CERN LIBRARIES, GENEVA

CM-P00058853

Ref.TH.1508-CERN

ANALYSIS OF $\pi^- p \rightarrow \pi^- \pi^+ n$ DATA AT 17.2 GeV/c

P. Estabrooks *) and A.D. Martin +)

CERN - Geneva

$\underline{\mathbf{A}} \ \underline{\mathbf{B}} \ \underline{\mathbf{S}} \ \underline{\mathbf{T}} \ \underline{\mathbf{R}} \ \underline{\mathbf{A}} \ \underline{\mathbf{C}} \ \underline{\mathbf{T}}$

We propose an amplitude analysis for $\pi^-p\to\pi^-\pi^+$ n data which allows for the possibility of A_2 exchange as well as absorbed pion exchange in a model independent way. This leads to an improved extrapolation method for extracting π π phase shifts. Using the recent CERN-Munich data at 17.2 GeV/c we isolate the π and A_2 exchange contributions and determine the form of the absorptive corrections. No evidence for an exchange contribution with the quantum numbers of the A_1 is found.

^{*)} Supported by the National Research Council of Canada.

⁺⁾ On leave of absence from the University of Durham, Durham City.

The continuing interest in the $\pi \, \text{N} \to \pi \, \pi \, \text{N}$ reaction is due to the possibility $^{1)}$ of extracting the elastic $\pi \, \pi$ cross-section by extrapolation to the nearby π exchange pole at $t = \cancel{M}^2$. Since the original Chew-Low proposal, the extrapolation technique has been improved to allow for non-evasive contributions $^{2)}$. In its simplest form, often called the Williams model $^{3)}$ (or Poor Man's Absorption $^{4)}$), the essential assumption is that under absorption the evasive s channel helicity amplitude $H^1_{+-} = t/(t-\cancel{M}^2)$ becomes $\cancel{M}^2/(t-\cancel{M}^2)$. This was shown $^{5)}$ to give a good description of the density matrix elements in the interval $0 < -t \le 0.15 \, \text{GeV}^2$ observed in the SLAC 15 GeV/c $\pi \, ^- p \to \pi \, ^- \pi \, ^+ n$ experiment $^{6)}$ with the $\pi \, ^- \pi \, ^+$ system in the 9 mass band.

In Fig. 1 we show the equivalent fit to the higher statistics 17.2 GeV/c CERN-Munich data $^{7)}$. Although this model gives a reasonable qualitative description of the data it is clear, with the improved statistics, that there are significant discrepancies (particularly in g_{1-1}) which suggest other exchange mechanisms besides simple absorbed τ exchange.

In the first part of this letter we propose an amplitude analysis of the $\pi^-p \to \pi^-\pi^+n$ data which allows for absorbed π^- and π^- exchange in a model independent way. The extrapolation of these amplitude observables therefore gives a more reliable technique for determining $\pi^-\pi^-$ phase shifts. We then proceed, by assuming absorption only modifies the (over-all) non-flip amplitude, to isolate the various exchange mechanisms. We find evidence for a sizeable π^- exchange contribution, even at small t, comparable to that found in an analysis π^- of pion photoproduction.

We consider the production of s and p wave dipions in the g mass band. The former is described by two s channel helicity amplitudes H_{++}^{S} , H_{+-}^{S} and the latter by six amplitudes $H_{++}^{1,0,-1}$ and $H_{+-}^{1,0,-1}$. We make only the assumption that the amplitudes with the quantum numbers of A_{1} exchange are negligible. We do not assume either phase or spin coherence of the amplitudes. Then the observables can be expressed in terms of amplitudes as follows:

^{*)} This fit was improved by including a 12% s channel non-flip contribution to allow for a possible $\Delta^{o}(1236)$ contamination. Since the non-flip π exchange forward amplitude for $\pi N \to \pi \pi \Delta$ vanishes as $m_{\Delta} \to m_{N}$ this correction is questionable.

$$6 = \frac{de}{dt} = |M_s|^2 + |M_o|^2 + |M_+|^2 + |M_-|^2$$
(1)

$$(g_{00} - g_{11})6 = |M_0|^2 - \frac{1}{2}(|M_+|^2 + |M_-|^2)$$
(2)

$$S_{1-1} = \frac{1}{2} (|M_{+}|^2 - |M_{-}|^2)$$

Re
$$g_{10} = \frac{1}{\sqrt{2}} |M_{-}| |M_{0}| \cos \varphi$$
 (4)

