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1. INTRODUCTION

It was originally proposed by Goebel1 and by Chew and Low2
that the nN—rmnN cross-section suitably extragolated from the
physical region to the m exchange pole (t_.u would provide
a valuable means of determining the mnm differential cross-
section. Many attempts to extract mm phases have been based
on Chew-Low extrapolations, until now agreement has beegn reached
on the general picture of the phases in the o region-. However,
with the recent increase in experimental statistics of the
m P “ntn data we are confronted with the problem of finding
the best way to account for the other exchange mechanisms which



are seen to occur in addition to ™ exchange. The method we
propose is to use the observed moments of the n—nt angular
distribution to perform an amplitude analysis of the product-

ion process. In this way we can isolate the dominant

exchange pole. That we are able to perform such an amplitude
analysis without knowledge of the nucleon polarization obser-
vables is a fortunate circumstance of the nature of the exchanges
(see Section 3).

We use this method to extract mmm phase shifts from the
high statistics mn-p—n-ntn data at 17.2 GeV/c4. We discuss
separately the nmm phase shift analysis below and above the
KK threshold. The former is described in Sections 4-6 and the
latter in Section 7. In Section 8 we_comment on the behaviour
of the I=0 nnm S wave near the KK threshold.

2. PION EXCHANGE

Suppose that the reaction n—p-+(n_n+)n were mediated
entirely by = exchange. Then the differential cross-section
is
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where m is the nucleon mass, pr, 1is the incident m  labora-
tory momentum, t is the momentum transfer at the nucleon vertex,
F(t) a form factor satisfying F(u2)=1, and the vlNN coupling
g2/tm="14.4. q, M. and dogg/dQ are the m-mt momentum, mass
and differential cross-section in the n™nT c.m. frame.

- The experimental observables are the moments <Yﬁi>» of the
™ angular distribution as a function of t and MTm
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where N 1is the number of events in the element dt dM; and
where we have chosen the y _axis normal to the mn p— nn)n
reaction plane. We use < Yﬂ > to abbreviate Re < Yj; >.

mm  exchange produces only (t channel) helicity zero o
systems, and in this simplified situation only the M=0 nmoments,
< Yg >, would be non-zero. We may express these moments in terms
of the (n~p—w—mtn) amplitudes for the production of S, P,...
wave helicity zero m~nt states
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where the omitted terms involve Dy, Fg,... Up to a normaliza-—

tion constant these amplitudes are given by
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where f are the ﬂ_ﬂ+ partial wave amplitudes at c.m. energy
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The £y, are defined so that in the rn elastic region
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Thus 7 phases can be obta%ned by extrapolating the production
amplitudes, or rather (t-—u.)Lo/J-t, from the physical region
(t<0) to = 2.

In Fig. 1 we show the mass spectrum up to M;;=2 GeV of
the unnormalized t channel moments integrated over the interval
0 < -t < 0.15 GeV2 obtained in n~p—=-n*tn at 17.2 GeV/c .

From these moments we see :

a) the presence of the o(770), £(1260), g(1700) mesons with
spins 1, 2, 3 respectively ; to establish6,4 spin 3 for the
g meson requires the additional knowledge that the d=17
and higher moments are small near 1700 MeV ;

b) from < Y; > the presence of a large S wave under the g
meson ;

2
c) from <Y, > the preserce of a large £ wave under the f
meson' ;
d) sharp structure near M;;=1 and 1.45 GeV which Odorico8

associates with the double pole killing zeros propagating
linearly into the n™n™t physical region from the forward
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The corrected unnormalized t channel
moments, N < YJl >, ag a function of
mtr~ mass for the interval 0 < -t <
< 0.15 GeV2, taken from Ref. 4. A
factor of 2 should be included in the
M#ZO moments shown in Ref. 5.
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direction_j; the effect at 1 GeV is complicated by the opening
of the KK channel with the cross-section at its S wave
unitarity limit suggesting the nearby presence of the s*
meson? ;

e) from <‘Z€ > moments the non-negligible presence of helicity
+

one w1 production.

This last observation indicates that there are other exchange
mechanisms in addition to m exchange, such as Ao, exchange or
absorptive corrections. Thus a nm phase ghift analysis based on
a straightforward extrapolation of the < Y > moments can be very
misleading »11, Additional terms occur on the right-hand sides of
Egs. (3) involving amplitudes describing non-zero helicity nmm
production. To allow for these exchanges we perform a production
amplitude analysis of all the observed moments as a function of

t and M .
1T

3. AMPLITUDES AND EXCHANGE MECHANISMS FOR n_p—>w_n+n

To describe the reaction ﬂ_p—’ﬂ_ﬂ+n we use the variables
shown in Fig. 2. The production
of a n~rt system of spin L

is described by helicity ampli- T n~ | Mass Mrnn
tudes HIsA(s,t,M2 ) with mm Spin L
helicity »=0,%x1y...,4d. For .

the moment we omit the nucleon T | Helicity A
helicity labels. This simplifies

the discussion and will be cor- S

rected for later.

It is convenient to intro-
duce the combinations of heli-
city amplitudes P n

Figure 2 Variables for the
process 1 p—mnTmtn.

