disentangle the con-

tributions previously combined by Eq. (51). We find that 〈OJ/ψ,ψ′

[3P
(8)
0 ]〉 and 〈Oψ′

[1S
(8)
0 ]〉

are compatible with zero, independent of the choice of unintegrated gluon density—a strik-

ing result. For the case of J/ψ production from ψ′ decay, this implies that the 3S
(1)
1 and

3S
(8)
1 channels are sufficient to describe the measured pT distribution (see Fig. 3).

In Figs. 2–5, we compare the CDF data on J/ψ mesons from direct production, ψ′ decays,

and χcJ decays in run I [28] and from prompt production in run II [29], respectively, with the

theoretical results evaluated with the NMEs listed in Table I. From Fig. 2, we observe that

the color-singlet contribution is significant, especially at low values of pT , and comparable

to the one from the 1S
(8)
0 channel. As is familiar from the collinear parton model, the 3S

(8)
1

contribution makes up the bulk of the cross section at large values of pT . Incidentally, the

values of 〈OJ/ψ[3S
(8)
1 ]〉 obtained in the kT -factorization framework are in average quite close

to the one obtained in the collinear parton model, as may be seen from Table I. The situation

is very similar for J/ψ production from ψ′ decay, considered in Fig. 3, except that the 1S
(8)
0

and 3P
(8)
J contributions are negligible.

At this point, we wish to compare our results for direct J/ψ hadroproduction in the

kT -factorization approach with the literature, specifically with Refs. [20, 32], which consider

the partonic subprocess (20). By contrast, in Ref. [31], the NLO subprocess R + R →
J/ψ[3S

(8)
1 ] + g was studied, leaving aside the LO subprocess (20). In Ref. [32], the value

〈OJ/ψ[3S
(8)
1 ]〉 = 7.0 × 10−3 GeV3 was obtained using the Kwiecinski-Martin-Stasto (KMS)

[42] unintegrated gluon distribution function. This value is 2.6 times larger than the result
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we found using the KMR [13] version, which is very similar to the KMS one. We attribute

this difference in 〈OJ/ψ[3S
(8)
1 ]〉 to the different scale choice, µ = kT , used by the authors

of Ref. [32]. Adopting their value for 〈OJ/ψ[3S
(8)
1 ]〉, we can reproduce their result for the

respective cross section contribution. On the other hand, the value 〈OJ/ψ[3S
(8)
1 ]〉 = 15.0 ×

10−3 GeV3 found in Ref. [20] exceeds the one of Ref. [32] by a factor of 2.1 and our KMR

value by a factor of 5.6. Furthermore, the cross section evaluated in Ref. [20] falls off with

pT considerably more slowly than in Ref. [32] and here, only by one order of magnitude as

pT runs from 2 to 20 GeV, while the unintegrated gluon density in the proton falls off with

kT far more rapidly.

The discussion of J/ψ production from radiative χcJ decays, considered in Fig. 4, is sim-

pler because there is only one free parameter in the fit, namely 〈Oχc0[3S
(8)
1 ]〉. We confirm the

conclusion of Ref. [31], that, in the kT -factorization approach, the color-singlet contribution

is sufficient to describe the data. In fact, the best fit is realized when 〈Oχc0[3S
(8)
1 ]〉 is taken

to be zero or very small. In case of the JB gluon density, the fitting procedure even favors

a negative value of 〈Oχc0[3S
(8)
1 ]〉.

In Fig. 5, the pT distribution of prompt J/ψ production in run II is broken down into the

contributions from direct production, ψ′ decays, and χcJ decays. We observe that the latter

is dominant for pT <∼ 5 GeV, while prompt J/ψ mesons are preferably produced directly at

larger values of pT . The contribution from ψ′ decays stays at the level of several percent

for all values of pT . While the JS [12] and KMR [13] gluon densities allow for a faithful

description of the measured pT distribution [29], the JB [11] one has a problem in the low-pT

range, at pT <∼ 5 GeV, where even the χcJ -decay contribution, which is entirely of color-

singlet origin, exceeds the data. This problem can be traced to the speed of growth of the

JB gluon density as kT → 0. By contrast, the JS and KMR gluon densities are smaller and

approximately kT independent at low values of kT . For this reason, we excluded the CDF

prompt-J/ψ data from run I [28] and run II [29] from our fit based on the JB gluon density.