Re
$$g_{os} 6 = |M_o| |M_s| \cos \Delta$$
 (5)

Re
$$g_{45} G = \frac{1}{\sqrt{2}} |M_-| |M_s| \cos(\varphi - \Delta)$$
(6)

where the relative phases are defined as $\varphi = \arg(M_{-}) - \arg(M_{0})$ and $\Delta = \arg(M_{S}) - \arg(M_{0})$, and where

$$M_{0,S} = H_{+-}^{0,S}, \qquad M_{-} = \frac{1}{\sqrt{2}} \left(H_{+-}^{1} + H_{-+}^{1} \right)$$

$$\left| M_{+} \right|^{2} = \frac{1}{2} \left| H_{++}^{1} + H_{--}^{1} \right|^{2} + \frac{1}{2} \left| H_{+-}^{1} - H_{-+}^{1} \right|^{2}.$$
(7)

We use the Jacob and Wick convention for the helicity amplitudes $H_{\lambda_n \lambda_p}^{\lambda_g}$. The amplitudes which we neglect, $H_{++}^{0,s}$ and $(H_{++}^{1}-H_{--}^{1})$, only enter the observable expressions quadratically; that is, there are no interference terms between them and the amplitudes of Eq. (7). The solution of Eqs. (1)-(6) will thus be stable to small contaminations from these omitted amplitudes. At high energies $|M_{\pm}|^2$ are the cross-sections for helicity one ρ production via natural and unnatural parity exchange respectively. $|M_{0,s}|^2$ are the cross-sections for zero helicity ρ and ρ wave ρ production. These six equations, Eqs. (1)-(6), can be solved at each t value for the four magnitudes $|M_{\pm,0,s}|$ and the two relative phases ρ , ρ of the amplitudes.

In Fig. 2 we show the results of such an amplitude analysis performed on the s channel (or helicity frame) density matrix elements of the 17.2 GeV/c CERN-Munich data 7). For large -t we see that the natural parity exchange amplitude $\rm M_{+}$ dominates suggesting $\rm A_{2}$ exchange 9). Consider now the amplitude $\rm M_{0}$ which dominates for small t. If we cross a pure $\rm T$ exchange pole in the t channel (which occurs only in the t channel amplitude $\rm H_{++}^{0}$) into s channel amplitudes we have to leading order in s

$$M_{0} = H_{+-}^{0} = G \left[\frac{t + m_{\pi\pi}^{2} - \mu^{2}}{\sqrt{2} m_{\pi\pi}} \right] \frac{\sqrt{-t'}}{t - \mu^{2}}$$
(9)

$$M_{-} = -\sqrt{2} G \frac{t'}{t-\mu^{2}}.$$
 (10)

$$H_{++}^{\circ} = r H_{+-}^{\circ}, \qquad r = \sqrt{t_{min}/t'}$$
(11)

where $t=t_{min}$ is the forward direction and $t'\equiv t-t_{min}$. The non-flip contribution, Eq. (11), is usually neglected, but for very small t it is appreciable *), even at 17.2 GeV/c. To take account of this contribution we multiply $|\mathbf{M}_{0,s}|$ in Eqs. (1), (2) and (5) by $\sqrt{(1+r^2)}$ before solving Eqs. (1)-(6). In Fig. 2 the resulting values of $|\mathbf{M}_{0}|$ are compared with the form a $\sqrt{-t'}e^{bt}/(t-\cancel{\kappa}^2)$. The excellent agreement supports the assumption that zero helicity $\pi^+\pi^-$ production is dominated by π exchange and that there is negligible "A₁ type" exchange.

From Fig. 2 we also see, contrary to what is usually assumed $^{11)},$ that $\mathbb{M}_{_{0}}$ and $\mathbb{M}_{_{-}}$ are not coherent in phase. The signs of $\boldsymbol{\varphi}$ and $\boldsymbol{\Delta}$ are not determined by solving Eqs. (1)-(6). However, a knowledge of the sign of $\boldsymbol{\varphi}$ would allow us to determine the sign of $\boldsymbol{\Delta}$ (that is, if studied as a function of $\mathbb{m}_{\pi\pi}$, to resolve the so-called up-down ambiguity without requiring a normalized cross-section). We shall see in a moment that $\text{Im}\,\mathbb{M}_{_}/\mathbb{M}_{_{0}}$, and, therefore $\sin\,\boldsymbol{\varphi}$, are found to be positive. The values shown for $\boldsymbol{\Delta}$ correspond to this choice.

