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Abstract

The charged particle multiplicity in hadronic three-jet events from Z decays is
investigated. The topology dependence of the event multiplicity is found to be
well described by a modified leading logarithmic prediction. A parameter fit
of the prediction to the data yields a measurement of the colour factor ratio
CA/CF with the result

CA/CF = 2.261 ± 0.014stat. ± 0.036exp. ± 0.066theo.

in agreement with the SU(3) expectation of QCD. The quark-related contribu-
tion to the event multiplicity is subtracted from the three-jet event multiplicity
resulting in a measurement of the multiplicity of two-gluon colour-singlet states
over a wide energy range. The ratios r = Ngg(s)/Nqq̄(s) of the gluon and quark
multiplicities and r(1) = N ′

gg(s)/N
′

qq̄(s) of their derivatives are compared with
perturbative calculations. While a good agreement between calculations and
data is observed for r(1), larger deviations are found for r indicating that non-
perturbative effects are more important for r than for r(1).

(Accepted by Euro. Phys. Journ. )

http://arxiv.org/abs/hep-ex/0510025v1


ii

J.Abdallah25, P.Abreu22, W.Adam51, P.Adzic11, T.Albrecht17, T.Alderweireld2, R.Alemany-Fernandez8,

T.Allmendinger17, P.P.Allport23, U.Amaldi29, N.Amapane45, S.Amato48, E.Anashkin36, A.Andreazza28, S.Andringa22,

N.Anjos22, P.Antilogus25, W-D.Apel17, Y.Arnoud14, S.Ask26, B.Asman44, J.E.Augustin25, A.Augustinus8, P.Baillon8,

A.Ballestrero46, P.Bambade20, R.Barbier27, D.Bardin16, G.J.Barker17, A.Baroncelli39, M.Battaglia8, M.Baubillier25,

K-H.Becks53, M.Begalli6, A.Behrmann53, E.Ben-Haim20, N.Benekos32, A.Benvenuti5, C.Berat14, M.Berggren25,

L.Berntzon44, D.Bertrand2, M.Besancon40, N.Besson40, D.Bloch9, M.Blom31, M.Bluj52, M.Bonesini29, M.Boonekamp40,

P.S.L.Booth23, G.Borisov21, O.Botner49, B.Bouquet20, T.J.V.Bowcock23, I.Boyko16, M.Bracko43, R.Brenner49,

E.Brodet35, P.Bruckman18, J.M.Brunet7, P.Buschmann53, M.Calvi29, T.Camporesi8, V.Canale38, F.Carena8,

N.Castro22, F.Cavallo5, M.Chapkin42, Ph.Charpentier8, P.Checchia36, R.Chierici8, P.Chliapnikov42, J.Chudoba8,

S.U.Chung8, K.Cieslik18, P.Collins8, R.Contri13, G.Cosme20, F.Cossutti47, M.J.Costa50, D.Crennell37, J.Cuevas34,

J.D’Hondt2, J.Dalmau44, T.da Silva48, W.Da Silva25, G.Della Ricca47, A.De Angelis47, W.De Boer17, C.De Clercq2,

B.De Lotto47 , N.De Maria45, A.De Min36, L.de Paula48, L.Di Ciaccio38, A.Di Simone39, K.Doroba52, J.Drees53,8,

G.Eigen4, T.Ekelof49, M.Ellert49, M.Elsing8, M.C.Espirito Santo22 , G.Fanourakis11, D.Fassouliotis11,3, M.Feindt17,

J.Fernandez41 , A.Ferrer50, F.Ferro13, U.Flagmeyer53, H.Foeth8, E.Fokitis32, F.Fulda-Quenzer20, J.Fuster50,

M.Gandelman48, C.Garcia50, Ph.Gavillet8, E.Gazis32, R.Gokieli8,52, B.Golob43, G.Gomez-Ceballos41, P.Goncalves22,

E.Graziani39, G.Grosdidier20, K.Grzelak52, J.Guy37, C.Haag17, A.Hallgren49, K.Hamacher53, K.Hamilton35, S.Haug33,

F.Hauler17, V.Hedberg26, M.Hennecke17, H.Herr†8, J.Hoffman52, S-O.Holmgren44, P.J.Holt8, M.A.Houlden23,

K.Hultqvist44, J.N.Jackson23, G.Jarlskog26, P.Jarry40, D.Jeans35, E.K.Johansson44, P.D.Johansson44, P.Jonsson27,

C.Joram8, L.Jungermann17, F.Kapusta25, S.Katsanevas27 , E.Katsoufis32, G.Kernel43, B.P.Kersevan8,43, U.Kerzel17,

B.T.King23, N.J.Kjaer8, P.Kluit31, P.Kokkinias11, C.Kourkoumelis3, O.Kouznetsov16 , Z.Krumstein16, M.Kucharczyk18,

J.Lamsa1, G.Leder51, F.Ledroit14, L.Leinonen44, R.Leitner30, J.Lemonne2, V.Lepeltier20, T.Lesiak18, W.Liebig53,

D.Liko51, A.Lipniacka44, J.H.Lopes48, J.M.Lopez34, D.Loukas11, P.Lutz40, L.Lyons35, J.MacNaughton51 , A.Malek53,

S.Maltezos32, F.Mandl51, J.Marco41, R.Marco41, B.Marechal48, M.Margoni36, J-C.Marin8, C.Mariotti8, A.Markou11,

C.Martinez-Rivero41, J.Masik12, N.Mastroyiannopoulos11, F.Matorras41, C.Matteuzzi29, F.Mazzucato36 ,

M.Mazzucato36, R.Mc Nulty23, C.Meroni28, E.Migliore45, W.Mitaroff51, U.Mjoernmark26, T.Moa44, M.Moch17,

K.Moenig8,10, R.Monge13, J.Montenegro31 , D.Moraes48, S.Moreno22, P.Morettini13, U.Mueller53, K.Muenich53,

M.Mulders31, L.Mundim6, W.Murray37, B.Muryn19, G.Myatt35, T.Myklebust33, M.Nassiakou11, F.Navarria5,

K.Nawrocki52, R.Nicolaidou40, M.Nikolenko16,9, A.Oblakowska-Mucha19, V.Obraztsov42, A.Olshevski16, A.Onofre22,

R.Orava15, K.Osterberg15, A.Ouraou40, A.Oyanguren50, M.Paganoni29, S.Paiano5, J.P.Palacios23, H.Palka18,

Th.D.Papadopoulou32, L.Pape8, C.Parkes24, F.Parodi13, U.Parzefall8, A.Passeri39, O.Passon53, L.Peralta22,

V.Perepelitsa50, A.Perrotta5, A.Petrolini13, J.Piedra41, L.Pieri39, F.Pierre40, M.Pimenta22, E.Piotto8, T.Podobnik43,

V.Poireau8, M.E.Pol6, G.Polok18, V.Pozdniakov16, N.Pukhaeva2,16 , A.Pullia29, J.Rames12, A.Read33, P.Rebecchi8,

J.Rehn17, D.Reid31, R.Reinhardt53, P.Renton35, F.Richard20, J.Ridky12, M.Rivero41, D.Rodriguez41, A.Romero45,

P.Ronchese36, P.Roudeau20, T.Rovelli5, V.Ruhlmann-Kleider40, D.Ryabtchikov42 , A.Sadovsky16, L.Salmi15, J.Salt50,

C.Sander17, A.Savoy-Navarro25, U.Schwickerath8, A.Segar†35, R.Sekulin37, M.Siebel53, A.Sisakian16, G.Smadja27,

O.Smirnova26, A.Sokolov42, A.Sopczak21, R.Sosnowski52, T.Spassov8, M.Stanitzki17, A.Stocchi20, J.Strauss51, B.Stugu4,

