
ar
X

iv
:h

ep
-e

x/
06

01
04

2 
v1

   
25

 J
an

 2
00

6

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN–EP-PH-2005-028

5 July 2005

Search for ηb in two-photon collisions

at LEP II with the DELPHI detector

DELPHI Collaboration

Abstract

The pseudoscalar meson ηb has been searched for in two-photon interactions
at LEP II. The data sample corresponds to a total integrated luminosity of
617 pb−1 at centre-of-mass energies ranging from 161 to 209 GeV. Upper limits
at a confidence level of 95% on the product Γγγ(ηb)×BR(ηb) are 190, 470 and
660 eV/c2 for the ηb decaying into 4, 6 and 8 charged particles, respectively.

(Accepted by Phys. Lett. B)



ii

J.Abdallah25, P.Abreu22, W.Adam51, P.Adzic11, T.Albrecht17, T.Alderweireld2, R.Alemany-Fernandez8,

T.Allmendinger17, P.P.Allport23, U.Amaldi29, N.Amapane45, S.Amato48, E.Anashkin36, A.Andreazza28, S.Andringa22,

N.Anjos22, P.Antilogus25, W-D.Apel17, Y.Arnoud14, S.Ask26, B.Asman44, J.E.Augustin25, A.Augustinus8, P.Baillon8,

A.Ballestrero46, P.Bambade20, R.Barbier27, D.Bardin16, G.J.Barker17, A.Baroncelli39, M.Battaglia8, M.Baubillier25,

K-H.Becks53, M.Begalli6, A.Behrmann53, E.Ben-Haim20, N.Benekos32, A.Benvenuti5, C.Berat14, M.Berggren25,

L.Berntzon44, D.Bertrand2, M.Besancon40, N.Besson40, D.Bloch9, M.Blom31, M.Bluj52, M.Bonesini29, M.Boonekamp40,

P.S.L.Booth23, G.Borisov21, O.Botner49, B.Bouquet20, T.J.V.Bowcock23, I.Boyko16, M.Bracko43, R.Brenner49,

E.Brodet35, P.Bruckman18, J.M.Brunet7, P.Buschmann53, M.Calvi29, T.Camporesi8, V.Canale38, F.Carena8,

N.Castro22, F.Cavallo5, M.Chapkin42, Ph.Charpentier8, P.Checchia36, R.Chierici8, P.Chliapnikov42, J.Chudoba8,

S.U.Chung8, K.Cieslik18, P.Collins8, R.Contri13, G.Cosme20, F.Cossutti47, M.J.Costa50, D.Crennell37, J.Cuevas34,

J.D’Hondt2, J.Dalmau44, T.da Silva48, W.Da Silva25, G.Della Ricca47, A.De Angelis47, W.De Boer17, C.De Clercq2,

B.De Lotto47 , N.De Maria45, A.De Min36, L.de Paula48, L.Di Ciaccio38, A.Di Simone39, K.Doroba52, J.Drees53,8,

G.Eigen4, T.Ekelof49, M.Ellert49, M.Elsing8, M.C.Espirito Santo22 , G.Fanourakis11, D.Fassouliotis11,3, M.Feindt17,

J.Fernandez41 , A.Ferrer50, F.Ferro13, U.Flagmeyer53, H.Foeth8, E.Fokitis32, F.Fulda-Quenzer20, J.Fuster50,

M.Gandelman48, C.Garcia50, Ph.Gavillet8, E.Gazis32, R.Gokieli8,52, B.Golob43, G.Gomez-Ceballos41, P.Goncalves22,

E.Graziani39, G.Grosdidier20, K.Grzelak52, J.Guy37, C.Haag17, A.Hallgren49, K.Hamacher53, K.Hamilton35, S.Haug33,

F.Hauler17, V.Hedberg26, M.Hennecke17, H.Herr†8, J.Hoffman52, S-O.Holmgren44, P.J.Holt8, M.A.Houlden23,

K.Hultqvist44, J.N.Jackson23, G.Jarlskog26, P.Jarry40, D.Jeans35, E.K.Johansson44, P.D.Johansson44, P.Jonsson27,

C.Joram8, L.Jungermann17, F.Kapusta25, S.Katsanevas27 , E.Katsoufis32, G.Kernel43, B.P.Kersevan8,43, U.Kerzel17,