Considering the color-octet NMEs relevant for the J/ψ, ψ′ and χcJ production mecha-

nisms, we can formulate the following heuristic rule for favoured transitions from color-octet

to color-singlet states: ∆L ≃ 0 and ∆S ≃ 0; i.e. these transitions are doubly chromoelectric

and preserve the orbital angular momentum and the spin of the heavy-quark bound state.
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VI. CHARMONIUM PRODUCTION AT HERA

At HERA, the cross section of prompt J/ψ production was measured in a wide range of

the kinematic variables W 2 = (P + q)2, Q2 = −q2, y2 = (P · q)/(P ·k), z = (P ·p)/(P · q), pT
and y, where P µ, kµ, k′µ, qµ = kµ−k′µ, and pµ are the four-momenta of the incoming proton,

incoming lepton, scattered lepton, virtual photon, and produced J/ψ meson, respectively,

both in photoproduction [43], at small values of Q2, and deep-inelastic scattering (DIS) [44],

at large values of Q2. At sufficiently large values of Q2, the virtual photon behaves like a

point-like object, while, at low values of Q2, it can either act as a point-like object (direct

photoproduction) or interact via its quark and gluon content (resolved photoproduction).

Resolved photoproduction is only important at low values of z.

In the region z <∼ 1, diffractive production, which is beyond the scope of this paper, takes

place. In order to suppress the diffractive-production contribution, one usually applies the

acceptance cut z < 0.9. This effectively eliminates the contributions from the 2 → 1 partonic

subprocesses (22) and (24), so that we are left with the 2 → 2 partonic subprocesses (23)

and (25).

Let us first present the relevant formulas for the double differential cross sections of DIS,

direct photoproduction, and resolved photoproduction. In the case of DIS, we have

dσKT(p+ e→ e+ H +X)

d|pT |2dz
=

1

8z(2π)5

∫

dQ2
∫

dy2

∫

d|k1T |2
∫

dϕ1

∫

dϕ2

× Φp(x1, |k1T |2, µ2)
|A(R+ e→ e+ H + g)|2

(y2 − χ2)(2x1S)2
, (52)

where

x1 =
1

(y2 − χ2)S

[

(k1T + q2T − pT )2 −M2 − |pT |2 + y2χ1S + (y2 − χ2)Q
2
]

,

χ1 =
p0 + p3

2Ep
, χ2 =

p0 − p3

2Ee
. (53)

Here, Ep and Ee are the proton and lepton energies in the laboratory frame, and we have

S = 4EpEe and |q2T | =
√

(1 − y2)Q2.

In the case of direct photoproduction, we have

dσKT(p+ e→ e+ H +X)

d|pT |2dz
=

1

2z(2π)2

∫

dy2

∫

d|k1T |2
∫

dϕ1

× Φp(x1, |k1T |2, µ2)fγ/e(y2)
|A(R+ γ → H + g)|2
y2(y2 − χ2)(2x1S)2

, (54)
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where

x1 =
1

(y2 − χ2)S

[

(k1T − pT )2 −M2 − |pT |2 + y2χ1S
]

(55)

and fγ/e(y2) is the quasi-real photon flux. In the Weizäcker-Williams approximation, the

latter takes the form

fγ/e(y2) =
α

2π

[

1 + (1 − y2)
2

y2
ln
Q2

max

Q2
min

+ 2m2
ey2

(

1

Q2
min

− 1

Q2
max

)]

