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Consider the elastic scattering of two spin zero particles with equal
mass m, Let s, k and ¢ be thé‘sQuare of the energy, the momentum and the
scattering angle in the centre-of-mass system of these two particles. Expand

the elastic scattering amplitude f in a Legendre series as follows :

2(s,5) = (o/x) ) (2nt)e (7,(2) (1)
n=0

where 2z = cos®. The unitarity condition reads
2
Ima > |aJ (2)
for n= O»,'l,ro- .

If one assumes that :

(a) for every fixed s, real and bigger than Lu®*, f(s,z) is holomorphic
for z in the plane cut along the real axis from = to -(1+2m® /%)
and from (14202 /) 10 «;

(8) +the discontinuity of f along the cuts is a tempered distribution in

s and z;

one can prove 1) using (2) that the elastic differential cross-section satisfies

for sufficiently big s the inequality

do/dq < C,(1ns)? s~ (3)

for fixed & # 0 or m, where C, is independent of s. This inequality is
stronger than that given by Froissart in Ref. 2) [ see also Greenberg and Low s

and Martin h)] which was

ds/an < C (1ns)® s¥?

for fixed © # O or .

In contrast, another result by Froissart 2), namely that the total

cross-section satisfies

Tiot < Cz2 (Ins)? . (4)
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(C. independent of s) cannot be strengthened by the combined use of (2) and

of hypotheses (a) and (B).

This is shown by two examples we will briefly explain

in this note.

From assumptions (a) and (B8), it follows that there exist two functions

A -and B with the following properties :

i)

at fixed s, real, > 4u?, A(s,n) and B(s,n) are defined and

holomorphic for Re n > N, where N real is independent of s;

ii) A(s,n) = an(s) for even integer n > N, B(s,n) = an(s) for odd

iii)

integer n > N;

]A(s,n)| and lB(s,n)| < sMhllp exp(-CRe nA's) where M,P,C are real

positive constants.

Conversely, given A and B, if there exist constants N,N,P,C such

that conditions i) and iii) are fulfilled, and if ImA> |A|?® for even integer

n, and ImBg;lBlz for odd integer n, then the amplitude defined as

n even n odd

£(s,2) = (wfs/k)[ z (2na ) (oym)P, (3) + Z(zm)a(s,n)pn(z)] (n>)

satisfies (a) and (B), as well as the unitarity condition (2).

Consequently if F(s,n) :

is holomorphic at fixed s (real positive) for Ren> O}

‘satisfies ]F(s,nﬂ < sM exp(-RenAs), where M is a positive

constant;
is real and satisfies ©O < F(s,n) <1 for n and s real positive;

is such that

}:;(2n+1)F(s,n)f~ s(lns) 2
n=1

for s- o;
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~then A =B = iF gives an example of an f which satisfies condition (2) as

well as (a) and (B), and which gives a total cross-section

Utot'v (lns)2

for s- w.

We found two such functions F. It would be meaningless to write them
down just now. In order to make their features understandable, we will first

sketch the paths we followed to arrive at them.

3 Supposons le probléme résolu : assume we got a function F with a), b),

and ¢). Introduce the variable

x = n/MVs 1ns (5j

and define (for s> 1)
g(s,x) = s~ exp(xM1ns )F(s,xMV/s1ns) . ‘ (6)

Because of a), b), and c), we have then :

a') g(s,x) is holomorphic for Rex>0 (at fixed s>7);
b') 1n|g(s,x)| < 0;
¢') 1n|g(s,x)] < (x=1)M1ns for x real, positive.
We use now the fact that 1n g(s,x)| is a subharmonic function in
Rex>0 (at fixed s) [this follows from a'); see 5)]. It can be shown that
among all real functions of x and s which are subharmonic for Rex>0 (at

fixed s), and which satisfy inequalities b') and c¢'), there is a biggest one,
call it V(s,x). We have then '

1n|g(s,x)| < V(s,x)
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be

We have been lucky enough to find the explicit expression of V(s,x). We found :
V(s,x) = V, (x)M1ns, Vo (x) = ReUp(x) ,

U (x)

x+iy+(i/mr) lnfty-ZﬁT%/(y+2/ﬁ)]

with y = i[x.z--(Zﬁn')z’]v/2 (determination for which y/x- i as |x| > )
(determination of 1n : that which goes to 0 when ly| > ). (The x plane
is cut along the segment between -2/ and 2/4r.) '

If it would be possible to find a function g which satisfies both a')
and 1In|g| = V, this function would give with (5) and (6) a function F which
would have all four properties a).to d). That this is in fact impossible is
easily seen : namely, if lnlgl =V, one would have A]Jﬂg] = AV (x = u+iv,
A = 82+a§; the derivatives are taken in the distribution theoretical sense);

but one finds
AV(s,x) = (2/0) [(2/m)? = 172 9 (2= w)s (v) U 1ns (7)

and, using a')

83nlg(s,)| = 27 ) ey 6 () (v (8)

(xi ¢ zeros of g with us > 0; L their respective multiplicities); so

the mentioned impossibility is now evident.