^{*)} See also a discussion by Ochs 10).

We emphasize that Δ and $Y_s(\equiv |H_{+-}^s|/|H_{+-}^o|)$ are the appropriate quantities to extrapolate to the π pole at $t = \mu^2$. When performed for different intervals of $\mbox{m}_{\pi\pi}$, these amplitude extrapolations (together with the parameter a introduced above) offer a more attractive and model independent way of determining the $\pi\,\pi$ phase shifts. Δ and but should be independent of s and also of χ_{s} will be functions of $m_{\pi\pi}$ t. Moreover, for normalized data there will be stringent consistency checks between the extrapolated values of Δ , χ_s and $(t - \kappa^2) |M_0| / \sqrt{-t^2}$. Here, of course, our amplitude components only give information on the $\pi\pi$ phases averaged over the $\, oldsymbol{\varsigma} \,$ band. An idea of the expected size of $\, oldsymbol{\chi}_{_{
m S}} \,$ can be obtained by assuming in this interval that the p wave phase is $\delta_{\rm p}=\pi/2$ and that the I = 0 and I = 2 s wave phases are $\delta_s^0 = \pi/2$ and $\delta_s^2 = 0$, then $\xi_s = 2/3\sqrt{3} = 0.385$ and $\Delta = 0$. Although the $\pi\pi$ phases are not expected to retain constant values over the $\, oldsymbol{\varrho} \,$ band, it is encouraging that this estimate is in such good accord with the values shown in Fig. 2.

We can use the above amplitude analysis to estimate the \mathbf{A}_2 exchange contributions and also the "absorptive" corrections, C(t), to the (π) and \mathbf{A}_2 pole contributions to the n=0 s channel helicity amplitude \mathbf{A}_1 . We allow C(t) to be complex. In order to do this we assume that the single and double (over-all) flip amplitudes are well represented by \mathbf{A}_2 pole exchanges.

For the π exchange pole we use Eqs. (9) and (10) with G=G(t) and replace the quantity in brackets in Eq. (9) by $m_{\pi\pi}/\sqrt{2}$. For the A_2 pole we use the "signature" factor $\Re(t)\equiv 1+\exp(-i\pi\varkappa)$ with $\Re(t)=0.5+t$. We specify its relative contribution to nucleon flip and non-flip amplitudes by a parameter R, namely $H_{++}^1=RH_{+-}^1/\sqrt{-t}$ for the A_2 pole. We anticipate that $R\approx 0.25$ from studies, Ref. 12), of $\Im(t)$ and Λ_2 exchange in spin 0-spin $\frac{1}{2}$ scattering. Then the observables for helicity one $\Im(t)$ production at a given incident energy can be expressed as

$$M_{-} = -\sqrt{2} G \frac{t'}{t-m^2} + C/\sqrt{2}$$
 (12)

$$|M_{+}|^{2} = \frac{1}{2} |2g_{A}t'S + C|^{2} - 2t'R^{2}g_{A}^{2}|S|^{2}.$$
(13)

Here we have assumed real π exchange. We repeated the analysis for Regge π exchange but find that it does not make much difference in the interval $0 \le -t \le 0.2$ GeV². The quantities G, g_A , C are determined at each t value from $|M_O|$, $|M_+|$ and $\cos \varphi$. The procedure is as follows.

At each t we calculate G from the observable $|M_0|$. Using this together with the observables $|\mathtt{M}_{oldsymbol{-}}|$ and \cosoldsymbol{arphi} we determine ReC and $|\mathtt{Im}\,\mathtt{C}\,|$ from Eq. (12). Equation (13) then becomes a quadratic equation for g_A , the A_2 coupling strength. We solve this for a range of values of |R|. For a given |R|, there are in principle four solutions for g_{A} at each t value (since the sign of ImC is not determined by the data). However, in practice there are two factors which suggest a unique solution for g_{\blacktriangle} and severely limit the range of variation of |R|. First, for many choices the quadratic equation for g_{A} does not have real roots, and secondly we require reasonable continuity in $\ t$ of the solution for $\ g_{\underline{A}}^{}.$ The favoured solution has Im C negative, that is Im C interferes destructively with the $\operatorname{Im} A_{2}$ pole (as would be expected in an absorption approach). Further we find that |R| must lie in the range $0.2 \lesssim |R| \lesssim 0.3$. We show the resulting components of the H_{+-}^{1} amplitude in Fig. 3. For comparison we show (by a dashed line) the expectations for ReC from the William's model for absorbed pion exchange, that is Re C = G(t). If this identification of ReC is correct we can conclude that whereas A_2 exchange suffers absorption in the imaginary part, it undergoes little or no absorption in the real part of the (n=0) H_{+-}^{1} amplitude. This is analogous to the results found for g exchange in the s channel non-flip π N amplitude $^{13)}$.