, (56)

where Q2
min = m2

ey
2
2/(1−y2) and Q2

max is determined by the experimental set-up, e.g. Q2
max =

1 GeV2 [43].

In the case of resolved photoproduction, we take into account the 2 → 1 and 2 → 2

partonic subprocesses (20) and (21), respectively, where the first reggeized gluon comes

from the proton and the second one from the photon. For subprocess (20), the relevant

doubly differential cross section reads:

dσKT(p+ e→ e+ H +X)

d|pT |2dz
=

1

2z(|pT |2 +M2)2

∫

dy2

∫

d|k1T |2
∫

dϕ1

×Φp(x1, |k1T |2, µ2)fγ/e(y2)Φγ(x2, |k2T |2, µ2)|A(R +R→ H)|2, (57)

where

x1 = χ1, x2 =
χ2

y2

, k2T = pT − k1T . (58)

For subprocess (21), the relevant doubly differential cross section is given by

dσKT(p+ e→ e+ H +X)

d|pT |2dz
=

1

2z(1 − z)(2π)3

∫

dy2

∫

d|k1T |2
∫

dϕ1

∫

dx2

∫

d|k2T |2
∫

dϕ2

×Φp(x1, |k1T |2, µ2)fγ/e(y2)Φγ(x2, |k2T |2, µ2)
|A(R+R → H + g)|2

x2(2x1x2y2S)2
, (59)

where

x1 =
1

(x2y2 − χ2)S

[

(k1T − pT )2 −M2 − |pT |2 + x2y2χ1S
]

. (60)

To evaluate the unintegrated gluon distribution function in the resolved photon,

Φγ(x2, |k2T |2, µ2), we use a procedure suggested by Blümlein [45], which is similar to the

proton case [11]. As input for this, we use the collinear parton distribution functions of the

resolved photon by Glück, Reya, and Vogt (GRVγ) [46].

In Figs. 6–9, our NRQCD predictions in the kT -factorization approach, evaluated with

the NMEs from Table I, are compared with the HERA data [43, 44]. Specifically, Figs. 6 and
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7 refer to the p2
T and z distributions in photoproduction with Ep = 820 GeV, Ee = 27.5 GeV,

60 GeV < W < 240 GeV, andQ2 < 1 GeV2 [43], while Figs. 8 and 9 refer to those in DIS with

Ep = 920 GeV, Ee = 27.5 GeV, 50 GeV < W < 225 GeV, and 2 GeV2 < Q2 < 100 GeV2

[44]. Acceptance cuts common to both photoproduction and DIS include pT > 1 GeV and

0.3 < z < 0.9. In this regime, the LO NRQCD predictions in the kT -factorization approach

are mainly due to the color-singlet channels and are thus fairly independent of the color-

octet NMEs presented in Table I. Therefore, our results agree well with previous calculations

in the CSM [47], up to minor differences in the choice of the color-singlet NMEs and the

c-quark mass.

VII. CHARMONIUM PRODUCTION AT LEP2

Some time ago, the DELPHI Collaboration presented data on the inclusive cross section

of J/ψ photoproduction in γγ collisions (e+ + e− → e+ + e− + J/ψ + X) at LEP2, taken

as a function of the J/ψ transverse momentum pT [48]. The J/ψ mesons were identified

through their decays to µ+µ− pairs, and events where the system X contains a prompt

photon were suppressed by requiring that at least four charged tracks were reconstructed.

The average e+e− center-of-mass energy was
√
S = 197 GeV, the scattered positrons and

electrons were antitagged, with maximum angle θmax = 32 mrad, and the maximum γγ

center-of-mass energy was chosen to be W = 35 GeV in order to reject the major part of

the non-two-photon events.

