Abstract
| This paper describes a 700 MHz, 1 Megawatt CW, high efficiency klystron RF system utilized for a Free Electron Laser (FEL) high-brightness electron photoinjector (PI). The E2V klystron is mod-anode tube that operates with a beam voltage of 95 kV. This tube, operating with a 65% efficiency, requires 96 watts of input power to produce in excess of 1 MW of output power. This output drives the 3rd cell of a 2½-cell, p-mode PI cavity through a pair of planar waveguide windows. Coupling is via a ridge-loaded tapered waveguide section and "dog-bone" iris. This paper will present the design of the RF, RF transport, coupling, and monitoring/protection systems that are required to support CW operations of the 100 mA cesiated, semi-porous SiC photoinjector. |