M.Szczekowski52, M.Szeptycka52 , T.Szumlak19, T.Tabarelli29, A.C.Taffard23, F.Tegenfeldt49 , J.Timmermans31,

L.Tkatchev16 , M.Tobin23, S.Todorovova12, B.Tome22, A.Tonazzo29, P.Tortosa50, P.Travnicek12, D.Treille8, G.Tristram7,

M.Trochimczuk52, C.Troncon28, M-L.Turluer40, I.A.Tyapkin16, P.Tyapkin16, S.Tzamarias11, V.Uvarov42, G.Valenti5,

P.Van Dam31, J.Van Eldik8, N.van Remortel15, I.Van Vulpen8, G.Vegni28, F.Veloso22, W.Venus37, P.Verdier27,

V.Verzi38, D.Vilanova40, L.Vitale47, V.Vrba12, H.Wahlen53, A.J.Washbrook23, C.Weiser17, D.Wicke8, J.Wickens2,



iii

G.Wilkinson35, M.Winter9, M.Witek18, O.Yushchenko42, A.Zalewska18, P.Zalewski52, D.Zavrtanik43, V.Zhuravlov16,

N.I.Zimin16, A.Zintchenko16 , M.Zupan11

1Department of Physics and Astronomy, Iowa State University, Ames IA 50011-3160, USA
2Physics Department, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
and IIHE, ULB-VUB, Pleinlaan 2, B-1050 Brussels, Belgium
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1 Introduction

Abundant particle multiplicity is one of the most obvious properties of hadronic final
states in e+e− annihilation. The reason for the large multiplicity of particles produced
in hadronic events is directly rooted to one of the fundamental properties of the strong
interaction: the confinement of quarks and gluons into hadrons. Unlike leptons, quarks
produced in a high energy reaction are not able just to separate without further inter-
actions in which the colour charges are balanced and free colour singlets are formed.
Ironically, it is the very same property of QCD which makes it impossible to predict the
average number of hadrons produced in such an event. However, the hypothesis of Local
Parton-Hadron Duality (LPHD) allows the assumption to be made that the hadronic mul-
tiplicity of an event is related only via a normalisation factor to the partonic multiplicity
at a given virtuality cut-off Q0, which then is a perturbatively calculable quantity.

The multiplicity of qq̄ colour-singlet systems is well understood in this way. Theoretical
predictions of the energy dependence of the multiplicity produced in such systems [1–
3] have been confirmed by experimental data to high accuracy [4–6]. It is possible to
predict the multiplicity of two-gluon colour-singlet systems perturbatively in a similar
fashion, but experimental verification of this quantity is scarce. Two-gluon systems are
experimentally difficult to produce and are observed so far only in decays of resonances
with relatively low mass. The ratio of the multiplicity of quark and gluon systems, r,
has been subject to theoretical studies presented in Sect. 3. It is expected that r at high
energies resembles asymptotically the colour factor ratio CA/CF . CF and CA, which are
the Casimir eigenvalues of the triplet and octet representation of SU(3), can be interpreted
as effective colour charges of the triplet quarks and the octet gluons. However, r is known
to have large corrections in higher orders of the perturbative expansion and moreover, is
supposed to be affected by non-perturbative effects. Therefore, the ratio of the derivatives
of the quark and gluon multiplicities with respect to energy, r(1), has been suggested in [7]
as a better suited observable.

The next slightly more complex class of events which can be studied in e+e−-
annihilation are events with three jets, which occur if in a qq̄-event a gluon is radiated
with a sufficiently large transverse momentum. Three-jet events are unique in the sense
that they provide quark jets as well as gluon jets and therefore provide the opportunity
to study the properties of gluon fragmentation once the qq̄-contributions are understood.
There have been numerous experimental studies where the properties of identified quark
and gluon jets are compared (e.g. [8–12]). A crucial question arising in this context is
how the environment of a three-jet event affects the properties of a quark or gluon jet
compared to the unrestricted jets of a qq̄- or two-gluon event in terms of phase space
restriction or coherent radiation. Studies have been made to verify experimentally sev-
eral proper energy scale like variables which account for these differences by applying
the appropriate evaluation scales for the jets in three-jet events (e.g. in [9,11]). Coher-
ence effects in the particle production in three-jet events have been subject to a recent
study [13]. In parallel with the publication of an analysis of the charged multiplicity of
symmetric three-jet events applying a rather phenomenological approach [14], a theoret-
ical prediction of the multiplicity of three-jet events has been published [15,16], which is
derived in the colour-dipole picture of the Modified Leading Logarithmic Approximation
(MLLA) and takes into account the effects of colour coherence and phase-space restriction
in a stringent way. This prediction has been applied to study the topology-dependence
of the event multiplicity of symmetric three-jet events in [17] and later in [18].
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In this paper this prediction is not only applied to the charged multiplicity of three-jet
events of symmetric topologies, but events with more general topologies are also con-
sidered. In the following section the experiment, data selection and the classification of
three-jet event topologies is laid out. Sect. 3 deals with the relevant theoretical predic-
tions, before in Sect. 4 the measured multiplicities are discussed. The following section
deals with the preparation of the predictions which are then compared to the data in
Sect. 6. A parameter fit to determine the colour-factor ratio CA/CF is performed and
the systematic uncertainties of this measurement are discussed. In Sect. 7 the prediction
is used to extract the multiplicity of two-gluon colour singlet systems from the three-jet
event multiplicity by subtracting the quark contribution. With the measurements of the
charged two-gluon multiplicity Ngg the ratios r and r(1) are evaluated and the possibil-
ity of measuring the ratio of the second derivatives, r(2), is studied. The summary and
conclusions are presented in Sect. 8.

2 Data and data analysis

variable cut

p ≥ 0.4 GeV
ϑpolar 20◦ − 160◦

ǫxy ≤ 5 cm
ǫz ≤ 10 cm

Ltrack ≥ 30 cm
∆p/p ≤ 100%
EHPC 0.5 GeV − 50 GeV
EEMF 0.5 GeV − 50 GeV
EHAC 1 GeV − 50 GeV

Table 1: Selection cuts applied to
charged-particle tracks and to calorimeter
clusters.

variable cut

general events

Ehemisph.
charged ≥ 0.03 · √s

Etotal
charged ≥ 0.12 · √s

Ncharged ≥ 5
ϑsphericity 30◦ − 150◦

pmax 45 GeV

three-jet events
∑3

i=1 θi > 355◦

Evisible/jet ≥ 5 GeV
Ncharged/jet ≥ 2

ϑjet 30◦ − 150◦

Table 2: Selection cuts applied to gen-
eral events and to three-jet events.

In this paper the hadronic events from Z decays recorded by the Delphi experi-
ment in the years 1992-1995 are analysed. The Delphi detector was a hermetic collider
detector with a solenoidal magnetic field, extensive tracking facilities including a micro-
vertex detector, electromagnetic and hadronic calorimetry as well as extended particle
identification capabilities. The detector and its performance are described in detail else-
where [19,20].

In order to select well-measured particles originating from the interaction point, the
cuts shown in Tab. 1 were applied to the measured tracks and electromagnetic or hadronic
calorimeter clusters. Here p and E denote the particle’s momentum and energy, ϑpolar

denotes the polar angle with respect to the beam, ǫk is the distance of closest approach
to the interaction point in the plane perpendicular to (xy) or along (z) the beam, respec-
tively, Ltrack is the measured track length. EHPC (EEMF) denotes the energy of a cluster
as measured with the barrel (forward) electromagnetic calorimeter, and EHAC the cluster
energy measured by the hadronic calorimeter.