Under LEP2 experimental conditions, most J/ψ mesons are produced promptly, while the

cross section for J/ψ mesons from b-hadron decays is estimated to be about 1% of the total

J/ψ cross section [49] and can be safely neglected. Because the average value of the photon

virtuality Q2 is small, the Weizsäcker-Williams approximation can be used to evaluate the

e+e− cross section from the γγ cross section as

dσ(e+ + e− → e+ + e− + H +X) =
∫

dy1

∫

dy2 fγ/e(y1)fγ/e(y2)dσ(γ + γ → H +X). (61)

The process e+ + e− → e+ + e− + J/ψ + X receives contributions from direct, single-

resolved, and double-resolved photoproduction. The relevant partonic subprocesses are: γ+

γ → H[3S
(8)
1 ]+g, γ+R→ H[1S

(8)
0 , 3P

(8)
J ], γ+R→ H[3S

(1)
1 ]+g, R+R→ H[3S

(8)
1 , 1S

(8)
0 , 3P

(8)
J ],

and R + R → H[3S
(1)
1 ] + g. The squared amplitude of γ + γ → H[3S

(8)
1 ] + g may be found

23



in Ref. [49], the ones for the other partonic subprocesses were presented in Sec. IV.

The cross section of direct photoproduction is evaluated as

dσ(e+ + e− → e+ + e− + H +X)

d|pT |2dy
=

1

4π

∫

dy2 fγ/e(y1)fγ/e(y2)

× y1y2

y2 − ξ2

|A(γ + γ → H + g)|2
(2y1y2S)2

, (62)

where ξ1 and ξ2 are defined in Eq. (48) and

y1 =
y2ξ1S −M2

(y2 − ξ2)S
. (63)

In the case of single-resolved photoproduction via the 2 → 1 subprocesses, we have

dσKT(e+ + e− → e+ + e− + H +X)

d|pT |2dy
= 4π

∫

dy1 fγ/e(y1)fγ/e(y2)

×Φγ(x1, |k1T |2, µ2)y2
|A(R + γ → H)|2

(2x1y1y2S)2
, (64)

where x1 = ξ1/y1, y2 = ξ2, and k1T = pT . In the case of single-resolved photoproduction

via the 2 → 2 subprocess, we have

dσKT(e+ + e− → e+ + e− + H +X)

d|pT |2dy
=

1

2(2π)2

∫

dy1

∫

dy2

∫

d|k1T |2
∫

dϕ1 fγ/e(y1)fγ/e(y2)

× Φγ(x1, |k1T |2, µ2)
y2

y2 − ξ2

|A(R+ γ → H + g)|2
(2x1y1y2S)2

, (65)

where

x1 =
1

y1(y2 − ξ2)S

[

(k1T − pT )2 −M2 − |pT |2 + y2ξ1S
]

. (66)

In the case of double-resolved photoproduction via the 2 → 1 subprocesses, we have

dσKT(e+ + e− → e+ + e− + H +X)

d|pT |2dy
= 2

∫

dy1

∫

dy2

∫

d|k1T |2
∫

dϕ1 fγ/e(y1)fγ/e(y2)

× Φγ(x1, |k1T |2, µ2)Φγ(x2, |k2T |2, µ2)
|A(R+R → H)|2

(2x1x2y1y2S)2
, (67)

where x1 = ξ1/y1, x2 = ξ2/y2, and k2T = pT − k1T . In the case of double-resolved photo-

production via the 2 → 2 subprocess, we have

dσKT(e+ + e− → e+ + e− + H +X)

d|pT |2dy
=

1

2(2π)3

∫

dy1

∫

dy2

∫

d|k1T |2
∫

dϕ1

×
∫

dx2

∫

d|k2T |2
∫

dϕ2 fγ/e(y1)Φγ(x1, |k1T |2, µ2)fγ/e(y2)Φγ(x2, |k2T |2, µ2)

× y2

x2y2 − ξ2

|A(R +R→ H + g)|2
(2x1x2y1y2S)2

, (68)
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where

x1 =
1

y1(x2y2 − ξ2)S

[

(k1T + k2T − pT )2 −M2 − |pT |2 + x2y2ξ1S
]

. (69)

In Fig. 10, we confront the p2
T distribution of e+ + e− → e+ + e− + J/ψ + X, where X

is devoid of prompt photons, measured by DELPHI [48] with our full theoretical prediction

(line No. 4), which is broken down into the single-resolved color-octet contribution (line