(7a)

At high energies (that is, to order 1/s) +the amplitudes L +

and L, _ describe the production of a mnm system of spin f,
helicity A by natural and unnatural parity exchange, respective-
ly. We see that L)+==O for »=0 mm production, that is, a
zero helicity nm System cannot be produced at high energies

by natural parity exchange. In this case we have oily an unna-
tural parity exchange amplitude, which we define as

L,0

i = U
Lo = H (70)



The observables < Y& > may be expressed in terms of the
amplitudes (So,PysP141D0sD14sDoxy++-) of Egs. (7). Bach moment
is a sum gver bilinear terms of the form Re(LX:L%). A given mo-
ment < Yjj > will only contain terms with L'+L >J and

x'—x|=]ﬂ. Furthermore L'+L must be even (odd) if J 1s even
(odd). These restrictions are embodied in the Clebsch-Gordan
coefficients <:LL'x—x'|JM > and < LL'OO|JO > which occur when
the density matrix is expressed in terms of the moments12. More-
over, the moments contain no interference terms between L and
LX amplitudes. A+

For example,in a region of My where only S and P wave
nm  production is appreciable, the observables can be expressed
in terms of the production amplitudes So’Po’P1i as follows
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So far we have simplified the discussion by disregarding the
nucleon helicities. Each amplitude is really two indepencent
amplitudes, a nucleon helicity flip and a non-flip amplitude,
H&;X and HY3) respectively. The combinations of Egs. (7) are
to be formed for both the nucleon flip and non-flip amplitudes.
For an experiment involving unpolarized nucleons, Egs. (8) are
correct provided it is understood that the nucleon helicities
are summed over as follows

-
'L

1

=

—

L) (9)

Here we have omitted the mmm helicity label.



The absence of nucleon polarization data prevents a model
independent determination of the Titudes for ﬂN"’(ﬂﬂ)N.
However, the unnatural parity ex ¢28 have the simplifying
property” that mw exchange cont. .utes only to nucleon flip
amplitudes, whereas the amplitudes with the quantum numbers of
A1 exchange have nucleon non-flip (cf. Table I). We shall call
the latter A4 exchange contributions regardless of whether
they arise from A4 exchange, absorption, etc., with the except-
ion of the order 1/s exchange contribution in the s
channel which we include explicitly. A study of the eigenvalues
of the density matrix within the positivity domainl3 indicates
that the A contributions are small. Here we shall neglect
these contributions. This should te a good approximation, par-
ticularly as the neglected quantities only enter quadratically
in the expressions for the observables <« Y& >, that is, there
are no n—A1 interference terms.

The most direct check of this assumption will be nucleon
polarization measurements for nN—-nnN; the polarization asso-
ciated with unnatural parity exchange is due to n-A inter-
ference. Also we can check the small + dependence of the
observable (Bpgo+-p§0)do/dt in a 1w mass region where S
and P waves are dominant. The n exchange contribution va-
nishes like t 1in contrast to the non-flip A4 contribution.
In practice this testl4 is difficult, requiring very high sta-
tistics and depending mainly on the extreme forward data points.

With the assumption of negligible Ay, exchange contributions
it follows, for example, that the relative phases

\
arg (P.) - arg %)

3
2

A
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determine the phase between S, and P.. Thus in a region of
M,r where only S and P wave n~nt states are important we can
use the six observable moments, Egs. (8), to determinelb |P+|,
]POI, |P_|, |S|, ¢ and A as functions of M, and t. In
Section 4 we discuss the uniqueness of the solution and also how
we include the small D wave contribution.

This is exactly true for the n pole in the t channel ; in
the s channel we have order 1/s n exchange contributions
to the nucleon norn-flip amplitudes.
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TABLE I : Regge exchange contributions to the s channel
helicity amplitudes for =~ p— (n~n*)n and their
behaviour in the forwerd direction, t' =t-t . =0.

A is the helicity of the n-n+ system. The ~

amplitudes L), and IL,_ are defined in Egs. (7).
To leading order in s, only the exchanges listed

contribute to L and L. .
A+ A=




- 9 -

Choice of frame and absorptive corrections

In order to extract mmnm phase shifts we must isolate the
ﬁN—’(nn)N amplitudes which are dominated by m pole exchange
and suitably extrapolate them from the physical region to
t=yp2. Clearly Sy, Pyy Dyy..- are the desired amplitudes.
Now the amplitude analysis can be done equally well using either
the s or t channel moments of the n+n~ angular distribution.
However, we argue that it is appropriate to extrapolate s channel
amplitudes. The reason is that we believe the absorptive correct-
ions to the exchange pole contributions are simpler in the s
charrel16. At present we do not have a reliable prescription
for determining these corrections. The indications are that they
interfere destructively with the pole contributions and that, to
a good approximation, they conserve s channel helicities. More-
over they are expected to be largest in x#Z0 s channel ampli-
tudes, and, for x=0 amplitudes, to decrease with increasing
net helicity flip n (the n,x notation is that of Ref. 16) .
For an s channel helicity amplitude the net helicity flip,
n= Ik*'lp"Knl’ specifies the forward behaviour arising from
angular momentum conservation, and n+ x= |X|+'!Kp"%n|’ spe-
cifies the behaviour for definite parity (Regge pole) exchange.
This behaviour, together with the values of n anc x, is
listed in Table I.

Consider the x=2 H£l1 s channel helicity amplitude.
The pole contributions, which are required to vanish as t',
are expected to be modified by destructive interference with
a non-vanishing (absorptive) background. The cross—-over zeros
in the s channel < Y% > moments near -t = p? are experi-
mental support for this picture. This absorptive correction
to the s channel Py_, Dq_,... amplitudes will, when crossed,
affect the t channel Py, Dgy... helicity amplitudes. Of
course, the s channel S,, Py,... amplitudes may themselves
have absorptive corrections, but as these are helicity flip
amplitudes these modifications should be relatively small. In
either channel the absorptive modifications to S;, Pgy Dgyes-
do not in principle cause a problem since they should disappear
on appropriate extrapolation to the m exchange pole. However,
to determine mm phases it is desirable to extrapolate what are
believed to be the "purest" m exchange amplitudes and for this
reason we shall use the s channel Sy, Py, Dy,... amplitudes.

One slight complication of this choice is that the =n pole
contribution, which in the +t channel contributes only to S,
Pyye++y 1s distributed among all the IL,_ s channel ampli-
tudes. For example, for P wave ntn~ production we have, to
leading order in s,

2 2z
£ - 4 L ,
I,P\ = H',O _ :(%E ’t"'M“:K ",Zt é t
N O~ = - T r— L 1.2

'ﬂw o Lfy*
(11)
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where J2 = E[; - (Mr.rﬂ - F)Zj EG - (Mﬁ"ﬂ+ }A>2] :Miﬂ.