The general event cuts shown in Tab. 2 select hadronic decays of the Z and suppress
background from leptonic Z decays, γγ interactions or beam-gas interactions. Further
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reduction of background to a negligible level is achieved by the jet-selection cuts given
also in Tab. 2 . The cut variables are the visible charged energy, Etotal

charged and Ehemisph.
charged ,

observed in the event or in each event hemisphere, respectively. Event hemispheres are
defined by the plane perpendicular to the sphericity axis. The polar angle of this axis
with respect to the beam is ϑsphericity and Ncharged is the observed charged multiplicity.
Events are discarded, if they contain charged particles with momenta apparently above
the kinematic limit.

In addition to the event selection above, a procedure to tag events with initial b-quarks
is applied. Details of the tagging procedure, which is based on the combined information
of several observables, can be found in [21]. A cut on the tagging variable λ by demanding
λ < 1.5 is used to reject b-events leading to a light quark event purity of ∼ 92%. Both,
the complete set of accepted hadronic (udscb-) events as well as the set of anti-tagged
light (udsc-) quark events are analysed for cross-check reasons.

In the accepted events three jets are then reconstructed using the angular ordered
Durham algorithm [22] taking into acount reconstructed momenta of charged particles
and of neutral particles seen in the electromagnetic calorimeter. No cut-off variable for the
cluster algorithm is used, every event is clustered into three jets. For cross-check reasons,
the Durham [23], Cambridge [22] and Luclus [24] jet clustering algorithms have been used
alternatively1. As three-jet events have to be planar due to momentum conservation, the
three reconstructed jets are projected into the event-plane, which is defined by the first
two eigenvectors of the sphericity tensor [25].

The three-jet event quality requirements, also shown in Tab. 2, assure well-measured
jets. Here θi denotes the angle between the two jets opposite to jet i, ϑjet the polar angle
of a jet and Evisible/jet the total visible energy per jet, taking into account all tracks
and information from the electromagnetic calorimeter assigned to this jet. Assuming
massless jet kinematics the topology of an event can be characterised by the three angles
θ1,2,3 between the jets. The inter-jet angles are ordered according to their size with θ1

being the smallest and θ3 the largest angle. This reflects the wide-spread convention due
to which jets are numbered according to their energy with jet 1 being the most energetic,
while the inter-jet angles are numbered according to their opposing jet. With massless
jets this implies the numbering of the angles given above.

The inter-jet angles of the projected jets add up to 360◦. Therefore giving two of the
three angles is sufficient to fully determine the topology of an event. Here, θ2 and θ3 are
used to define the binning. The angular intervals used to define bins of different topology
classes are listed in Tab. 3. The allowed values for θ2 depend on the value of θ3, as θ2 < θ3

and θ2 > 180◦ − θ3/2, the latter being a consequence of θ2 > θ1.
Besides these general classes of topologies, classes of symmetric topologies are selected,

where symmetric events are defined by the requirement of the two larger inter-jet angles
of an event, θ2 and θ3 to be equal within small tolerances, i.e. θ3 ≤ θ2 + ∆θ. An
angular tolerance less than 5◦ is not meaningful, as Monte Carlo studies showed that the
differences between the inter-jet angles in the partonic and in the hadronic state scatter
with a standard deviation of ∼ 5◦. Therefore ∆θ = 5◦ is chosen here. Since θ3 has to be
larger than 120◦, the binning is completely determined by the choice of ∆θ. Symmetric
events have been used in several previous studies (e.g. [8–11,14,17,18]), exploiting the
special property of these events. With jet 2 and jet 3 being a quark and a gluon jet
with exactly the same topological environment, a similar energy scale is present. Here
symmetric topologies, which are also contained as a subset in the general event topologies,

1It is in the nature of the Cambridge algorithm, that depending on the structure of an event not every number of jets can
be resolved. The small number of events where three jets could not be resolved are discarded when using the Cambridge
algorithm.
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θ2 θ3

98◦ − 100◦ 119◦ − 123◦ 120◦ − 130◦

100◦ − 102◦ 123◦ − 128◦ 130◦ − 140◦

102◦ − 104◦ 128◦ − 133◦ 140◦ − 145◦

104◦ − 106◦ 133◦ − 138◦ 145◦ − 150◦

106◦ − 108◦ 138◦ − 143◦ 150◦ − 155◦

108◦ − 111◦ 143◦ − 148◦ 155◦ − 160◦

111◦ − 115◦ 148◦ − 155◦ 160◦ − 165◦

115◦ − 119◦

Table 3: The bins in θ2 and θ3

are studied also separately. Due to the additional constraint on symmetric topologies,
giving only one inter-jet angle is sufficient to fully describe the topology of a symmetric
event. For consistency with previous studies θ1 is used for this purpose. The reduction to
only one independent variable considerably simplifies most correction procedures. Note
that the symmetric events are not fully contained in the general event topologies listed in
Tab. 3, as the minimum value for θ1 allowed by the binning in Tab. 3 is 40◦. In symmetric
events jet 3 is produced with maximum energy, therefore smaller opening angles θ1 can be
accepted. However, Monte Carlo studies showed that the resolved hadronic jet structure
does not reflect the partonic structure of an event, if θ1 is smaller than ∼ 20◦, which
therefore gives a lower boundary for θ1.

For each (θ2, θ3)-bin of the general topologies, and each θ1-bin of the symmetric event
sample, the multiplicity distribution is measured. To correct these distributions for de-
tector acceptance, a matrix correction is used. For each angular bin a matrix Mmn is
calculated by tracing in a Monte Carlo simulation how many particles m in an accepted
event with n detected particles have been generated. In order to obtain the generated
number of charged particles, particles with lifetimes shorter than 10−9s, like K0

S and Λ,
have been forced to decay. Mmn is then applied to the measured distributions. Since gen-
erated events which fail to fulfil the selection criteria are not considered when calculating
Mmn and these events are biased towards low multiplicities, the correction is slightly
overestimated. In order to correct for this overestimation, the multiplicity distributions
are multiplied by the ratio of the multiplicity distributions of all generated events with
the multiplicity distributions of all generated and not rejected events for the respective
angular bin. While the application of Mmn increases the mean of the distributions by
∼ 30%, the multiplicative second correction results in a reduction by only ∼ 4%.

When correcting the multiplicity distributions of udsc-events, the matrix corrected
multiplicity distributions still contain some contributions due to mistagged b-events,
which are not considered in the second multiplicative correction. Therefore the remaining
contribution due to b-events is taken from the Monte Carlo simulation and subtracted
from the matrix corrected distribution. This correction is small, the mean of the multi-
plicity distributions is changed by only ∼ 0.6%.

The central values for the results of the mean multiplicities as a function of the event
topology are taken to be the arithmetic mean of the respective multiplicity distributions.
However, in order to estimate the systematic effects of the correction procedure, two
variations of the correction procedure are also applied:

• The mean multiplicity is determined from the expectation value of a negative bino-
mial distribution fitted to every multiplicity distribution.
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• Instead of correcting the distributions, the means of the uncorrected distributions are
taken and corrected with a multiplicative factor taken from Monte Carlo simulation.

The corrected mean multiplicities obtained by using all three correction procedures agree
well, the small variation is considered in the systematic errors of the analysis.

This procedure provides fully corrected mean multiplicities of hadronic three-jet events
with initial udscb-quark – and udsc-quarks for cross-check reasons – as a function of
the event topology for general and symmetric topologies. Additionally, the multiplicity
distribution and mean multiplicity of all accepted events regardless of angular restrictions
is treated in the same way to compare this measurement with previous measurements of
this quantity. The events entering this overall multiplicity distribution are not required
to fulfil the cuts on the jet structure given in the lower part of Tab. 2.