B.T.King23, N.J.Kjaer8, P.Kluit31, P.Kokkinias11, C.Kourkoumelis3, O.Kouznetsov16 , Z.Krumstein16, M.Kucharczyk18,

J.Lamsa1, G.Leder51, F.Ledroit14, L.Leinonen44, R.Leitner30, J.Lemonne2, V.Lepeltier20, T.Lesiak18, W.Liebig53,

D.Liko51, A.Lipniacka44, J.H.Lopes48, J.M.Lopez34, D.Loukas11, P.Lutz40, L.Lyons35, J.MacNaughton51 , A.Malek53,

S.Maltezos32, F.Mandl51, J.Marco41, R.Marco41, B.Marechal48, M.Margoni36, J-C.Marin8, C.Mariotti8, A.Markou11,

C.Martinez-Rivero41, J.Masik12, N.Mastroyiannopoulos11, F.Matorras41, C.Matteuzzi29, F.Mazzucato36 ,

M.Mazzucato36, R.Mc Nulty23, C.Meroni28, E.Migliore45, W.Mitaroff51, U.Mjoernmark26, T.Moa44, M.Moch17,

K.Moenig8,10, R.Monge13, J.Montenegro31 , D.Moraes48, S.Moreno22, P.Morettini13, U.Mueller53, K.Muenich53,

M.Mulders31, L.Mundim6, W.Murray37, B.Muryn19, G.Myatt35, T.Myklebust33, M.Nassiakou11, F.Navarria5,

K.Nawrocki52, R.Nicolaidou40, M.Nikolenko16,9, A.Oblakowska-Mucha19, V.Obraztsov42, A.Olshevski16, A.Onofre22,

R.Orava15, K.Osterberg15, A.Ouraou40, A.Oyanguren50, M.Paganoni29, S.Paiano5, J.P.Palacios23, H.Palka18,

Th.D.Papadopoulou32, L.Pape8, C.Parkes24, F.Parodi13, U.Parzefall8, A.Passeri39, O.Passon53, L.Peralta22,

V.Perepelitsa50, A.Perrotta5, A.Petrolini13, J.Piedra41, L.Pieri39, F.Pierre40, M.Pimenta22, E.Piotto8, T.Podobnik43,

V.Poireau8, M.E.Pol6, G.Polok18, V.Pozdniakov16, N.Pukhaeva2,16 , A.Pullia29, J.Rames12, A.Read33, P.Rebecchi8,

J.Rehn17, D.Reid31, R.Reinhardt53, P.Renton35, F.Richard20, J.Ridky12, M.Rivero41, D.Rodriguez41, A.Romero45,

P.Ronchese36, P.Roudeau20, T.Rovelli5, V.Ruhlmann-Kleider40, D.Ryabtchikov42 , A.Sadovsky16, L.Salmi15, J.Salt50,

C.Sander17, A.Savoy-Navarro25, U.Schwickerath8, A.Segar†35, R.Sekulin37, M.Siebel53, A.Sisakian16, G.Smadja27,

O.Smirnova26, A.Sokolov42, A.Sopczak21, R.Sosnowski52, T.Spassov8, M.Stanitzki17, A.Stocchi20, J.Strauss51, B.Stugu4,

M.Szczekowski52, M.Szeptycka52 , T.Szumlak19, T.Tabarelli29, A.C.Taffard23, F.Tegenfeldt49 , J.Timmermans31,

L.Tkatchev16 , M.Tobin23, S.Todorovova12, B.Tome22, A.Tonazzo29, P.Tortosa50, P.Travnicek12, D.Treille8, G.Tristram7,

M.Trochimczuk52, C.Troncon28, M-L.Turluer40, I.A.Tyapkin16, P.Tyapkin16, S.Tzamarias11, V.Uvarov42, G.Valenti5,

P.Van Dam31, J.Van Eldik8, N.van Remortel15, I.Van Vulpen8, G.Vegni28, F.Veloso22, W.Venus37, P.Verdier27,

V.Verzi38, D.Vilanova40, L.Vitale47, V.Vrba12, H.Wahlen53, A.J.Washbrook23, C.Weiser17, D.Wicke8, J.Wickens2,



iii

G.Wilkinson35, M.Winter9, M.Witek18, O.Yushchenko42, A.Zalewska18, P.Zalewski52, D.Zavrtanik43, V.Zhuravlov16,

N.I.Zimin16, A.Zintchenko16 , M.Zupan11

1Department of Physics and Astronomy, Iowa State University, Ames IA 50011-3160, USA
2Physics Department, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
and IIHE, ULB-VUB, Pleinlaan 2, B-1050 Brussels, Belgium
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1 Introduction

Two-photon collisions are very useful in searching for the formation of pseudoscalar
mesons with JPC = 0−+. The high energy and high luminosity of LEP II are additional
motivations to look for the bb̄ pseudoscalar quarkonium state ηb which has not yet been
discovered [1,2].