The last amplitude is only relevant at very small +t. To
include its contribution we multiply each product of =0 ampli-
tudes (e.g., | |2 Re(S P*)) occurring in the expressions
for the observable ?oments, Eqs. (8) by 1+ r2 before solving
for the amplitudes Thus from now on by Sy, Pyy... We mean
only the helicity flip amplitudes HL 0.

4. PRODUCTION AMPLITUDE ANALYSIS FOR MmT BELOW 1 GeV

We have seen that the neglect of A4 exchange amplitudes
permits the determination of the magnitudes and relative phases
of the amplitudes (s, Py,Po ) and the magnitude of P, directly
from the data. Instead of using the relative phases ¢ and A
of Eq. (10) it is convenient to project S ard P_. into compo-
nents parallel and perpendicular tc P, on the Argand plot as
illustrated in Fig. 3. In terms of these amplitude components
the moments of the n™nT angular distribution become

P

Yoo

]
|
- -l
Sn Pu

Figure_3 Vectors representing the unnatural
parity exchan%e amplltudes. The
components and PL are
well determlnea by the data, whereas
essentially only the product of the
perpendicular components, St PY, is
measured.
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Eliminating all amplitude components in favour of |PO| we obtain
e cubic equation for |PO|2. From the observed moments it turns
out that one solution is unphysical, IPO|2 < 0, and that the re-
main%ng two solutions are both physical with similar values of
7,17

We are considering a region of M, where D waves are
relatively small. Although in Egs. (12) we have omitted the terms
depending on the D wave amplitudes we do, in fact, allow for
these small contributions. In the first place we solve analytic-
elly for the two solutions using < Y] >-+28/27 < Y > instead
of < y! > since, unlike < Yg >, this combination does not
contain®the dominant D wave interference term Re(PoDF). More-
over using the < Yé > moment we estimate D,, D9, as described
in Section 5.b. We allow for these small D wave contributions
in the S and P wave amplitude analysis by iteration starting
from the two exact solutions.

As an exsmple we show in Fig. 4 the two solutions found at
the different t values from the s channel moments in the mass
bin 700 < M., < 720 MeV. The amplitudes S and Py have simi-
lar 1t Dbehaviour and so we show Y§*=S\V|PO| and yé::Sl/IPél.
By inspection of Egs. (12) we notice that the component S+ is
less constrained than S! and this is reflected in the result-
ing errors. Similarly the component P! is better determined
than PLi. Moreover, the data do not determine the absolute
signs of St and PL, ©but only their relative sign. In the
ambiguous cases we have chosen PL  to be positive in Fig. 4.
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nwp—Tmn'n AMPLITUDE COMPONENTS AT Mg, =710 MeV.

SOLUTION 1 SOLUTION 2
10 IRyl i IRyl 110
0 ¥ 0
p_/l
5 ; ; 5
i + RN
n J.f' H Lt Ty
I 2 H
O Sl i 1 0
P P
-5 1 ! -5
o ’
- FENTLE S 1.“%*++J%H* M
s'/1R) | f s'/iR) }
0 0
f T ) | s'IR)
°-5_1f1__[.l{ % R 05
wmeanll! |
o l Jf : 0
T sl
0 01 02 0 01 0.2

-t Gev?

Pigure_4 The two solutions for the s channel
amplitude components calculated from
the data in the mass bin 700 <M __
< 720 MeV. The points are the solu-
tions obtained at the different t
values and the dashed lines represent
the resulting average values of S/P,.
The continuous lines are obtained from
the parametric fit to the data that is
described in Section 5.
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We may compare the structure of these amplitude components
with the behaviour anticipated from the contributions of
exchange to P, and P_, and A, exchange to Py (cf. Section 3).
Up to slope factors of the form exp[b(t-UQZ], the P wave
amplitudes are expected to have the following t structure
P Y
0]

"%W’gw MEN‘,Et?}

L

p r 2t 1
P_ 3 %‘K ,& n LY T C (’t) i
e ! (13)

i

o |2 ! ' o /| o NF 2

'lfP.*.‘\ = “"t %A ’gA - %ﬂ' '\v{\-j i - t %%’A 'gA %

to leading order in s, where 21 are signature factors
%4'§€XP<-iﬂai) with o ® t-uz and oy ®0.5+t, and g, and
gXF are the A, exchange couplings to nucleon helicity flip
and non-flip respectively. Studies!? of p and Ap_ exchange
in spin O - spin & processes indicate that there gi/ AF ~ 4.
The additional contribution g.C(t), which is non-vanishing

at t'=0, can be regarded as the absorptive correction to

[N

and A, exchange in the (evasive) s channel H,_ amwpli-
tude. “At t'=0 we have P, =P_. The Williams} model 8 is
a special case of Egs. (1%3), namely that with gA’N =0,

=1 and C=1.

i

For the amplitudes obtained from the data in the [ mass
band, 730 < My < 810 MeV, such a breakdown has been discus-—
sed in Ref. 15 (see also Refs. 19, 20). The actual interpre-
tation of the various contributions to P, 1is not important as
far as the extraction of nm phases is concerned. However,
P, give sizeable contributions to all the moments and it is
crucial to allow for their presence in the Chew-Low extrapola-
tion.

The two allowed solutions for the amplitude components are
distinguished mainly by their differing values of S+ and this
leads to an ambiguity in the determination of the mnm S wave
phase.

Connection with mmm phases :

For each M., ©bin the dominant exchange amplitudes,
S and PO, are the appropriate quantities to extrapolate in
t to t= %2 to determine mmnm phase shifts. We discuss first
the P wave and then the S wave extrapolation.