3 Theoretical Predictions

The ratio of gluon and quark multiplicities r has been subject to theoretical studies
for some time. The naive expectation that this ratio reflects the ratio of the effective
colour charges of quarks and gluons given by the colour factor ratio CA/CF is subject to
large corrections. The multiplicity ratio

r =
Ngg

Nqq̄

= r0[1 − r1γ0 − r2γ
2
0 − r3γ

3
0 ] (1)

is given as an expansion in the anomalous dimension γ0, which can be expressed in terms
of the strong coupling αs as

γ0 =

√

2CAαs

π
. (2)

Here r0 denotes the colour factor ratio CA/CF , the coefficients ri of the correction terms
have been calculated in Leading Order (LO) (r1) [26], Next-to-Leading Order (NLO)
(r1, r2) [2] and, using a different approach in which energy conservation is considered, in
Next-to-Next-to-Next-to-Leading Order (3NLO) (r1, r2 and r3) [27]. As non-perturbative
effects of the hadronisation process or energy conservation lead to large corrections for
the ratio r, the suggestion has been made rather to study the ratio of the derivatives of
the multiplicities with respect to the energy scale r(1) [7] which should be less affected by
non-perturbative effects. The ratio has been calculated in 3NLO [3] as

r(1) =
d < Ngg > /ds

d < Nqq̄ > /ds
=

r

ρ1

(3)

with

ρ1 = 1 − β0

8CA

r1γ
2
0

[

1 +

(

a1 + r1 +
2r2

r1

)

γ0 +

(

2r2a1

r1

+ a1r1 + 3r2 +
3r3

r1

+ a2 + a2
1 + r2

1 +
β1

4CAβ0

)

γ2
0

] (4)

and r from Eqn. 1. The coefficients ri and ai have been calculated in [3] and are given in
Tab. 4 and Tab. 5, β0 and β1 are the first to coefficients of the QCD β-function.

In another study [15] the ratio r(1) has been derived in MLLA within the framework
of the colour dipole model. It is implicitly expressed in the energy evolution of the gluon
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multiplicity in relation to that of the quark multiplicity:

dNgg(L
′)

dL′

∣

∣

∣

∣

L′=L+cg−cq

=
CA

CF

(

1 − α0cr

L

) d

dL
Nqq̄(L) (5)

with

L = ln
( s

Λ2

)

, α0 =
6

11 − 2NF/CA

, cg =
11

6
, cq =

3

2
, cr =

10

27
π2−3

2
.

The constants cq and cg are corrections to the phase space available for the quark and
gluon evolution, cr determines a MLLA correction which is calculated with an estimated
uncertainty of 10% and Λ is the QCD scale parameter. The solution of this differen-
tial equation implies a constant of integration. Extrapolating the solution of Eqn. 5 to
small scales, neglecting the constant of integration, would imply that the multiplicity
in a gg-system would still be significantly larger than in a qq̄-system. At very small
scales, however, the hadronic multiplicity of both systems should mainly be determined
by hadronic phase space and thus should become almost equal [15]:

Ngg(L0) ≈ Nqq̄(L0) = N(L0) . (6)

Thus a non-perturbative constant term appears in the solution for the gluon multiplicity
as expected from the behaviour of the fragmentation functions. In [15] it is suggested to
determine N(L0) from data on charmonium or bottomium states.

The multiplicity of three-jet events is then given by the two alternative formulations
[16]:

Nqq̄g = Nqq̄(Lqq̄, κLu) +
1

2
Ngg(κLe) , (7A)

Nqq̄g = Nqq̄(L, κLu) +
1

2
Ngg(κLu) , (7B)

henceforth referred to as predictions Eden A and Eden B, with

L = ln
( s

Λ2

)

, Lqq̄ = ln
(sqq̄

Λ2

)

, κLu = ln

(

p2
t,Lu

Λ2

)

, κLe = ln

(

p2
t,Le

Λ2

)

and
p2

t,Lu =
sqgsq̄g

s
, p2

t,Le =
sqgsq̄g

sqq̄

, sij = (pi + pj)
2 .

The predictions Eqn. 7A and Eqn. 7B differ in the definition of the gluon contribution
to the event multiplicity. In Eqn. 7A the qq̄-contribution is determined mainly by the
invariant mass of the qq̄-system which is also the relevant scale in an qq̄-event of the
same topology with the gluon being replaced by a hard photon. In Eqn. 7B the qq̄-
contribution is given by the centre-of-mass energy of the whole event reflecting the phase-
space available to the qq̄-pair if no hard gluon had been emitted.

The expression Nqq̄(L, κ) for the quark contribution to the three-jet multiplicity takes
into account that the resolution of a gluon jet at a given pt implies restrictions on the
phase space of the quark system. This restricted multiplicity is linked to the multiplicity
of an unrestricted qq̄-system Nqq̄(L) via [15]:

Nqq̄(L, κcut) = Nqq̄(κcut + cq) + (L − κcut − cq)
dNqq̄(L

′)

dL′

∣

∣

∣

∣

L′=κcut+cq

. (8)
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NF a1 a2 a3

3 0.280 -0.379 0.209
4 0.297 -0.339 0.162
5 0.314 -0.301 0.112

Table 4: The coefficients ai from
[3]

NF r1 r2 r3

3 0.185 0.426 0.189
4 0.191 0.468 0.080
5 0.198 0.510 -0.041

Table 5: The coefficients ri from
[3]

It is important to note that the unrestricted multiplicity is always a function of only
one logarithmic energy scale, while the restricted multiplicity demands two logarithmic
arguments. The equivalent restriction for the gluon contribution to the event multiplicity
can be neglected, as the evolution scale of the gluon is the pt-like variable κ and therefore
coincides with the cut-off scale in Eqn. 8. Note also, that the topology dependence of the
qq̄-term in Eqn. 7B enters only due to this phase space restriction.

The explicit energy dependence of the multiplicity of unrestricted (“unbiased”) qq̄
events has already been calculated in [1]:

〈

N(Q2)
〉

= a · αb
s(Q

2) · exp

(

c
√

αs(Q2)

)

·
[

1 + O
(

√

αs(Q2)
)

]

(9)

with

b =
1

4
+

2

3

NF

β0

(

1 − CF

CA

)

and (10)

c =

√

32π · CA

β2
0

. (11)

In a more recent publication [3] the multiplicity of qq̄ or gg colour singlet systems has
been calculated in 3NLO as an expansion of r and γ = 〈Ng〉′/〈Ng〉, where the prime
denotes a derivative with respect to the logarithmic energy scale y = log(pΘ/Q0) with
Θ being the opening angle of the first splitting and Q0 the cut-off of the perturbative
expansion. The mean multiplicities are then given by

〈Ng(y)〉 = kg · y−a1C2 · exp [2C
√

y + δg(y)] (12)

and

〈Nq(y)〉 =
kq

r0

· y−a1C2 · exp [2C
√

y + δq(y)] . (13)

kg and kq denote free normalisations, the quantities ri and ai are calculated in [3] and given

in Tab. 4 and Tab. 5, C =
√

4NC/β0 and the additional contributions to the exponent
are given as

δg(y) =
C√
y

[

2a2C
2 +

β1

β2
0

{log(2y) + 2}
]

+
C2

y

[

a3C
2 − a1β1

β2
0

{log(2y) + 1}
]

(14)

and

δq(y) = δg(y) +
C√
y
r1 +

C2

y

(

r2 +
r2
1

2

)

. (15)

Due to the definitions of the evolution variables, which are not symmetric with respect to
quarks and gluons, the multiplicity of the two-gluon system is given in a slightly higher
order than the multiplicity of the quark-antiquark system.



8

Figure 1: The multiplicity difference between udsc- and udscb-events. The shaded area
reflects the value for N0 from Eqn. 19, the dashed lines indicate statistical errors only.