Its mass, mηb
, is estimated by several theoretical models [3]. It should lie below that of

the Υ vector meson (mΥ=9.46 GeV/c2) and the mass shift, ∆m = mΥ−mηb
, is estimated

to be in the range 10 to 130 MeV/c2.
The cross-section for two-photon resonance R formation with C=+1

e+e− → e+e−γ∗γ∗ → e+e−R

is given by [4]

σ(e+e− → e+e−R) =

∫
σγγ→ηb

dLγγ(W
2),

with the cross-section

σγγ→ηb
(W 2, q2

1, q
2
2) = 8π (2JR + 1) · Γγγ(R) · F 2(q2

1, q
2
2) ·

ΓR

(W 2 − m2
R)2 + m2

RΓ2
R

.

Here Lγγ(W
2) is the two-photon luminosity function, W is the two-photon centre-of-mass

energy, q2
1 and q2

2 are the squares of the virtual-photon four-momenta. The resonance R
is characterised by its spin JR, mass mR, total width ΓR and its two-photon partial
width Γγγ(R). In “quasi-real” (q2 ∼ 0) photon interactions, the form factor F 2(q2

1, q
2
2) is

constant and can be taken to be unity.
To compute the ηb production cross-section, the partial width Γγγ(ηb) must be known.

Theoretical estimates [5] predict it to be in the range 260 to 580 eV/c2. Setting mηb

to 9.4 GeV/c2 leads to an expected production cross-section σ(e+e− → e+e−ηb) of
0.14 to 0.32 pb at

√
s=200 GeV.

Most of the observations of ηc decays have been to four charged particles, both pions
and kaons [6]. Hence the ηb has been similarly searched for in 4, 6 and 8 charged
particle final states. The expected backgrounds come from the γγ → qq̄ processes and
the γγ → τ+τ− channel.

From the ALEPH experiment, upper limits on Γγγ(ηb)×BR(ηb) [1] are :

Γγγ(ηb)×BR(ηb → 4 charged particles) < 48 eV/c2,
Γγγ(ηb)×BR(ηb → 6 charged particles) < 132 eV/c2.

The L3 experiment, looking for ηb in the decay modes ηb → K+K−π0, π+π−η,
2, 4 and 6 charged particles (only or associated with one π0), observes 6 candidate events
with 2.5 background events expected. This corresponds to a combined upper limit on
Γγγ(ηb)×BR(ηb) [2]:

Γγγ(ηb)×BR(ηb → analysed channels) < 200 eV/c2.

In this paper we report on the search for ηb in the reaction

e+e− → e+e−γ∗γ∗ → e+e−ηb

with ηb decaying into the following final states:



2

ηb → 4π±(K±),
ηb → 6π±(K±),
ηb → 8π±(K±).

Here the charged K’s in parentheses indicate that a pair of pions may be replaced by a
pair of kaons with net zero strangeness.

2 Experimental procedure

The analysis presented here is based on the data taken with the DELPHI detector [7,8]
in 1996-2000, covering a range of centre-of-mass energies from 161 to 209 GeV (average
centre-of-mass energy: 195.7 GeV). The selected data set corresponds to the period
when the Time Projection Chamber (TPC) was fully operational thus ensuring good
particle reconstruction. This requirement reduces the integral luminosity for the analysis
to 617 pb−1.

For quasi-real photon interactions, the scattered e± are emitted at very small polar
angles. Hence there is no requirement on detecting them.