To extrapolate |Po| to the 1 exchange pole we fit the
calculated amplitudes for -t < 0.2 to the form |[cf. Eq. (4]]
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where for M_, in the nnt  elastic region fp=sin &p eVP.
In other words from IPOI we determine AIfPl and thusg knowing
the normalization A we obtain 6p the P wave mm phase
shift. The normalization factor A has an MnTr derendence

=N O LI
A Y l— "‘tt?t "4/“.‘ > (15)

where Mﬁﬂ/q arises from the Chew-Low formula and the factor in
brackets is due to crossing P, from the t +to the s channel
at t= 32. It remains to fix the over-all normalization constant,
&, of the r~p—-n~ntn cross-section dc/dMﬂﬁ. To do this we
extrapolate |Po| for each Mpp bin in the region of the o
resonance, and adjust the constant AN until the resulting 6p
goes smoothly through the resonance. Knowing the constant &',
and therefore A, we can calculate 5p as a function of MmT
in the n™nt elastic region. '

Consider now the extrapolation of the S wave amplitudes.
To a good approximation the values of S/PO are constant in t.
Therefore, to obtain the value at t=,°, we simply fit the
values for -t < 0.2 to a constant

»
WP
4>

(<2

,‘
il

1y
“ ps

1
0

[<] /33‘1-'» (16)

At the sample energy, M .=T710 MeV, the resulting extrapolations
for S‘i/PO and SL/P, are indicated by dashed lines on Fig. 4.

It is illuminating to view the results in terms of_the uni-
tarity circles for the nm partial wave amplitudes, fy, - We
cannot determine both the I=0 and I=2 S wave nrmm Dphase
shifts and so we input f% using the values obtained in analy-
ses 3921 of ptp—rntntn data. The values we use for 6% are
listed in Tabie II. The situation at 710 MeV is shown in Fig. 5.
The larger unitarity circle corresponds to the P wave which
we assume to be elastic. Then, as described above, IPOI de-
termines &p. The P wave results for the two solutions are
almost identical and are shown by a single line on Fig. 5. Also
we show the unitarity circle for the I=0__S_wave, scaled
down by the factor 2/%/'3 arising from +/2L+1 and isospin.
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data at 17.2 GeV/c

+
n

Mp-> TT

In each mass bin below 900 MeV six moments were fitted at 20

I .
SL in degrees determined from

T T phase shifts,
in 20 MeV MW

TABLE II

mass bins.

2
t values (0.0025 < -t < 0.2 GeV"). Above 900 MeV, 15 moments were used at the 20 t

mass distribution selects Solution 1 as the physical solution.

The T°TC°

values.
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S AND P WAVE it PHASES AT 710 MeV.

P WAVE UNITARITY CIRCLE

I=0 S WAVE CIRCLE

The S and P wave mm phases at M, =710 MeV
obtained by extrapolating the amplitude solutions
of Fig. 4. The scale of the unitarity circles
(1 2/3J3) represents the relative size of the
amplitudes in the production process. The length
00g is the input I=2 S wave. The crosses
are the S8 wave results obtained from the dashed
lines of Fig. 4. The black dots are the results
of the parametric fit with elastic unitarity
imposed.
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The shift of origin from O to Oﬁ is due to the input I=2

S wave amplitude f2. Knowing S'/P, and S'/P, we may plot
the S wave amplituge on Pig. 5. The two solutions are indi-
cated by crosses which represent their error bars. If the S
wave is elastic, as we expect, then the cross representing the
physical solution should lie on the unitarity circle. We notice
that the well determined component sl is similar for the two
solutions, whereas the poorly known component S+ distinguishes
the two solutions. It is apparent that it is not going to be
easy to select the physical solution for &% simply from an
analysis of n-p—n-ntn data alone. As in previous ana-

lyses 595522=24 we will have to take care to keep track of both
solutions as a function of Myp. Essentially the M=0 moments
determine IPO|, sl and |S|2+-|Po|2 and so the best chance of
getting a unique 5g appears to be in a region away from the p
where ISI is significantly different for the two solutions and
leads to different extrapolated cross-sections. The inclusion of
the M#O moments is necessary to allow a reliable determination
of P, and &S. Moreover, in principle, from a knowledge of the
sign of PL, +they also allow the sign of S +to be determined
(cf. < Y% >). In practice PL is small and poorly determined
and so 1s not decisive.

So far S wave unitarity has not been imposed. At first
sight it appears that this could select the physical solution -
perhaps one solution is always nearer to the circle than the
other solution. However, S+, 1like PL, is badly determined
and it would be misleading to select the solution in this way.
Rather at the outset we should impose unitarity (at t=u2) on
the analysis and then see if one solution is preferred to the
other. We describe such an analysis below.

5. mm PHASE SHIFT ANATYSIS FOR Mmr BELOW 1 GeV
The aznalysis is based on the high statistics n~p—n n'n

data obtained# at a laboratory momentum of 17.2 GeV/c. S
channel moments of the n~nt angular distribution are used in
20 MeV mm  mass bins from M, . =440 MeV wupwards. In each mass
bin we determine the structure of the production amplitudes in
the range 0 < -t < 0.2 GeV2 by fitting the moments to parame-
tric forms based on Egs. (13). For the results that we present,
the slopes of the m, C, A, contributions, the complex C(;2),
and gE of Egs. (13) are faken as parameters in each M-y bin,

in addition to 69 and ¢ ; the signature factors i are
included and glF=0.25 . We include D waves as outlined
in Section 4. e impose elastic unitarity, I =sin &y elsL,

through Egs. (14)-(16), except that, above the onset of the mw
channel, M_=920 MeV, we allow the P wave to be inelastic.
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~

The unitarity constraint is only true at t= ué- However,
we included a term |1+a(t-2)] on the right-hand side of
Eq. (16). Since the unitarity phase is preserved25 we took the
parameter a to be real. Such a term could also arise from
differing amounts of absorption in the m pole contributions
to 8 and P,, or from a t dependence associated with cros-
sing from the t +to the s channel. The values found for the
parameter a in the different mass bins were distributed about
zero, and typically a = 0.5 GeV2. The results we present have
a=0. Values of a=20.5 lead to changes in 6% and 6p of
about +2° and +0.5°, respectively.