4 Mean multiplicity of hadronic events

The mean multiplicity of hadronic events at
√

s = mZ , without consideration of the
event topology, is found in this analysis to be 20.963±0.004 for udscb- and 20.353±0.004
for udsc-events with statistical errors only. The multiplicity of udscb-events is expected
to be slightly larger than the multiplicity of udsc-events due to the additional multiplicity
produced in B decays. These values are in good agreement with previous measurements
of this quantity [4]. From this measurement the difference in multiplicity between udscb-
and udsc-events, which proves to be crucial for this analysis, has been found to be

N0 ≡ δudscb−udsc = Nudscb − Nudsc = 0.610 ± 0.002stat. , (16)

where the error of the difference has been determined assuming a correlation of
√

1 − Rb ∼
0.9 between the two measurements. Rb denotes the fraction of hadronic events with initial
b-quarks, which has been measured on the Z resonance [28]:

Rb(mZ) = 0.21638 ± 0.00066 . (17)

From previous measurements of the multiplicity of udscb- and b-events [29,30], N0 can be
calculated using the relation

N0 = 2
Rb

1 − Rb

·
(

〈nh〉b − 〈nh〉
)

, (18)

where 〈nh〉b and 〈nh〉 represent the multiplicity per hemisphere in a b- or a general
hadronic event, respectively. The value obtained from the results in [29] is N0 =
0.60 ± 0.06, while the value obtained from the results in [30] is N0 = 0.62 ± 0.07, both
in very good agreement with the value of this analysis. The given statistical errors are
larger than the statistical error of N0 from this analysis, as in [29] and [30] Nb is measured
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Figure 2: The mean charged multiplicity of udscb-events with general topologies as a
function of the opening angle θ1 for different values of θ3 in comparison with the pre-
dictions of Monte Carlo models. The data points have been plotted in two diagrams
with alternating θ3-bins, as the neighbouring curves would otherwise overlap. The errors
shown are statistical only.

instead of Nudsc, so the determination of N0 is less direct and based on a smaller event
sample. The systematic errors of Nb are ±0.22 in [29] and ±0.24 in [30]. The average of
these two values for N0 is

N0 = 0.61 ± 0.24 (19)

where also the given systematic errors on Nb have been considered.

The additional multiplicity due to initial b-quarks is in MLLA predicted to be inde-
pendent of the centre-of-mass energy due to energy conservation and coherence effects in
the gluon-radiation from heavy quarks [31]. This energy independence has been experi-
mentally verified (see e.g. [32]). In Fig. 1 the multiplicity difference between udscb- and
udsc-events N0 is shown as a function of the event topology. The shaded area reflects the
value given in Eqn. 19, the dashed lines indicate the purely statistical error on N0. No
significant tendency can be observed, N0 can be considered as independent of the event
topology within the angular regions studied.

The dependence of the multiplicity of udscb-events on the event topology is shown in
Fig. 2 for general and in Fig. 3 for symmetric event topologies. For symmetric topologies
a nearly logarithmic increase of multiplicity with increasing θ1 can be observed. Also
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ϑ2 ϑ3 Nudscb
ch ϑ2 ϑ3 Nudscb

ch

99◦ 163◦ 25.53 ±0.16 ±0.12 121◦ 153◦ 26.88 ±0.11 ±0.06
101◦ 158◦ 26.19 ±0.22 ±0.14 121◦ 158◦ 26.29 ±0.10 ±0.02
101◦ 163◦ 25.61 ±0.12 ±0.06 121◦ 163◦ 25.30 ±0.08 ±0.05
103◦ 153◦ 26.94 ±0.33 ±0.11 126◦ 125◦ 28.83 ±0.15 ±0.12
103◦ 158◦ 26.18 ±0.15 ±0.10 126◦ 135◦ 28.49 ±0.09 ±0.09
103◦ 163◦ 25.58 ±0.12 ±0.10 126◦ 143◦ 27.96 ±0.12 ±0.09
105◦ 148◦ 27.13 ±0.55 ±0.42 126◦ 148◦ 27.51 ±0.10 ±0.06
105◦ 153◦ 27.08 ±0.17 ±0.09 126◦ 153◦ 26.88 ±0.10 ±0.05
105◦ 158◦ 26.40 ±0.14 ±0.09 126◦ 158◦ 26.21 ±0.09 ±0.04
105◦ 163◦ 25.49 ±0.13 ±0.11 126◦ 163◦ 25.08 ±0.07 ±0.02
107◦ 143◦ 26.75 ±1.19 ±0.79 131◦ 125◦ 28.40 ±0.46 ±0.22
107◦ 148◦ 27.80 ±0.20 ±0.13 131◦ 135◦ 28.28 ±0.09 ±0.07
107◦ 153◦ 27.49 ±0.16 ±0.07 131◦ 143◦ 27.77 ±0.11 ±0.05
107◦ 158◦ 26.33 ±0.14 ±0.07 131◦ 148◦ 27.43 ±0.10 ±0.08
107◦ 163◦ 25.23 ±0.12 ±0.05 131◦ 153◦ 26.55 ±0.09 ±0.08
110◦ 135◦ 27.49 ±0.59 ±0.35 131◦ 158◦ 26.12 ±0.08 ±0.04
110◦ 143◦ 28.16 ±0.18 ±0.12 131◦ 163◦ 25.01 ±0.07 ±0.07
110◦ 148◦ 27.60 ±0.14 ±0.08 136◦ 135◦ 27.98 ±0.12 ±0.07
110◦ 153◦ 27.23 ±0.13 ±0.04 136◦ 143◦ 27.61 ±0.11 ±0.08
110◦ 158◦ 26.62 ±0.12 ±0.06 136◦ 148◦ 27.20 ±0.10 ±0.06
110◦ 163◦ 25.50 ±0.10 ±0.09 136◦ 153◦ 26.55 ±0.09 ±0.06
113◦ 135◦ 28.59 ±0.13 ±0.06 136◦ 158◦ 25.89 ±0.08 ±0.08
113◦ 143◦ 28.17 ±0.13 ±0.09 136◦ 163◦ 24.81 ±0.07 ±0.07
113◦ 148◦ 27.70 ±0.12 ±0.11 141◦ 135◦ 27.43 ±0.38 ±0.24
113◦ 153◦ 27.29 ±0.11 ±0.07 141◦ 143◦ 27.41 ±0.11 ±0.07
113◦ 158◦ 26.46 ±0.10 ±0.05 141◦ 148◦ 26.92 ±0.09 ±0.09
113◦ 163◦ 25.56 ±0.09 ±0.09 141◦ 153◦ 26.41 ±0.09 ±0.06
117◦ 125◦ 29.02 ±0.18 ±0.12 141◦ 158◦ 25.72 ±0.07 ±0.05
117◦ 135◦ 28.65 ±0.10 ±0.06 141◦ 163◦ 24.64 ±0.06 ±0.05
117◦ 143◦ 28.23 ±0.13 ±0.06 146◦ 143◦ 26.81 ±0.32 ±0.31
117◦ 148◦ 27.82 ±0.12 ±0.07 146◦ 148◦ 26.56 ±0.09 ±0.07
117◦ 153◦ 26.99 ±0.11 ±0.06 146◦ 153◦ 26.06 ±0.08 ±0.09
117◦ 158◦ 26.28 ±0.10 ±0.03 146◦ 158◦ 25.38 ±0.07 ±0.07
117◦ 163◦ 25.37 ±0.09 ±0.05 146◦ 163◦ 24.41 ±0.06 ±0.07
121◦ 125◦ 28.79 ±0.12 ±0.08 152◦ 148◦ 26.16 ±0.28 ±0.14
121◦ 135◦ 28.54 ±0.10 ±0.10 152◦ 153◦ 25.70 ±0.07 ±0.07
121◦ 143◦ 28.15 ±0.13 ±0.08 152◦ 158◦ 24.99 ±0.05 ±0.08
121◦ 148◦ 27.57 ±0.12 ±0.08 152◦ 163◦ 24.10 ±0.04 ±0.08