The amplitude components shown in Fig. 3 agree well with the corresponding results found in pion photoproduction $^{8)}$, and again indicate the importance of A_{2} exchange effects. We emphasize that in our analysis an A_{2} (nucleon) non-flip amplitude is essential for continuity of g_{A} with t. In photoproduction this amplitude is also required $^{8),14}$ to account for the observed (target) polarization in $\gamma_{p} \rightarrow \pi^{+}$ n.

Since π and \mathbf{A}_2 exchanges have different s dependences it will be illuminating to study $\pi \mapsto \pi \pi$ data at different energies. We conclude that pion exchange can indeed be cleanly extracted from $\pi \mapsto \pi \pi$ data and that the present high statistics experiments offer the exciting prospect of accurate and unambiguous $\pi \pi$ phase shifts.

We thank the members of the CERN-Munich collaboration for giving us their data prior to publication and for their interest in this analysis.

REFERENCES

- 1) G.F. Chew and F.E. Low, Phys.Rev. 113, 1640 (1959).
- 2) G.L. Kane and M. Ross, Phys.Rev. <u>177</u>, 2353 (1969);
 C.D. Froggatt and D. Morgan, Phys.Rev. <u>187</u>, 2044 (1969).
- 3) P.K. Williams, Phys.Rev. <u>D1</u>, 1312 (1970).
- 4) G.C. Fox, Proceedings of the Cal.Tech. Conference "Phenomenology in Particle Physics", p. 703 (1971).
- 5) P. Baillon et al., Phys.Letters <u>35B</u>, 453 (1971).
- 6) F. Bulos et al., Phys.Rev.Letters <u>26</u>, 1453 (1971).
- 7) CERN-Munich collaboration;
 G. Grayer et al., to be published in the Proceedings of the IVth
 International Conference on High Energy Collisions, Oxford
 (1972): contribution presented at the Conference by C. Jones.
- 8) R.P. Worden, Nuclear Phys. B37, 253 (1972).
- 9) J.T. Carroll et al., Phys.Rev.Letters <u>27</u>, 1025 (1971).
- 10) W. Ochs, to be published.
- P.E. Schlein, Phys.Rev.Letters 19, 1052 (1967);
 C.D. Froggatt and D. Morgan, CERN Preprint TH. 1507 (1972).
- 12) C. Michael, Springer Tracts of Modern Phys. Vol. 55, 174 (1970).
- 13) F. Halzen and C. Michael, Phys.Letters 36B, 367 (1971);
 H. Högaasen and C. Michael, Nuclear Phys. (to be published).
- 14) J.D. Jackson and C. Quigg, Nuclear Phys. <u>B22</u>, 301 (1970).

FIGURE CAPTIONS

Figure 1:

The curves are a Williams model fit to the differential cross-section, and s channel density matrix elements for $\pi^-p\to\pi^-\pi^+n$ data $^{7)}$ at 17.2 GeV/c with 0.71 < m $_{\pi\pi}$ <0.83 GeV. The values of the parameters are $\delta_s = |H_{+-}^s|/|H_{+-}^o| = 0.373$ and A = 4.13, where H_{+-}^o is of the form $\sqrt{-t^+}\exp{(At)/(t-M^2)}$.