We tried several different forms of amplitude parametriza-
tion based on Egs. (13), allowing different slope factors
exp[}(t— “2 on individual contributions, using different input
values of g /gﬂF, etc. The phase shift results were extremely
stable to such changes of parametrization. We also repeated the
analysis using only data for -t < 0.1. Again the results were
essentially unaltered. The curves shown in Fig. 4 are the form
of the amplitudes at 710 MeV. We see that they are a good des-
cription of the amplitude components determined t by t indi-
cating that the chosen parametric form is adequate. The fit to
the observed s channel moments is shown in Fig. 6.

a) S and P wave mm phases

The phase shifts obtained by the method outlined above are
shown in Fig. 7 and listed in Table II. There are two solutions
mainly differing in the values of ©68. Solution 1 is character-
ized by a small PL and solution 2 by a small S*+. By this
means or by following the Barrelet zeros (see Section 7, Fig. 16)
it is possible to keep track of the two solutions through the p
mass region. The solutions are stable to changes of parametri-
zation and to changes of the t region over which the data are
fitted. With the exception of solution 2 below Mnﬂ==650 MeV,
the solutions are also stable to reasonable variations of the
input values of 6% and 6%. The black dots and open circles
of Fig. 7 denote solutions 1 and 2 respectively. For comparison
we show by a dashed curve the solution obtained by Protopopescu
et al.24 from an analysis of nTp—nptn~att data.

6,22,24 .
In contrast to recent analyses , we obtain two accept-—
able solutions below (as well as above) the p mass. At low

M. the solutions have very different |S|, and therefore lead
to different extrapolated mm cross—sections. However, both
values are compatible with the physical region data since the

non m exchange background differs for the two solutions in such
a way as to give good fits to the data in each case. We discuss
this further in the next section.
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OBSERVED m"n* MOMENTS AT 710 MeV

Figure 6
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The fits to the s channel moments with
J <2 at M . =710 MeV corresponding to
solutions 1 and 2 of Table II. The des-
cription of the J= 3 moments is also
shown (88=4.5°).
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Figure 7 The S and P wave nn phase shifts, &8
and 68p, below 1 GeV determined from the
m p—n~ntn amplitudes. The values are listed
in Table II. Solution 1 is the physical solu-
tion. For comparison the dashed line is the
favoured solution obtained by Protopopescu et
al.24.
If we were to believe that the non-vanishing absorptive
background [@(t) of Eq. (1321 is dominantly real relative to

1 exchange then this appears to favour the solution with the
smaller PL, that is, solution 1. On the other hand, although
the results of the phase coherent analysis (Pﬁ=(3) described
in the next section do in general prefer solution 1, we find
even there an acceptable solution 2 at M values below and
above the p mass region. From the aralysis above it is clear
that the n~n™n data alone do not resolve the S wave ambi-
guity in the elastic region.

The most direct way to select the physical solution is to
study the nOn0 mass distribution26,27, since here only even
L nm partial waves can contribute. The histgogram in Fig. 8
is the 7% mass spectrum for 2,° < -t < 8U2 obtained from
a 7w p—n9%°n experiment26 at 8 GeV/c. In terms of mm phase

shifts this spectrum is, to a good approximation, proportional to



do (m"p —1’n’n)/dMp; (arbitrary units)
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Figure 8 The histogram_is the W?ﬁo mass spectrum for

________ 2u2 < -t < 8M2 from @7 p—nOrOn at 8 GeV/c26.
The circles (triangles) are the shape of the
spectrum calculated from the mnm phases of
solution 1 (solution 2) respectively. The
scele is arbitrary.
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where the partial wave amplitudes f%, are defined as in Eq. (6).
The predictions of the two solutions are shown on the figure.

comparison of the shapes of the mass spectrum clearly selects
solution 1 as the physical solution.

A

Above M. =920 MeV we allow the P wave to be inelastic.

Although fPl is well determined, the inelasticity parameter
Mp 1is poorly constrained by the data for M__ ~ 950 MeV. The
reason is apparent from Fig. 9. The data determine |fP|, |fS|

and cos(6g-6p) but not the over-all phase, and thus the solu-
tions shown have comparable 2

y<. The phase shifts listed assume
that the P wave is elastic below 1 GeV.

M. =930 Mev

The solution S', P', with an inelastic

P wave gives a comparable fit to the data.
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To determine resonance parameters we use the form

JC Mg M
[T 2 7z,
M‘R - M"‘iﬂ ‘LMRP > (17)
with
2L+
S 6 R AL

I \¢11!j DL G%'r>

For the p. we use Dq(y)=1+y and fit to the P wave phase
shift of solution 1 in the range 650 < M ; < 890 MeV. With
this parametrization, we find for the p
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b) D wave in the elastic region :

In the p mass region the observed s channel < Yg >
moment has a systematic behaviour versus both M., and t
which is consistent with P-D interference. For a fixed
t~-0.05 GeVZ2, the normalized < Yg > moment decreases from
around C.04 for Mﬁﬂfv600 MeV, through zero in the region of
the ( mass, to about -0.03 for MﬁﬂfV9OO MeV. TFor fixed
Mﬂﬂ, < Yg > reaches a maximum size for -t~0.05 and then
decreases, changing sign for -t~0.15 GeVe. Examples of the
observed s channel < Yg > moment are shown in Fig. 10.

In terms of production amplitudes

/ »
- ) CH * . %
T N(r )y = = Te (BRI - 2D -BDy)
éxs 1Dl T2 RS R \
= == ‘P! —-! —1?| '% 8 -S
A5 || IAERARMAE ek (857 85) oy



NORMALISED S-CHANNEL <Y3> MOMENT

| T T
My = 630 MeV

¢

Mpr = 870 MeV |

1
0.05 0.10 0.15 0.20

The t dependence of the s channel < Yg >

moment in three typical 20 MeV M., bins. The
curves are the description of the data for
6]‘3: 4.50.