The e+e− → e+e−ηb candidate events are selected by requiring final states with 4, 6
or 8 tracks with zero net charge. Charged-particle tracks in the detector are accepted if
the following criteria are met:

• particle transverse momentum pT > 150 MeV/c;
• impact parameter of a track transverse to the beam axis ∆xy < 0.5 cm;
• impact parameter of a track along the beam axis ∆z < 2 cm;
• polar angle of a track 10◦ < θ < 170◦;
• track length l > 30 cm;
• relative error of the track momentum ∆p/p < 30%.

No K0
S reconstruction is attempted on each track pair. The identification of other

neutral particles is made using calorimeter information. The calorimeter clusters which
are not associated to charged-particle tracks are combined to form the signals from the
neutral particles (γ, π0, K0

L, n). A minimum measured energy of 1 GeV for showers in
the electromagnetic calorimeters and 2 GeV in the hadron calorimeters is required.

The selection of candidate events is achieved by applying the following criteria:

• no particle is identified as an electron or a muon by the standard lepton-identification
algorithms [9];

• no particle is identified as a proton by the standard identification algorithm [9];
• there are no electromagnetic showers with energy Eshower > 1 GeV or converted γ’s

with energy Eγ > 0.2 GeV in the event.

To ensure that no particle from the ηb decay has escaped detection, the square of the total
transverse momentum of charged particles , (

∑
~pT )2, is required to be small. The actual

cut value is estimated from a Monte Carlo sample of ηb events produced in γγ interactions.
In this simulation the kinematical variables are generated using the algorithms developed
by Krasemann et al. [10]. It is also assumed that the production amplitude factorizes
into the quasi-real transverse photon flux and a covariant amplitude describing both
the ηb production and decay [11]. The ηb → (4, 6, 8) charged-particle decay processes
are assumed to be described by the phase-space momenta distribution. The generated
events are passed through the standard DELPHI detector simulation and reconstruction
programs [8]. The same selection criteria are applied on the simulated events as on the
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data. Finally, an event is accepted on the basis of the trigger efficiency. Parametrized
for a single track, as a function of its transverse momentum pT , it ranges from 20% for
pT < 0.5 GeV/c to about 95% at pT > 2 GeV/c [12]. Due to the high mass of the ηb

resonant state and relatively large number of tracks in the final state, the overall trigger
efficiency per event is about 93.6%, 94.5% and 94.6% for events with 4, 6 and 8 charged
particles, respectively.

Fig.1 shows, in the visible invariant-mass interval 8 GeV/c2 < Wvis < 10 GeV/c2, the
fraction of remaining events as a function of a cut, P 2

T , on (
∑

~pT )2, for the 4 charged-
particle channel. It decreases rapidly for P 2

T < 0.1 GeV2/c2. Hence to preserve the
statistics, 4, 6 charged-particle events with (

∑
~pT )2 up to 0.08 GeV2/c2 and 8 charged-

particle events with (
∑

~pT )2 up to 0.06 GeV2/c2 were kept.

Figure 1: Efficiency of selected ηb Monte Carlo events of the 4 charged-particle
channel, as a function of the cut (

∑
~pT )2 < P 2

T , in the ηb search region:
8 GeV/c2 < Wvis < 10 GeV/c2.

The π/K identification is based on the TPC dE/dx and RICH [13] measure-
ments which are used both separately and combined, in order to check the consis-
tency, in a neural network-based algorithm [14]. In the ηb search region defined as
8 GeV/c2 < Wvis < 10 GeV/c2, the average K± identification efficiency is about 54%
and the purity is 82%. The misidentification of charged pions as kaons is about 1.5%.
After application of the selection criteria and requiring Wvis > 5 GeV/c2, the 4, 6 and 8
charged-particle data samples contain 173, 328 and 113 events respectively.
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The main background comes from inclusive γγ → qq̄ channels. This background is
estimated using a Monte Carlo sample generated with the PYTHIA 6.143 program [15].

The possible contamination of the e+e− → e+e−τ+τ− process is given special attention.
To reduce it in the γγ → 4π channel where it is most important, events of topology 1-3
with respect to the hemispheres defined by the thrust axis computed in the 4π centre-of-
mass system and with an invariant mass, in each hemisphere, smaller than 1.8 GeV/c2,
are discarded. Only (1.0±0.3)% of ηb events are eliminated by this cut.

The mass resolution in the search region has been estimated from the Monte Carlo
sample of γγ → qq̄ interactions. It is about 200 MeV/c2 FWHM for all topologies, as
shown on Fig.2 for the 4 charged-particle events. We have chosen to search for a possible
signal in ± one mass resolution interval around the predicted mass of 9.4 GeV/c2.