Table 6: The multiplicity of udscb-events in dependence of the event topology for general
topologies. The values for θ2 and θ3 represent the centre of the bins, not averages, i.e. due
to bin overlap it can happen that the given value for θ2 is larger than the corresponding
value for θ3. The first errors are statistical, the second errors are systematic errors due
to the choice of the cluster algorithm and variations of track and event cuts.
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Figure 3: The mean charged multiplicity of udscb-events with symmetric topology as
a function of the opening angle θ1 in comparison with the predictions of Monte Carlo
models The errors shown are statistical only.

for general topologies the event multiplicity increases with θ1 for a fixed value of θ3.
For general event topologies also an increase of multiplicity with decreasing θ3 can be
observed. This dependence is more pronounced than the θ1-dependence as a change in
θ1 of 50◦ results in a multiplicity change of roughly 2 units, while the same change in θ3

leads to a change in multiplicity of roughly 4 units. The Monte Carlo models, although
mutually agreeing well, underestimate the multiplicity by ∼ 0.4 units. In Fig. 2 it can be
seen that the deviation is stronger for large values of θ3 than for smaller values.

5 Preparation of the prediction

Eqn. 7A and Eqn. 7B give the average multiplicity of a three-jet event in terms of the
restricted qq̄-multiplicity and the multiplicity of a two-gluon system. Both contributions
can be derived from the unrestricted qq̄-multiplicity using Eqn. 8 and Eqn. 5, which has
been measured in numerous e+e− experiments at different centre-of-mass energies. The
aim of this section is to provide a closed parametrisation of Nqq̄g using a parametrisation
of the measured unrestricted multiplicity Nqq̄(

√
s).

The measurements of Nqq̄(
√

s) used [4] are shown in the central part of Fig. 4. Not
included are older measurements of the Jade and Pluto collaboration in which the pions
from the decay K0 → ππ have not been added to the multiplicity [33]. Recent results
of a re-analysis of the Jade data [34] are, taken into account. In these measurements
events with initial b-quarks are included. Due to the decay products of the b-containing
mesons these events have an increased multiplicity. As the fraction of events with initial
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Figure 4: Top: The branching ratio Rb as a function of
√

s Middle: The measurements
of Nqq̄ [4,5] with the fitted parametrisation Eqn. 22. Note that the 4th order polynomial
P4 fit does not account for the additional multiplicity due to b-events. Bottom: The
relative deviation of the fitted polynomial P4 from the parametrisation Eqn. 9
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ϑ1 Nudscb
ch ϑ1 Nudscb

ch

22◦ 20.77 ±0.03 ±0.24 72◦ 27.11 ±0.13 ±0.10
27◦ 21.91 ±0.04 ±0.18 77◦ 27.40 ±0.14 ±0.08
32◦ 22.70 ±0.05 ±0.13 82◦ 27.71 ±0.15 ±0.11
37◦ 23.48 ±0.06 ±0.10 87◦ 28.05 ±0.16 ±0.06
42◦ 24.11 ±0.07 ±0.09 92◦ 28.21 ±0.17 ±0.13
47◦ 24.63 ±0.08 ±0.09 97◦ 28.44 ±0.18 ±0.10
52◦ 25.30 ±0.09 ±0.06 102◦ 28.89 ±0.19 ±0.14
57◦ 25.81 ±0.10 ±0.08 107◦ 28.76 ±0.19 ±0.07
62◦ 26.32 ±0.11 ±0.10 112◦ 29.14 ±0.20 ±0.07
67◦ 26.67 ±0.12 ±0.05 117◦ 28.68 ±0.22 ±0.14

Table 7: The multiplicity of udscb-events in dependence of the event topology for sym-
metric topologies. The first errors are statistical, the second errors are systematic errors
due to the choice of the cluster algorithm and variations of track and event cuts.

b-quarks varies with the centre-of-mass energy, this additional multiplicity introduces an
additional energy dependence of the multiplicity which is not due to strong interactions
and which has to be corrected for. The upper plot of Fig. 4 shows the branching ratio

Rb =
σ(e+e− → bb̄)

σ(e+e− → hadrons)
(20)

as a function of the centre-of-mass energy. The curve has been obtained using the LUX-
TOT routine of the Jetset/Pythia package [24]. The average additional multiplicity
due to b-events can be expressed in terms of N0:

δb−udsc = 2 ·
(

〈nh〉b − 〈nh〉udsc

)

=
N0

Rb(mZ)
. (21)

With the values from Eqn. 17 and Eqn. 19, the multiplicity difference can be determined
giving δb−udsc = 2.83 ± 0.23.

The qq̄-multiplicities are then fitted with the function

Nudscb(
√

s) = Nudsc(
√

s) + δb−udsc · Rb(
√

s) (22)

where Eqn. 9 is used to parametrise Nudsc(
√

s). The description of the data is very good
with a χ2 per degree of freedom of 33/48. The values found for the fit parameters are

a = 0.10252 ± 0.0025

Λ = (0.243 ± 0.012) GeV .

The fitted function is indicated in Fig. 4 as a solid line. To simplify the integration of
Nudsc(

√
s) required due to Eqn. 5, a polynomial of order four in L = log(s/Λ2) is fitted

to the parametrisation of Nudsc(
√

s). The fit is performed with Λ = 0.25 GeV, and the
values obtained for the coefficients are given in Tab. 8. The polynomial is indicated as a
dashed line in the middle plot of Fig. 4. The difference between the dashed polynomial
and the solid line indication of Eqn. 22 is due to the omission of the δb−udsc · Rb(

√
s)

term. In the lower part of Fig. 4 the relative deviation of the polynomial from the fitted
Nudsc(

√
s) is shown. The deviations are smaller than 2 · 10−4 over most of the fitted

region and nowhere exceed 4 · 10−4, indicating an excellent description of Nudsc(
√

s) by
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p0 0.18981
p1 0.40950
p2 0.57358 · 10−1

p3 0.10349 · 10−2

p4 0.28640 · 10−3

Table 8: The coefficients of the polynomial fitted to Nudsc
ch (

√
s)

the polynomial. The value of the polynomial at
√

s = mZ is 20.2561. This value is in
good agreement with the mean multiplicity of udsc-events of 20.353± 0.004 measured in
this analysis. The small difference is taken into account when considering the systematic
errors of this analysis.

Inserting the polynomial into Eqn. 5 and Eqn. 8 leads to a closed form of the predic-
tions of Eqn. 7A and Eqn. 7B. To fix the constant of integration, left free in Eqn. 5, a
measurement of Ngg from χ′ decays by the Cleo collaboration is used [35]. The value
of Ngg(9.9132 GeV) = 9.339 ± 0.090 ± 0.045 using Λ = 250 MeV results in L0 = 5.86,
which corresponds to a centre-of-mass energy of 4.68 GeV at which quark and gluon
multiplicities are equal.

Assuming massless jet kinematics, the scale variables κLu, κLe and Lqq̄ can directly
be expressed only in terms of the inter-jet angles θi (and the constant centre-of-mass
energy). This yields Nqq̄g as a function of the inter-jet angles under the assumption that
a certain jet is the gluon jet. As no explicit identification of the gluon jet is made, Nqq̄g

is calculated for all three possible gluon jet hypotheses and the weighted mean of these
values is taken, where each hypothesis is weighted with the corresponding value of the
three-jet matrix-element which can be calculated from the inter-jet angles assuming again
massless jet kinematics.