The last equality is obteined assuming the proportionality

relation

’ (19)
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where the JB arises from crossing the m exchange contribution
to the s channel. TFor instance such a relation is implied_by
the Williams model. In Eq. (18) the M., behaviour of < Y3 >
arises mainly_ from the factor cos(ép=-6p), while the t beha-
viour of < Yg > 1is due to the term in square brackets.

Knowing the P wave amplitudes and taking the D wave to
be elastic below M, =900 MeV, and dominantly I=0, we calculate
63 for each M bin by comparing Eq. (18) with the < Y2 >
data. Over the entire range 620 MeV < M < 900 MeV we find
69 is essentially constant with a value of 68 =4.5°. For mass
values close to M . =780 MeV 68 cannot be reliably determined
since the P and D amplitudes are sboui /2 out of phase.
That 68 should be so large for M. ,~ 650 MeV is puzzling. The
curves in Fig. 10 are calculated from Eq. (18) using 6%::4.50.
Equation (18) gives a good (one parameter) description of the 1t
ana M behaviour of the <« YZ > moment. Versus M;; 1t
predicts a < Yg > sign change at M_ ~ 780 MeV (the data cross-
over is at M_ -~ 800 MeV) and versus t a sign change at

p aul
-t~0.2 (compared to 0.15 in the data).

In the S and g wave analysis in the region 620 <M . o
< 900 MeV we took &p=4.5°. Below 620 MeV the estimates of &]
may not be reliable, since for M;; < 500 MeV an anomalous
behaviour is observed in some higher moment st and, therefore, we
assumed a g2 threshold behaviour of 68. For Mnn > 900 MeV
we included the J= 3,4 moments and determined 6% in each mass
bin.

6. PHASE COHERENT ANALYSIS
We repeated the wnm phase shift analysis using essentially

a Williams' mnodel parametrization of the production amplitudes.
In place of Egs. (13) we use the simplified forms

. "y {2
1% - B M A=t efé”ﬁ f&)

7 ) . ) 20
P = Ix e &) (20)
- D L2 - e /
qq"t 45"\-"‘5141)
Pr= - % Ce™ 7/
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where C, which specifies the absorptive background, is assumed

to be real and independent of t. Strictly speaking the Williams'
model has C=1, however, here we take C as a parameter to be
determined in each mass bin. Departures from the above simple
parametrization occur for -t > 0.15 GeVZ2 due to the neglect of

A, exchange contributions, etc.1994, Therefore we restrict the
analysis to the data in the region -t < 0.1 GeV~. The points shown
in Fig. 11 f8r M., < 1 GeV are the results of this analysis. The
values of &g are in excellent agreement with solution 1 of
Section 5 and are a demonstration of the stability of the phase
shifts to a change of parametrization.

Since phase coherence between P, and P_ 1is an input
assumption here, it is not surprising that we obtain solution 1.
However, for mass bins where the two solutions of Section 5 are
dissimilar (i.e., away from the region of the p mass) we also
find solution 2, and with comparable y2. Moreover the values
of C are almost identical for the two solutions, whereas for
M~ 500 MeV we have already remarked (cf. Section 5) that the
background has to be different for the two solutions. Tnis
apparent contradiction is resolved when we note taat 6p 1is
significantly different for the two solutions in this mass
region.

7. PHASE SHIFT ANALYSIS IN THE INELASTIC REGION

Above the KK threshold we cannot impose_elastic unitarity.
Indeed, the am— KK cross-section is observed<®? to rise rapi-
dly to its S wave unitarity limit. Further we can no longer
regard the D wave as a small correction. On the other hand
we still want to perform a phase shift analysis at each I\/[,m_r
independently. We use a similar method to that described in
Sections 4 and 5.

a) Production amplitude analysis :

From the observed s channel moments with J, M < 4 we
determine the production amplitudes 5,4 with L, » <2, and
extrapolate S, Py, D, to the -« exchange pole. The data
determine the magnitudes and relative phases of S, P_, Dg,
but not the over-all phase. In the elastic region unitarity
determined the over-all phase, but in the inelastic region the
unitarity constraint is weaker. TFor example a solution, such as
shown in Fig. 12, can be rotated through any angle provided that
the partial waves lie within their unitarity circles.
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PHASE COHERENT ANALYSIS a la WILLIAMS MODEL
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Figure 11 Some results of a phase shift analysis using a
simplified parametrization, Egs. (20). The re-
sults above 1 GeV are discussed in Section 7.d.
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)

Figure 12 Dominant m exchange amplitudes.
Only the magnitudes and relative
phases are determined.

We have tried several different forms of parametrization of
the s channel amplitudes. As in the elastic region we find that,
as long as we include the )#O amplitudes, the phase shifts are
stable to changes of the form of the parametrization and to changes
of the t interval over which the moments are fitted. The results
we present use the parametrization of Eqs. (13), as stated in
Section 5, with the additional assumptions

D
= »
Dix = A3 T = (21)
'y
‘e
.. = ~NE o
Rl & M e 5 (22)

which are motivated by studying the + to s channel crossing
matrix. Equations (21) and (22) are correct provided the main
contribution to the s channel 3=1,2 amplitudes is due to =
exchange and its absorptive correction. This is expected to be
a good approximation for -t < 0.2 GeVS, particularly as A2

* . . - .
exchange decreases” relative to n exchange with increasing Mwn'

For instance, for -t > 0.4 GeV2 the moments indicate that the
natural parity exchange contribution is less dominant in the £
region than in the p region.
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In the region 1.0 <Myp < 1.4 GeV we used data in 40 MeV
mass bins. In each mass bin we fitted the s ghannel moments
with J < 4 1in the interval 0.005<-t<0.2 GeV~. A typical fit
is shown in Fig. 13. The two solutions have comparable y2 but
have different magnitudes and relative phases of 5, Py and Dg.
We parametrize the partial wave amplitudes, ﬁL of Eq. (4) in
the form

jﬂ "PL. €L%L g‘? L=1
f-L = ¥ 2 _’.\SL. I o o ~
ik L e for L=0,2 (23)

and fix the over-all phase by the choice 6D==9OO. The 2/3 1is
inserted for even L so that, if there were no I=2 gn ampli-
tude, unitarity would require 1oy < sindy,. This bound is not
imposed in the fit to the data. The results for each 40 MeV mass
bin areg listed in Table III. 1In Fig. 14 they are shown in the
form +2L+1 f1, which represents their relative strength in the
production process. We must now explain why we have shown two
solutions.

