Abstract
| RF cavities for muon ionization cooling channels can have RF windows over their ends to create better internal voltage profiles and to make them independent of each other. To be effective, the conducting window material must be sufficiently transparent to the muons to not affect the beam cooling, which means low mass and low Z. In the case of pressurized RF cavities, as to opposed to those that operate in vacuum, the RF window design is simplified because the heat deposited in the windows from the RF and the beam is carried off by the hydrogen gas. In this report we analyze the thermal, mechanical, and electrical properties of a simple beryllium grid structure to improve the performance of pressurized RF cavities that are to be used for muon beam cooling. |