No. 1), the single-resolved color-singlet contribution (line No. 2), and the direct plus double-

resolved contributions (line No. 3). We observe that the single-resolved contribution makes

up the bulk of the cross section, while the direct and double-resolved contributions are greatly

suppressed, and that, within the single-resolved contribution, the color-singlet channel is

dominant. The experimental data overshoot the theoretical prediction by a moderate factor

of 2–3. For the case of γγ collisions, we conclude that the color-singlet processes are dominant

in the kT -factorization approach, a situation familiar from photo- and electroproduction in

ep collisions considered in Sec. VI. The situation is quite different for the collinear parton

model, where color-octet processes dominate [49].

Recently, in Ref. [25], it was attempted to interpret the DELPHI data in the kT -

factorization approach invoking only the CSM and neglecting the cascade decays of the

ψ′ and χcJ mesons. Curve No. 2 in Fig. 10 approximately agrees with the corresponding

predictions in Ref. [25] for mc = 1.55 GeV. In Ref. [25], a significantly lower value of mc is

employed to reach agreement with the DELPHI data.

VIII. CONCLUSION

Working at LO in the kT -factorization approach to NRQCD, we analytically evaluated

the squared amplitudes of prompt charmonium production by reggeized gluons in RR, Rγ,

and Re collisions. We extracted the relevant color-octet NMEs, 〈OH[3S
(8)
1 ]〉, 〈OH[1S

(8)
0 ]〉, and

〈OH[3P
(8)
0 ]〉 for H = J/ψ, ψ′, and χcJ through fits to pT distributions measured by the CDF

Collaboration in pp̄ collisions at the Tevatron with
√
S = 1.8 TeV [28] and 1.96 TeV [29]

using three different versions of unintegrated gluon distribution function, namely JB [11], JS

[12], and KMR [13]. Appealing to the assumed NRQCD factorization, we used the NMEs

thus obtained to predict various cross section distributions of prompt J/ψ photoproduction

and electroproduction in ep collisions and photoproduction in e+e− collisions and compared

them with ZEUS [43] and H1 [44] data from HERA and DELPHI [48] data from LEP2,
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respectively. In the case of photoproduction, we included both the direct and resolved

contributions. As for the unintegrated parton distribution functions of the proton and the

resolved photon, we assumed the gluon content to be dominant.

Our fits to the Tevatron data turned out to be satisfactory, except for the one to the

χcJ sample based on the JB gluon density in the proton, where the fit result significantly

exceeded the measured cross section in the small-pT region. We found agreement with the

HERA and LEP2 data within a factor of 2, which is the typical size of the theoretical

uncertainty due to the lack of knowledge of the precise value of the c-quark mass and

the NLO corrections. Specifically, we found that direct and resolved photoproduction in

ep collisions under HERA kinematic conditions dominantly proceed through color-singlet

processes, namely R(p) + γ → H[3S
(1)
1 ] + g and R(p) + R(γ) → H[3S

(1)
1 ] + g, respectively.

Similarly, photoproduction in e+e− collisions under LEP2 kinematic conditions is mainly

mediated via the color-singlet subprocess R(γ) + γ → H[3S
(1)
1 ] + g, but the color-octet

subprocess R(γ) + γ → H[1S
(8)
0 ] also contributes appreciably.

LO predictions in both the collinear parton model and the kT -factorization framework

suffer from sizeable theoretical uncertainties, which are largely due to unphysical-scale de-

pendences. Substantial improvement can only be achieved by performing full NLO anal-

yses. While the stage for the NLO NRQCD treatment of 2 → 2 processes has been set

in the collinear parton model [50], conceptual issues still remain to be clarified in the kT -

factorization approach. Since, at NLO, incoming partons can gain a finite kT kick through

the perturbative emission of partons, one expects that essential features produced by the

kT -factorization approach at LO will thus automatically show up at NLO in the collinear

parton model.
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FIG. 1: Contributions to the pT distribution of prompt J/ψ hadroproduction in pp scattering with
√
S = 1.96 TeV and |y| < 0.6 from the relevant color-octet states compared with CDF data from