b) Zero contours :

In addition to the continuum ambiguity of the over-all phase,
are there discrete ambiguitics in the phase shift analysis ? Yes,
for S, P, D waves there are four solutions giving identical
dopn/d0. A useful way30731 of seeing this and of keeping track of
the four solutions is to study the zeros of the wtm— scattering
amplitude in the complex gz = c0S6y; plane. These have been
called Barrelet zeros32. For S, P, D waves the mm amplitude,

A(z), will have two such zeros, say at z= Zy and z=2,. Thus
des. 1N a¥san e N \ ¥\ S o ¥
S S Akz.'j AQZ') = C(Z-24,)Zz-Z,){Z-2, INZ=22)
o Su
(24)

and for each z; there is a twofold ambiguity. Is z=13zy or

z = zf the zero of A ? For example, at Mip=1.18 GeV from
solution 1 of Fig. 15 we calculate the zeros and predict the other
three solutions that are shown. Having obtained one solution the
procedure is to use these three predictions as starting values in
the analysis of the observed moments. In this way we obtain four
solutions at each M_. . Two of the solutions (those denoted solu-
tions 3 and 4 in the example shown in Fig. 15) are clearly ruled
out by studying continuity of the partial waves with Mre The
real and imaginary parts of the positions of the zeros for the
other two solutions are shown in Fig. 16. By following the zero
contours we can keep track of the solutions. However, two similar
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OBSERVED ™ m* MOMENTS AT 1140 MeV
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Figure 13 The fits to the s channel moments in
a typical mass bin, 1.12 <M . < 1.16 GeV.
The partial wave parameters are given in
Table III.
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PRODUCTION AMPLITUDES (10 <My <14 GeV)
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Figure 14 Two solutions for the ntm” partial wave ampli-

(scaled by VEfI7) found by analyzing
m p~n nTn data in 40 MeV mass bins in the range
1.0 < M;y < 1.4 GeV. We choose oép= 90°. Typical
errors are shown at Mwn= 1.1 and 1.3 GeV. The
results are listed in Table III.
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Figure 15 The four solutions at M__=1.18 GeV.

_________ 7T

solutions exist whenever Im z; ¥ 0. For example, for

My > 1.26 GeV we have to use continuity of the zeros to decide
which is solution 1 and which is solution 2. We also see that
solutions % and 4 will need to be considered for M,; > 1.4 GeV
as Im Zo is becoming small.

The actual solutions need not have exactly complex conjugate
zeros, since, for example, the predicted absorption in the pro-
duction process may differ for the solutions and so lead to a
different extrapolated mm cross—section, dopn/dQ. Absorption
decreases rapidly with increasing M, and in the region above
1 GeV we do, in fact, have solutions with approximately complex
conjugate zeros. In Fig. 16 we also show the positions of the
zeros obtained from the phase shifts in the elastic region. The
two solutions there are not, in general, due to complex conjugate
zeros, but arise because the production amplitude analysis leads
to different extrapolated dgﬂﬂ/dQ- For example, at MNM-q ~ 600
MeV there are two additional solutions with Im z4 >0 but with
partial waves that do not satisfy unitarity.

It is illuminating to draw the contours of Re z; on the
Mandelstam plot. They are shown in Fig. 17. The continuation

of the contour zZy towards the Mandelstam triangle has been
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Mandelstam plot
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associated33 with the on-shell appearance of the Adler zero. The
contour8 zo 1s reasonably consistent with the proposal by
Odorico~ that the double-pole killing zeros propagate along
straight lines.

c) mm partial waves

To determine the mm partial waves in the inelastic region
it remains to specify the over-all phase at each M__ The pos-
sible values are limited by the unitarity constralnts on the three
partial waves. Moreover each partial wave must be reasonably con-
tinuous as a function of M_,. Indeed, the presence of the £
resonance ia this mass region essentially removes the phase ambi-
guity. Suitably rotating the two solutions of Fig. 14 we obtain
the partial waves shown in Figs. 18 and 19 together with their
unitarity circles. Solution 1 is selected as the physical solution
for the follow1ng reasons. In the region just above the KK
threshold the =0 S wave of solution 2 contributes very little
to o(mTT—KK) contrary to the data. Purther, the M matrix fits
across the KK threshold prefer to join solution 1 to the physic-
al solution below threshold. Finally, for W ; > 1.26 GeV the
magnitude of the S wave of solution 2 violates unitarity.

Notice that in Fig. 18 the P wave lies outside its unita-
rity circle for Myy > 1.26 GeV. The reason we believe that the
picture is basically correct as it stands, apart from this vio-
lation, is the neglect of the mm F wave. The data that we
used did not include the J=5 or higher moments and so we were
unable to determine the IL=3 partial wave. On the other hand
we investigated the stability of the analysis to the inclusion
of elastic F waves with sp < 50. We find that the D wave
is essentially unchanged and that the S wave is only slightly
altered. The major change is in the P wave which decreases
and rotates in the clockwise direction (for example, for

=49 at M =1.38 GeV, we find £65,=-10" and Ary/rp=-0.12).