Figure 2: Difference between reconstructed and generated Wvis values for the selected 4
charged-particle events from the Monte Carlo γγ → qq̄ sample, in the ηb search region.

3 Results

The visible invariant-mass spectra of the selected events are presented in Fig. 3.
When an event has an odd number of K±, the kaon mass is assigned sequentially to the
other particles of opposite charge and the Wvis mass is simply taken as the average of
the various mass combinations. The resulting mass shift, averaged over the 4, 6 and 8
particle samples, is about 120 MeV/c2 in the ηb search region.
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The distributions are well reproduced by the γγ → qq̄ Monte Carlo simulation. The
ηb candidates are expected to show up in the 9.2 to 9.6 GeV/c2 mass region.

Figure 3: Invariant-mass distributions of selected events for 4, 6 and 8 charged-particle
final states. Points with error bars are from the data; histograms present the expected
number of background events from the γγ → qq̄ simulation; shaded histograms correspond
to the expected e+e− → e+e−τ+τ− background.

Table 1 gives the number of 4, 6 and 8 charged-particle events in the 9.2 to 9.6 GeV/c2

mass region, together with the number of expected background events computed taking
into account the overall reconstruction and selection efficiency. Among the 3 observed ηb

candidates only the event with 8 charged particles contains one identified kaon.
In the search for rare processes with a few observed events that may be compatible

with background, an upper limit for the signal S can be derived considering a Poisson
process with a background b and taking into account uncertainties in the background and
efficiencies [16]

CL = 1 −
∫

g(b)f(ε)
∑n

k=0 P [k|(Sε + b)]dεdb∫
g(b)

∑n

k=0 P (k|b)db
.

Here P (k|x) is the Poisson probability of k events being observed, when x are expected;
CL is a confidence level, n is the number of observed events. The probability-density
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ηb decay modes
4 ch.tracks (Nbkg) 6 ch.tracks (Nbkg) 8 ch.tracks (Nbkg)

Nobs (9.2 < Wvis <9.6 GeV/c2) 0 (1.2) 2 (1.1) 1 (1.5)

Nev 3.9 5.7 4.1
(95% C.L. upper limit)

overall efficiency 5.9% 3.5% 1.8%
Γγγ(ηb)×BR(ηb), eV/c2 190 470 660
(95% C.L. upper limit)

Table 1: Number of observed 4, 6 and 8 charged-particle ηb candidates (Nobs), expected
background events (Nbkg), 95% C.L. upper limits for signal events (Nev), overall efficiency
and 95% C.L. upper limits on Γγγ(ηb)×BR(ηb).

functions for the background g(b) and the efficiency f(ε) are assumed to be Gaussian and
restricted to the range where b and ε are positive.

Upper limits at the 95% confidence level were calculated for each channel and a limit
on Γγγ(ηb)×BR(ηb) could then be derived. The values are quoted in Table 1.

We considered as main sources of systematic uncertainties: the statistical error of the
background, the generator used for the ηb signal and the theoretical uncertainties of the
ηb parameters. The limited statistics of our Monte Carlo event sample introduces relative
uncertainties of 3%, 5%, 4% for the channels with 4, 6 and 8 charged particles respec-
tively. To appreciate the influence of the generators, we have used PHOT02 [1,17] which
generates ηb events decaying into two gluon-jets. The relative differences in efficiency are
of 24%, 11.4% and 6.1% for the 4, 6 and 8 charged particles channels. Varying the ηb

mass within the range of 9.33 – 9.45 GeV/c2 generates a relative uncertainty of 2.5% on
Nev, for each considered ηb decay channel. The three kinds of uncertainties were added
quadratically to obtain the upper limits quoted in Table 1.

4 Conclusions

The pseudoscalar meson ηb has been searched for through its decays to 4, 6 and 8
charged-particles in two-photon interactions at LEP II. The data sample corresponds to
a total integrated luminosity of 617 pb−1 collected at centre-of-mass energies ranging
from 161 to 209 GeV.

Upper limits at a confidence level of 95% on the product Γγγ(ηb)×BR(ηb) are 190, 470
and 660 eV/c2 for the ηb → (4, 6, 8) charged particle decays, respectively.
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