Tevatron run II [29]. All distributions are normalized to unity at their peaks.
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FIG. 2: Contributions to the pT distribution of direct J/ψ hadroproduction in pp scattering with
√
S = 1.8 TeV and |y| < 0.6 from the partonic subprocesses (1) R + R → J/ψ[3S

(8)
1 ], (2) R +

R → J/ψ[1S
(8)
0 ,3 P

(8)
J ], (3) R + R → J/ψ[3S

(1)
1 ] + g, and (4) their sum compared with CDF

data from Tevatron run I [28]. The theoretical results are obtained with the (a) JB [11], (b) JS

[12], or (c) KMR [13] unintegrated gluon distribution functions. The decay branching fraction

B(J/ψ → µ+ + µ−) is included.
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FIG. 3: Contributions to the pT distribution of J/ψ mesons from ψ′ decays in hadroproduction in pp

scattering with
√
S = 1.8 TeV and |y| < 0.6 from the partonic subprocesses (1) R+R→ ψ′[3S

(8)
1 ],

(2) R+R→ ψ′[1S
(8)
0 , 3P

(8)
J ] (this contribution actually vanished), (3) R+R→ ψ′[3S

(1)
1 ]+g, and (4)

their sum compared with CDF data from Tevatron run I [28]. The theoretical results are obtained

with the (a) JB [11], (b) JS [12], or (c) KMR [13] unintegrated gluon distribution functions. The

decay branching fraction B(J/ψ → µ+ + µ−) is included.
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FIG. 4: Contributions to the pT distribution of J/ψ mesons from χcJ decays in hadroproduction

in pp scattering with
√
S = 1.8 TeV and |y| < 0.6 from the sum of the partonic subprocesses

R+R→ χcJ [
3P

(1)
J ] and R+R→ χcJ [

3S
(8)
1 ], the latter of which being quite unimportant, compared

with CDF data from Tevatron run I [28]. The theoretical results are obtained with the JB [11],

JS [12], or KMR [13] unintegrated gluon distribution functions. The decay branching fraction

B(J/ψ → µ+ + µ−) is included.
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FIG. 5: Contributions to the pT distribution of prompt J/ψ hadroproduction in pp scattering with
√
S = 1.96 TeV and |y| < 0.6 from (1) direct production, (2) ψ′ decays, (3) χcJ decays, and (4)

their sum compared with CDF data from Tevatron run II [29]. The theoretical results are obtained

with the (a) JB [11], (b) JS [12], or (c) KMR [13] unintegrated gluon distribution functions. The

decay branching fraction B(J/ψ → µ+ + µ−) is included.
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FIG. 6: Contribution to the p2
T distribution of prompt J/ψ photoproduction in ep scattering with

Ep = 820 GeV, Ee = 27.5 GeV, 60 GeV < W < 240 GeV, Q2 < 1 GeV2, and 0.3 < z < 0.9

from the direct-photon subprocess R + γ → H[3S
(1)
1 ] + g compared with ZEUS data from HERA

[43]. The resolved-photon subprocesses R + R → H[3S
(1)
1 ,3 P

(1)
J ,3 S

(8)
1 ,1 S

(8)
0 ,3 P

(8)
J ] are neglected.

The theoretical results are obtained with the JB [11], JS [12], or KMR [13] unintegrated gluon

distribution functions.
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Ep = 820 GeV, Ee = 27.5 GeV, 60 GeV < W < 240 GeV, Q2 < 1 GeV2, and (a) pT > 1 GeV,

(b) pT > 2 GeV, or (c) pT > 3 GeV from (1) the direct-photon subprocess R+ γ → H[3S
(1)
1 ] + g,

(2) the resolved-photon subprocesses R+R→ H[3S
(1)
1 ,3 P

(1)
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(8)
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(8)
0 ,3 P