But in order that F satisfies property d), it is needed that lnlgl
becomes as close as possible to V along the real axis, especially for values

of x situated on the segment between O and 2/#.

So one is led to search for functions g for which 1n|g| behave
"asymptotically" (loosely speaking) like V(s;x) for big values of s. We
followed two different lines of thought to find such functions. This we will

expose now,



L, First example

Consider the differential equation
{(¢/ax)? = [hp(w))* ] w(x) =0

where h 1is a positive parameter, and p an analytic function. Then, the
W.K.B. approximation method tells us that there exists a fundamental system

of solutions w, which behave asymptotically, for h- «, 1like

—

X
[p(x) 1" exp[ih]p(u) du]
L
so that

X
o, | ~ Ip(x) | ™7* expl#nRe jp(u) dul] .
Xo

Identifying h with Mlns, % with 2/,
x

]p(u) du

%o
with U (x)-x (we subtract x from U, in order to get a simpler expression
for p), we are led to associate with our subharmonic bound V = M1n sRe U,

the following Bessel equation :
{(a/ax)® + (M1n s)® [(2/mx)®* - 1] }w(x) =0 .

wfoi’) (ixM1ns) and wfofca)(ixM Ins), with t(t+1) = -(2M1n s/Ar)?
(so that t~ i2M1ns/r) form a fundamental system of solutions showing the

characteristic W.,K.B, behaviour.

The considerations just presented have heuristic character only. But
the precise study of the H-funotions for large values of their parameters,

as made by Martin in a different context 6), shows that indeed
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F(s,n) = =C, In s(n/Mvs1ln s - 2/’:'r‘)2 (n/MVs1n s + 2/17’.) - {HSZ)M ln S/”T( iﬁ,/w/'é‘)"]z.

with suitable choice of C, (real positive constant) satisfies the four

properties a) to d).

5. Second example

V(s,x) is (at each fixed s) the solution of the following problem :
£ind (in the domain Rex>0) the solution of (7) which is equal to zero in
Rex= 0, and which goes to zero when Ix! —>"oo.' This solution can be expressed
in terms of the Green function (27)~ 1n|(x-x')/(x+x’)| associated with the

boundary conditions, and of the right-hand member of (7) as follows :
2/ .
V(s,x) = Mins / o (8) 1n | (xu)/(xeu) | au
o

where p(u) = [(2/7)% = 1/2/'1r u. Introducing the function

2/
¥(u) f o(v)av
u
we obtain

[ee]

¥(s,x) = Mlns f 10| [x-u(y)] /[ weu(y)1] ay

(o)

where u(y) 4is the inverse function of y(u).

"In order to find g(s,x), holomorphic in Rex> 0, such that V(s,x)
is an asymptotic expression for 1n|g| when s- «, we try to replace the
right-hand side of (7) by an expression of ‘the form (8); 'i.e., we try to

approximate V(s,x) by a sum like

») 1| (x—x;>/<x+xi> |
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(r : positive integer), (replacement of an integral by a sum !) which is equal

to lnlgl if

s =] | L)/ (o)

In fact, if we take X = u(yi), where y; = (2i-1)r/2MIns (i =1,2,..),
it is possible to show that there exists for each positive integer r a positive

constant Cs such that

©o
i r
g =6 [ (o) /(o))
|
i=1
satisfies a'), b'), and c'). We then choose r even, in order that g be
positive for real positive x. So the corresponding function F [see Egs. (5)

and (6)] satisfies conditions a), b), and ¢). Furthermore, one can show that

condition d) is also satisfied.

Remark 1

We have no example of a function f satisfying (a), (8) and (2), and

for which

do/an ~ s ' (1ns)?

at fixed & £ 0 or .

Remark 2

Assumptions (a) and () are fulfilled if f satisfies Mandelstam
representation. The converse is evidently false : (a) and (B) impose no

analytic properties for f as a function of s,
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The examples we found have analytic properties in s. But they do not
seem to obey Mandelstam representation. It is not clear if they can be modified

in order to do so.
Furthermore, we have used unitarity in one channel only.

Can inequality (4) be strengthened by a more complete use of the
Mandelstam analyticity hypothesis, and of the unitarity condition in the three

channels ? This is an open question.



7915

3)

L)

5)

6)

REFERENCES

T. Kinoshita, J.J. Loeffel and A, Martin, Phys. Rev. Letters,
10, 460 (1963).

M. Froissart, Phys. Rev., 123, 1053 (1961).
0.W. Greenberg and F.E., Low, Phys. Rev., 124, 2047 (1961).

A. Martin, Phys. Rev., 129, 1432 (1963); also
"Proc. Internat. Confer. on High Energy Nucl. Phys. Geneva 1962."
(CERN Scientific Information Service, Geneva 1962).

See for example: T. Rado, "Subharmonic Functions®, (Chelsea Publishing

Company, New York 1949) p.23.

A, Martin, "On the behaviour of the partial wave amplitudes for large
angular momenta in potential scattering”, (CERN preprint TH 361,
July 1963) (submitted to the Nuovo Cimento).



	
	
	
	
	
	
	
	
	
	