However, it is a known feature of the hadronisation process that due to coherent pro-
duction of inter-jet particles close-by jets are pulled even closer together. The calculations
leading to Eqn. 7A and Eqn. 7B refer to the partonic structure of an event. While for
the change in multiplicity due to the hadronisation process in accordance with the LPHD
hypothesis an overall normalisation constant can be found, for the change in the event
topology, i.e. the inter-jet angles, this is not the case. Therefore, a topology dependent
hadronisation correction has to be applied. The effect can be most easily understood
for symmetric event topologies. During the hadronisation process jets two and three are
pulled closer together resulting in a smaller opening angle θ1 at the hadronic than at the
partonic level of the event. As the multiplicity increases with θ1, the reduced θ1 found at
the hadronic level thus results in an underestimation of the multiplicity compared to the
prediction which is based on the value of θ1 at parton level.

This effect is corrected for by a topology dependent correction factor which is applied
to the prediction. In Fig. 5 the correction factors obtained for symmetric event topologies
are shown. The correction factors are calculated by dividing the mean hadron multiplicity
obtained for a certain θ1 bin (with θ1 measured at the hadronic level of the simulated
event) by the mean hadron multiplicity obtained with θ1 measured at the partonic level
of the event. The correction factors shown are taken from the Ariadne Monte Carlo
simulation for each of the four cluster algorithms used. The correction factor is around
unity for large opening angles and increases for small θ1. This follows the expectation
that jets which are close together are pulled even closer together than jets with a larger
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Figure 5: The hadronisation correction factor for symmetric topologies from the Ariadne

Monte Carlo. Plotted is the ratio of multiplicities with θ1 determined at the hadronic
level and the multiplicities with θ1 determined at the partonic level.

a.o.D. Camb. Durh. Lucl.
a1 -0.0417134 -0.0317331 -0.0564096 -0.0554275

Ariadne
a2 0.07052 0.0487817 0.133435 0.132929
a1 -0.0591038 -0.0455694 -0.0750201 -0.0564708

Jetset
a2 0.111077 0.0804121 0.240021 0.149093
a1 -0.0843598 -0.147902 -0.0788673 -0.0680853

Herwig
a2 0.549409 0.869146 0.727511 0.521014

Table 9: The parameters of the hadronisation correction factors for symmetric event
topologies

angle between them. In order to get a smooth correction the function

c =
1

1 − a2ea1θ1

(23)

is fitted to the correction factors. The correction is described very well by the fitted
function, the corrections obtained for the four studied cluster algorithms are shown in
Fig. 5. The fitted parameters obtained using the Monte Carlo generators Ariadne,
Herwig and Jetset are given in Tab. 9 for the four cluster algorithms. The same
procedure is applied also to events with general topologies. In Fig. 6 the correction
factors obtained with Ariadne for the four used cluster algorithms are shown for several
values of θ3 as a function of θ1. In order to describe these corrections smoothly the
two-dimensional function

c = (a1 + a2θ3 + a5θ
2
3) + (a3 + a4θ3 + a6θ

2
3) · θ1 (24)

is fitted to the correction factors. The description of the correction by the fit is reason-
able, and the parameter values obtained are listed in Tab. 10. In general, the correction
becomes smaller with increasing opening angle θ1, as expected for this hadronisation
effect.
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Figure 6: The hadronisation correction factors for general topologies. Plotted is the
ratio of multiplicities with the inter-jet angles determined at the hadronic level over the
multiplicities with the inter-jet angles determined at the partonic level.
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a.o.D. Camb. Durh. Lucl.
a1 1.45743 1.19004 1.26382 1.58878

a2 · 103 -6.7041 -2.85481 -4.1925 -8.40213
a3 · 103 -4.27398 -1.15495 -1.83942 -4.62464

Ariadne
a4 · 105 6.25913 1.78559 2.94159 6.54661
a5 · 105 2.48986 1.11675 1.64381 3.00994
a6 · 107 -2.31969 -0.728499 -1.15423 -2.32587

a1 0.925643 1.34605 1.47339 1.33754
a2 · 103 0.604669 -4.93063 -6.55149 -4.90623
a3 · 103 1.5079 -2.33696 -3.10136 -2.0464

Jetset
a4 · 105 -1.75222 3.32752 4.17083 2.84691
a5 · 105 -0.019105 1.80813 2.29184 1.81215
a6 · 107 0.449687 -1.23386 -1.42457 -1.01679

a1 0.910054 1.22464 1.41922 0.820707
a2 · 103 0.994144 -3.11472 -6.18148 1.78567
a3 · 103 2.14597 -0.3132 -2.81892 2.43204

Herwig
a4 · 105 -2.94057 0.232189 4.03189 -3.00669
a5 · 105 -0.208228 1.12039 2.28406 -0.351293
a6 · 107 0.947642 -0.0622476 -1.46606 0.888795

Table 10: The parameters for the hadronisation correction factors for general topologies
for the angular ordered Durham (a.o.D.), Cambridge (Camb.), Durham (Durh.) and
Luclus (Lucl.) algorithm

6 The fit of CA/CF

The closed form of Nqq̄g as a function of the event topology obtained from Eqn. 7A
(Eden A) and Eqn. 7B (Eden B) with the procedure described in Sect. 5 can now be
compared with the measured three-jet event multiplicities. In Fig. 7 the measured multi-
plicities of udsc- (open markers) and udscb-events (solid markers) are shown for symmetric
and general topologies. The two solid lines indicate the respective predictions of Eqn. 7A
where for udscb-events the constant N0 of Eqn. 19 has been added to the prediction. The
dashed lines represent the respective predictions of Eqn. 7B. It can be observed that pre-
diction Eqn. 7A describes the multiplicity of symmetric events in an excellent way, while
Eqn. 7B overestimates the multiplicity by ∼ 0.6, with the result that the prediction for
udsc-events almost coincides with the multiplicities measured in udscb-events. Moreover,
the slope of Eqn. 7B seems to be larger than the slope of the measured multiplicities.
For general topologies an overall good description of the event multiplicities by Eqn. 7A
can be seen. Only for large θ3 and then especially for large θ1, i.e. in topologies where jet
3 is not strongly pronounced, larger deviations occur. Again, Eqn. 7B overestimates the
multiplicities significantly and shows a larger slope with respect to θ1.

In order to determine the colour factor ratio CA/CF from the event multiplicities, the
predictions Eqn. 7A and Eqn. 7B are fitted to the data. To avoid systematic uncertainties
entering through the use of a b-tagging procedure, udscb-events are used to obtain the
central result, while the results obtained for udsc-events are considered when estimating
systematic uncertainties. CA/CF enters the prediction only via the derivative of the
gluon multiplicity in Eqn. 5, so this parameter is expected to be sensitive to the change
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Figure 7: The mean multiplicity of udscb- and udsc-events with symmetric and general
topologies in comparison with the predictions Eqn. 7A and Eqn. 7B prepared as described
in Sect. 5. The error bars indicate statistical errors only.
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Figure 8: The fit parameters χ2/Ndf , CA/CF and N0 as function of the fit range. The
shaded area indicates the expected value of N0 with statistical and systematical uncer-
tainties, the dotted lines indicate statistical errors only. The dashed lines indicate 1.0 in
the top, CA/CF = 2.25 in the middle and the N0 value from Eqn. 19 in the bottom plots.
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Eden A Eden B
CA/CF N0 CA/CF N0

symm. 2.257±0.019 0.62±0.03 2.127±0.034 0.12±0.03
udscb

gen. 2.261±0.014 0.60±0.03 2.028±0.050 0.28±0.03
symm 2.237±0.030 0.09±0.05 2.101±0.096 -0.42±0.13

udsc
gen. 2.272±0.015 0.01±0.04 2.039±0.056 -0.30±0.08

Table 11: The results of the parameter fit for CA/CF and N0

of multiplicity rather than to its absolute value. Therefore, the additional constant N0

is allowed to vary freely in the fit (also when fitting udsc-events where N0 is expected to
be zero) in order to avoid an influence of the absolute value on the fit result for CA/CF .