(8)
J ], and (3) their sum

compared with ZEUS data from HERA [43]. The theoretical results are obtained with the JB [11]

unintegrated gluon distribution function.
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FIG. 8: Contribution to the p2
T distribution of prompt J/ψ electroproduction in ep scattering with

Ep = 920 GeV, Ee = 27.5 GeV, 50 GeV < W < 225 GeV, 2 GeV2 < Q2 < 100 GeV2, and

0.3 < z < 0.9 from the color-singlet subprocess R + e → e+ H[3S
(1)
1 ] + g compared with H1 data

from HERA [44]. The theoretical results are obtained with the JB [11], JS [12], or KMR [13]

unintegrated gluon distribution functions.
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FIG. 9: Contribution to the z distribution of prompt J/ψ electroproduction in ep scattering with

Ep = 920 GeV, Ee = 27.5 GeV, 50 GeV < W < 225 GeV, 2 GeV2 < Q2 < 100 GeV2, and

pT > 1 GeV from the color-singlet subprocess R + e → e + H[3S
(1)
1 ] + g compared with H1 data

from HERA [44]. The theoretical results are obtained with the JB [11], JS [12], or KMR [13]

unintegrated gluon distribution functions.
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FIG. 10: Contributions to the p2
T distribution of prompt J/ψ photoproduction in e+e− annihilation

with
√
S = 197 GeV, Q2 < 9.93 GeV2, W < 35 GeV, and |y| < 2 from the partonic subprocesses

(1) R + γ → H[1S
(8)
0 , 3P

(8)
J ], (2) R + γ → H[3S

(1)
1 ] + g, (3) γ + γ → H[3S

(8)
1 ] + g, R + R →

H[3S
(8)
1 , 1S

(8)
0 , 3P

(8)
J ], and R + R → H[3S

(1)
1 ] + g, and (4) their sum compared with DELPHI

data from LEP2 [48]. The theoretical results are obtained with the JB [11] unintegrated gluon

distribution function.
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TABLE I: NMEs for J/ψ, ψ′, and χcJ mesons from fits in the collinear parton model (PM) [34]

using the MRST98LO parton distribution functions of the proton [41] and in the kT -factorization

approach using the JB [11], JS [12], and KMR [13] unintegrated gluon distribution functions. The

CDF prompt data from run I [28] and run II [29] have been excluded from our fit based on the JB

gluon density.

NME PM [34] Fit JB Fit JS Fit KMR

〈OJ/ψ[3S
(1)
1 ]〉/GeV3 1.3 1.3 1.3 1.3

〈OJ/ψ[3S
(8)
1 ]〉/GeV3 4.4 × 10−3 1.5 × 10−3 6.1 × 10−3 2.7 × 10−3

〈OJ/ψ[1S
(8)
0 ]〉/GeV3 — 6.6 × 10−3 9.0 × 10−3 1.4 × 10−2

〈OJ/ψ[3P
(8)
0 ]〉/GeV5 — 0 0 0

M
J/ψ
3.4 /GeV3 8.7 × 10−2 6.6 × 10−3 9.0 × 10−3 1.4 × 10−2

〈Oψ′

[3S
(1)
1 ]〉/GeV3 6.5 × 10−1 6.5 × 10−1 6.5 × 10−1 6.5 × 10−1

〈Oψ′

[3S
(8)
1 ]〉/GeV3 4.2 × 10−3 3.0 × 10−4 1.5 × 10−3 8.3 × 10−4

〈Oψ′

[1S
(8)
0 ]〉/GeV3 — 0 0 0

〈Oψ′

[3P
(8)
0 ]〉/GeV5 — 0 0 0

Mψ′

3.5/GeV3 1.3 × 10−2 0 0 0

〈Oχc0[3P
(1)
0 ]〉/GeV5 8.9 × 10−2 8.9 × 10−2 8.9 × 10−2 8.9 × 10−2

〈Oχc0[3S
(8)
1 ]〉/GeV3 2.3 × 10−3 0 2.2 × 10−4 4.7 × 10−5

χ2/d.o.f — 2.2 4.1 3.0
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