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The present NLL prediction for the decay rate of the raretisige proces8 — Xsy has a large
uncertainty due to the charm mass renormalization schentégaity. We estimate that this
uncertainty will be reduced by a factor of 2 at the NNLL levélhis is a strong motivation
for the on-going NNLL calculation, which will thus signifintly increase the sensitivity of the
observableB — Xsy to possible new degrees of freedom beyond the SM. We alsoagiwief
status report of the NNLL calculation.
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The inclusive decaj'bT — Xgy is well known as one of the most important flavour observables
within the indirect search for new physi¢$ [1]. The preseqegimental accuracy already reached
the 10% level, as reflected in the world average of the preseasurements][2]:

BR[B — Xsy] = (3.39"239) x 1074 (1)

In the near future, more precise data on this mode are expéwtm the B-factories. Thus, it
is mandatory to reduce the present theoretical uncertaictprdingly. Non-perturbative effects
are naturally small within inclusive modé$ [1]; also adutital non-perturbative corrections due to
necessary cuts in the photon energy spectrum are undeok(see [B]). As was first noticed in
[A], there exists a large uncertainty in the theoretical Nirediction related to the renormalization
scheme of the charm-quark mass on which we focus in thidarfithe reason is that the matrix
elements(sy|O1 2|b), through which the charm-quark mass dependence dominamigys, vanish
at the lowest order (LL) and, as a consequence, the charnk-quasss does not get renormalized in
a NLL calculation, which means that the syming| can be identified withm pole Or with theMS
massm(lc) at some scal@. or with some other definition af.. In a recent theoretical update
of the NLL prediction of this branching fraction the ratia,/m, was varied in the conservative
range 018 < m;/my, < 0.31 that covers both the pole mass value (with its numericateand the

running massng(|c) value (withpe € [me, mp)), leading to [p]:
BR[B — Xsy] = (3.70 0.35|m, /m, == 0.02|ckm = 0.25|param = 0.15|scaie) x 1074, 2

The only way to resolve this scheme ambiguity in a satisfgcteay is to perform a systematic
NNLL calculation. Working to next-to-next-to-leadinggdNNLL) precision means that one is
resumming all the terms of the form

(as(my))Pag(my) log"(my/M),  (p=0,1,2). 3)

whereM =m orM =my,n=0,1,2,... . Such a calculation is most suitably done in the frame-
work of an effective low-energy theory. The effective imtetion Hamiltonian can be written as

Hetr = —4Gr /V2 VioVig 3 Ci(1LM) Oi(1). @)

whereQ; () are the relevant dimension 6 operators &g, M) are the Wilson coefficients.

Parts of the three principal calculational steps leadingp¢oNNLL result within the effective
field theory approach are already dof@): The full SM theory has to be matched with the effective
theory at the scalg = Wy, wherepy denotes a scale of ordexy or m.. The Wilson coefficients
Ci(w) only pick up small QCD corrections, which can be calculatedixed-order perturbation
theory. In the NNLL program, the matching has to be workedatuhe order?. The matching
calculation to this precision is already finished, inclydihe most difficult piece, the three-loop
matching of the operator®; g [f]. (b) The evolution of these Wilson coefficients frqm= py
down to = | then has to be performed with the help of the renormalizagjiaoup, whereu,
is of the order ofm,. As the matrix elements of the operators evaluated at thestmdepy, are
free of large logarithms, the latter are contained in resechform in the Wilson coefficients. For
the NNLL calculation, this RGE step has to be done using tloerafous—dimension matrix up to

/2



Towards the NNLL precision B — Xsy Tobias Hurth

ordera. While the three-loop mixing among the four-quark opem®r (i = 1,...,6) [ and
among the dipole operato; g [f] are already available, the four-loop mixing of the faurark
into the dipole operators is still an open iss(®.To achieve NNLL precision, the matrix elements
(Xsy|Oi (1) |b) have to be calculated to ordei precision. This includes also bremsstrahlung
corrections. In 2003, thexénf) corrections to the matrix elements of the operatorg,,07,0g
were calculated[J9]. Complete ordeg results are available to th@-,07) contribution to the
decay width [10]. Recently, also ordeg terms to the photon energy spectrum (away from the
endpointE"®) were worked out for the operat@; [[L7].

In ref. [12] a strong motivation for this complicated NNLLfeft was given by calculat-
ing those NNLL terms that are induced by renormalizing tharetiquark mass in the NLL ex-
pressions, i.e. those terms that are sensitive to the defirif the charm-quark mass. These
terms correspond tdm. insertions in the diagrams related to the NLL order matrisrmetnts
MY% (me) = (sy|O12(kb)|b) and MYS™(me) = (syg|O12()|b) (for an example, see the left di-
agram in Fig[]L).
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Figure1: Left: Typical dm insertion diagram. Right: Typical'diagram with a self engeirgsertion.

The sumBMX"zt(s)( )-dm of all these insertions can be obtained by replaciadpy mc+ dm
in theO(a?) resultsMV'"( )(me), followed by expanding iBme up to linear order:

M35 (me+Bme) = M5 (me) + 3My 5 (m) - 3me + O((3me)?). (5)
As dm is ultraviolet-divergent, the matrix elemerl\llsl";t (m¢) are needed in our application up to
orderel, as indicated by the notation in ed] (5). [n][12] the explicialytical results for these matrix
elements are given in such a way that they can be used in & fedunplete NNLL calculation. The
explicit shift dm; depends of course on the renormalization scheme. When giatiaxpressing
the results foMV'"( )(me) in terms ofig(p) or Mepoler the shift reads@r = 4/3)

Os(Mo)
4

Os(Mo)
4

2
Cr <§ +3In% +4> M pole-

The infinities induced by the/t terms indm; get cancelled in a full NNLL calculation, in particular
by self-energy diagrams depicted in the right diagram in fligWhen implementing these self-
energy insertions, we only took into account g p?> = n¢) piece, i.e. that part of the one-
loop self-energy which only gets renormalized by the masamater. When used at the fixed
momentump? = g, this piece is gauge-independent.

— 3_
OMe(Mp) = — Cr < Me(Mp) OF OMg pole = —
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Our final estimates are given in Fig. 2 for three differentreal ofpy,, wherey, represents the
usual renormalization scale of the effective field theoryithill each vertical string, the solid dot
represents the branching ratio using the pole magse, while the open symbols correspond to
the MS massmc(l) for pe = 1.25 GeV (triangle) . = 2.5 GeV (quadrangle) ang. = 5.0 GeV
(pentagon). For each, the left string shows the value of the branching ratio at théd Mvel,
while the right string shows the corresponding value whier@addition. dm. mass insertions and
71(p? = m@) insertions were taken into account. Because the combinafithese insertions is
zero by construction for the pole scheme, the solid dots tatleeasame place in the left and the
right string for a given value of,. We stress that all the statements made in the following are
independent of this absolute normalization introducedHeyadditional=;(p? = mg) insertions,
because we refer to threduction of the erroonly. From Fig.[R we see that the error related to
the charm-quark mass definition is significantly reduced e NNLL terms connected with
mass insertions are taken into account. Taking as an exdhmplesults fo, = 5 GeV, we find
that at the NLL level the branching ratio evaluated ig(2.5 GeV) is 126% higher than the one
based ormmg pole. Including the new contributions, these.@% get reduced to.k%. One also
can read off an analogous significant reduction withinNt® scheme itself. However, to obtain a
NNLL prediction for the central value of the branching raiids of course necessary to calculate
all NNLL terms.
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Figure 2: BR(b — Xgy) for three values oft, (see text for more details).
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