Figure 2:

An (s channel) amplitude analysis of the $\pi^- p \rightarrow \pi^- \pi^+ n$ data 7) at 17.2 GeV/c based on Eqs. (1)-(6), with $\delta_s = |M_s|/|M_o|$. The curve is the best fit of the form $\delta_s = |M_s|/|M_o|$. The curve is the values of $|M_o|$ in the interval $\delta_s = |M_s|/|M_o|$ to the values of $|M_o|$ in the interval $\delta_s = |M_s|/|M_o|$. As discussed in the text the ambiguity in the sign of $\delta_s = |M_s|/|M_o|$ is fixed by requiring $\delta_s = |M_s|/|M_o|$. The corresponding plots obtained using the SLAC data $\delta_s = |M_s|/|M_o|$ at 15 GeV/c show the same features.

Figure 3:

The components of the (n=0) s channel helicity amplitude H^1_{+-} for |R|=0.25. For clarity we have joined the solutions at adjacent t values by straight lines; solid (dotted) lines for the real (imaginary) contributions. π , A_2 and C denote the π pole, A_2 pole and absorptive contributions respectively. The dashed line is the William's model prediction for $Re\ C$.

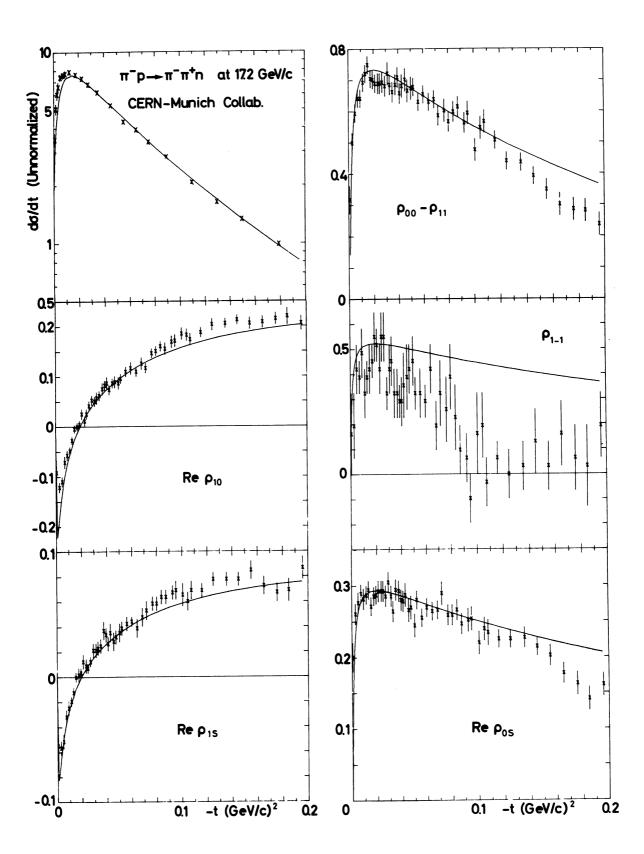


FIG 1

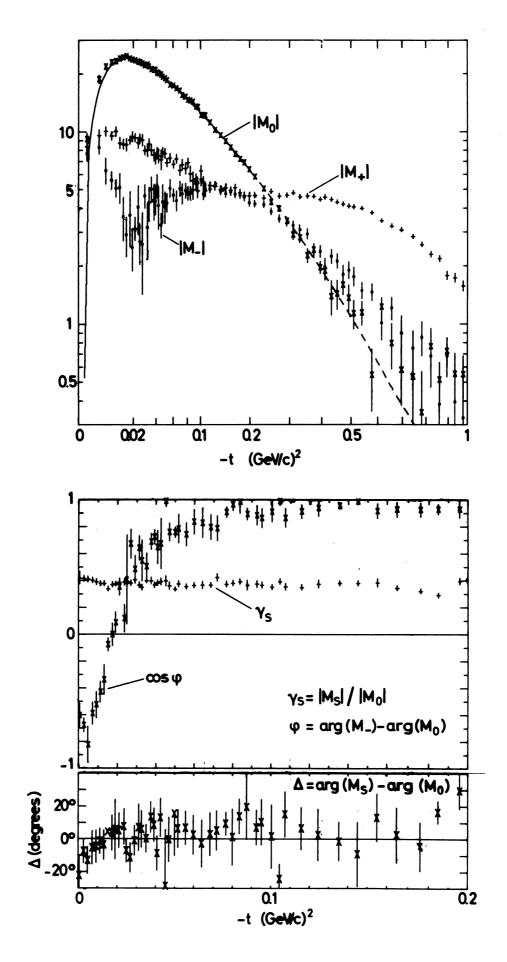


FIG 2