To determine the parameters of the f resonance we fit the

resonance form, Eq. (17) with

:!:)2 !:ﬁ.a-r} = q. + 3"‘." + Y

p=X_

to the values of ]rD| in the region 1.74 <M, ; < 1.38 GeV.
Since IrDI is well determined and independent of the over-all
phase this procedure should be reliable. We find

{ - Q'71 A /
le; = l" /'ii\ r;:

'xj = O 10'01_; ""3'5

1

182 + 4 MeV

070+ 0-08%.
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n PARTIAL WAVES (10<M, <14 GeV)

SOLUTION 1

P WAVE CIRCLE

o \ ‘

FPigure 18 The physical solution, solution 1, for the

77777 g partial wave amplitudes above 1 GeV.
The I=0 S wave, P wave and I =0 D
wave unitarity circles are in the ratio

2, . 2.
g : ’\/3 '3 \,’5,
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nn PARTIAL WAVES (1.0<M_ <14 GeV)

SOLUTION 2

P WAVE CIRCLE

CIRCLE
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Figure 18 also indicates the presence of a resonant I=0 3
wave under the f, with a mass and width of roughly 1240 and
200 MeV respectively. To confirm these parameters we wish to
include T waves and to extend the analysis to higher Mnn'

d) Phase coherent analysis :

As in the elastic region we have performed a phase shift ana-
lysis with a simplified form of parametrization, cf. Egs. (20).
We neglect Ao exchange and assume that the absorptive background
C is real relative to m exchange. We include a common slope
factor, exp[b(t-,2)], in all amplitudes. In addition to the
parameters C and b, we have the magnitudes and relative phases
of the S, P, D partial waves. In each 40 eV mass bin these
seven parameters give a good fit to the s channel moments in the
region 0 < -t < 0.1 GeV<. The results for C, b and the I=0
S wave are shown in Fig. 11, where the over-all phase has been
fixed by requiring the P wave to be elastic. The partial waves
are very similar to the solution 1 results of Fig. 18. Moreover,
we also find a solution almost identical to solution 2.

A surprising result3413> is the rapid decrease of the strength
of absorption, C, with increasing M ;. This could be antici-
pated from the data by inspection of the positions of the cross-
over zeros in the s channel < Y. > moments. For example,
comparing the moments shown at M__= 710 MeV (rig. 6) and at
M., = 1140 MeV (Fig. 13) we see that at the hlgher mass the zeros
occur _at smaller ft The Williams' model, with C=1, is
known3%s15 +to give a good description of the small t data in the
p region, but is unsatisfactory in the f region.

8. KK THRESHOLD

The data and the phase shift results indicate a dramatic
effect in the I=0 S wave in the region of the KK threshold.
Moreover, the effect occurs in a small range of M S Up to
980 MeV and beyond 1 GeV the partial wave amplltudes do not
change rapidly, and yet, in between, the I=0 S wave ampli-
tude has altered drastically. Clearly to investigate this
effect properly we require the moments for m p—m n+n, together
with those for + p—K K™ (and K1K1n), in smaller M,y bins.
However, even a study of the existing data and phase shifts 1is
illuminating.

First we performed an S, P, D wave M matrix fit direct-
ly on the m~p—m n'n data in the region 920 < My < 1080 MeV.
That is we parametrlzed the production amplitudes as a function
of M,,, as well as of t. We did fits with and without effect-—
ive range terms in the M matrix. As an alternative approachn
we also fitted the I=0 S wave phase shifts (of Figs. 7y 18,
19) to an M matrix over the same M__ region. We discuss the
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results of the second method first. The preferred fit was the
one which joined the phase shifts of solution 1 below the KK
threshold to those of solution 1 above threshold. An example
of such a fit is shown in Fig. 20, corresponding to an I=0
two channel (mm, KK) M matrix

I=0 S WAVE NEAR KK THRESHOLD

S*® POLE
997 -5i MeV
o(n'nt—K K ) mb Im Z,
4 — _|_ i 02 o -
2} +—T13 o0
\
1 1 1 1 1 1
1 11 12 0.95 1.0 105

M, GeV

Figure 20 The I=0 S wave unitarity circle. The open

_________ circles are solution 1 of the energy independent
analysis. The black dots come from the sample I
matrix fit. The last curve is the behaviour of
Im z (cf. Fig. 16) calculated using_the M
matrix and assuming that 6§= -209, &ép= 1569,

0 - g0,
SD 6
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! A 2 ~ \

' 083

0-27 -

- woa ) I
\ugg -0 Chy (25)
The resulting S wave amplitude has a pole on the second Riemann
sheet of the complex energy plane at

M =

-0

*ro0) = ~ 15 MeV.
S” (pole) 947 = 15 Mey -

The existence of such a pole was suggested by Hoang37 and sub-
sequently confirmgd by Protopopescu et al.2% whose favoured
solution gives S =997~ 127 MeV. In Fig. 20 we compare the

S wave contribution to o(ﬂ+ﬂ—-+KK), calculated from Eq. (25)
to the data of Ref. 24. The narrower the peak in this cross-
section, the larger the S coupling to the KK channel?.

It is interesting to compare the above results with our
first M matrix fit directly to the w™ntn data. There we
find a wider S* structure. The reason is that, although the
fit basically follows phase shift solution 1, it jumps to solu-
tion 2 for a range of M, 1in the immediate vicinity of the
KK threshold. This is likely to happen in any energy dependent
fit to such a narrow structure, and is well illustrated in Fig. 7
where the solution of Protopopescu et al.24 goes from the region
of our solution 1 to solution 2 just below the KK threshold.
The situation is more confused as the energy independent analysis
of Ref. 5 showed some indication of preferring a switch from solu-
tion 1 to solution 2 just below the KK threshold.

_ The rapidly changing S partial wave in the region of the
KK threshold produces a sharp structure in the zero contours.
For example, in Fig. 20 we show the behaviour of Im zq calcu-
lated using the parameters of Eq. (25) and reasonable constant
values for the other phase shifts. In the energy dependent fit
Im zq 4dis found to dip to zero less sharply. Comparison with
the energy independent results of Fig. 16 again emphasizes the
need for data in smaller Mﬂﬂ bins in this mass region.

Since we estimate such a small width for the s* it is
clear that the parameters of Egs. (25) and (26) are not reliably
determined from the data in 20-40 MeV mass bins. However, the
point we wish to make is that the S*  structure appears to be
narrower than hitherto thought.
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