The fit range used is determined by the value of χ2/Ndf obtained with the fit. While
for symmetric event topologies it is straightforward to determine the data points used
in the fit by demanding a minimum opening angle θ1, the situation is not as clear for
the general event topologies, where two variables are needed to describe a topology. A
reasonable order criterium is a ‘three-jet likeliness’ of a topology, i.e. the emphasis which
is put on the third jet. Therefore the pt of the third jet is a reasonable ordering variable.
It turned out that pt,Lu is the best suited of the used pt-like variables, because the fits
converge fastest, if the fit range is determined by pt,Lu. The fit range is then defined by
demanding a minimum pt,Lu-value for the event topologies used.

In the upper plots of Fig. 8 the values obtained for χ2/Ndf when fitting udscb-events
with the predictions of Eqn. 7A and Eqn. 7B are shown for both general and symmetric
topologies. The values of χ2/Ndf obtained for symmetric events are always smaller than
1.0, regardless of the chosen minimal θ1-value except for extremely small fit-ranges. The
curves show a shallow minimum around θmin

1 ∼ 30◦ which is chosen to determine the
fit-range. For general topologies, and a small minimal pt,Lu, the χ2/Ndf values are large
but decrease fast with a more restricted fit range. The χ2/Ndf curve shows a step-like
structure, where every step corresponds to a completely excluded bin in θ3. From a
minimum pt,Lu value of ∼ 22 GeV on a plateau in the vicinity of χ2/Ndf = 1 can be
observed and a minimum pt,Lu of 25 GeV is chosen.

Fitting the data within these ranges results in the parameter values given in Tab. 11.
As can be seen, the prediction of Eqn. 7A results in compatible values for CA/CF when
fitting udsc- and udscb-events of symmetric or general topologies. Both values for N0

obtained by fitting udscb-events agree with the expectation of N0 = 0.61 as well as both
N0 values for udsc-events agree with the expectation of N0 = 0. The results obtained for
CA/CF and N0 with Eqn. 7B in symmetric topologies are not in good agreement with
the values obtained in general topologies. Also the values for N0 are not in agreement
with the respective expectations. In the lower plots of Fig. 8 the fit results for CA/CF

and N0 are shown for udscb-events as a function of the fit range. The parameters are
correlated, but as this plot is only to show the influence of the fit range, when plotting
the dependence of one parameter the other parameter is fixed to the respective value
of Tab. 11. While Eqn. 7A leads to results which are independent of the fit range, the
results of Eqn. 7B exhibit a more pronounced dependence on the fit range. Again, the
discrepancy of the results obtained with Eqn. 7B for symmetric and general topologies
can be observed, as well as the disagreement of the obtained values for N0 with the
expectation indicated by the shaded area while fixing N0 to the expected values leads to
an unacceptably high χ2/Ndf .
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variable tight loose

p ≥ 0.5 GeV ≥ 0.3 GeV
ϑpolar 30◦ − 150◦ 20◦ − 160◦

ǫxy ≤ 2 cm ≤ 8 cm
ǫz ≤ 8 cm ≤ 12 cm

∆p/p ≤ 80% ≤ 120%

Table 12: Variations of the track cuts
given in Tab. 1 for systematic studies

variable tight loose

general events

Ehemisph.
charged ≥ 0.05 · √s ≥ 0.02 · √s

Etotal
charged ≥ 0.18 · √s ≥ 0.06 · √s

Ncharged ≥ 6 ≥ 4
ϑsphericity 40◦ − 140◦ 30◦ − 150◦

pmax 20 GeV 70 GeV

three-jet events
∑3

i=1 θi > 357.5◦ > 350◦

Evisible/jet ≥ 8 GeV ≥ 3 GeV
ϑjet 40◦ − 140◦ 30◦ − 150◦

Table 13: Variation of the event cuts
given in Tab. 2 for systematic studies

Since the prediction Eqn. 7B, which depicts a rather extreme scenario of the phase-
space assignment to quark and gluon jets, fails to give consistent results for symmetric
and general topologies and because Eqn. 7B overestimates the event multiplicity in gen-
eral which results in unphysically low values of N0, this formulation of the prediction is
discarded in favour of Eqn. 7A for the central result. The central results of the fits are
therefore

CA

CF

= 2.257 ± 0.019stat. (25)

for symmetric and
CA

CF

= 2.261 ± 0.014stat. (26)

for general event topologies.
Several sources of systematic uncertainties have been considered. The systematic error

on CA/CF is estimated by fitting prediction Eqn. 7A with the variations to the analysis
listed below. As the parameters CA/CF and N0 are correlated and this correlation should
not be reflected by the estimated systematic uncertainties, N0 is fixed at 0.61. The values
obtained for CA/CF with the variations of the analysis are then compared to the result
obtained by the standard analysis but with N0 fixed at the above value.

The studied experimental sources of uncertainty are:

• Variations of the track cuts listed in Tab. 1 within the ranges given in Tab. 12. The
minimal track length is not lowered in order to maintain a contribution of the TPC
detector to the track reconstruction;

• Variations of the cuts on the event- and jet-structure listed in Tab. 2 within the
ranges given in Tab. 13 ;

• The hadronisation corrections are calculated from Jetset instead of Ariadne sim-
ulation. Alternatively 30% of the hadronisation correction are regarded as this
correction’s uncertainty;

• Alternatively to the arithmetic mean of the multiplicity distributions, the mean
multiplicities are determined by parameter fits of negative binomials to the distribu-
tions. As a further alternative, the matrix correction is replaced by a multiplicative
correction to the mean multiplicities;

• The udsc sample is used to estimate the uncertainty of CA/CF due to the b-quark
multiplicity;



22

symm. topol. general topol.
track cuts 1.2% 0.4%

experi- event cuts 0.8% 0.6%
mental hadr.-corr. 1.2% 0.4%

acc.-corr. 0.4% 0.2%
udsc- / udscb-sample 1.0% 2.5% 0.8% 1.6%
fit range 0.1% 0.0%
normalisation of Nqq̄ 0.5% 4.0% 0.5% 3.3%
e+e− fitted data 0.9% 0.7%
variation of δb−udsc 0.8% 0.7%
variation of Λ 1.0% 1.0%

theo- variation of cr 2.0% 3.1% 2.1% 2.9%
retical variation of L0 0.0% 0.0%

clustering algorithm 2.2% 1.8%

Table 14: The relative systematic uncertainties of the measurement of CA/CF

• The lower limit of the fit range is varied between θ1 > 25◦ and θ1 > 35◦ for symmetric
events and between pt,Lu > 22.5 GeV and pt,Lu > 28 GeV for general topologies;

• The difference between the parametrisation of Nqq̄ at
√

s = mZ and the event mul-
tiplicity measured in this analysis is 0.101 units, i.e. 0.5%. In the worst case this
reflects an uncertainty on the normalisation of Nqq̄ which would directly be reflected
in CA/CF . Therefore this deviation is considered conservatively as the relative un-
certainty on CA/CF ;

• The data set used to fit the parametrisation of Nqq̄ is varied, by excluding the
results of the Topaz, Jade and Mark-I collaborations or the results of the Amy

collaboration respectively;
• The correction due to the additional multiplicity in b-events is varied within the

errors of δb−udsc when fitting the parametrisation of Nqq̄.

Additionally, the uncertainty due to the choice of the clustering algorithm has been
estimated by comparing the result obtained with the angular ordered Durham algorithm
with the results obtained using the Durham, Cambridge and Luclus algorithms. Moreover
the following uncertainties of the theoretical prediction have been studied:

• The scale variable Λ has been varied between 200 MeV and 300 MeV;
• The constant cr has been varied within the given theoretical uncertainty of ∼ 10%;
• The measurement of Ngg by Cleo which has been used to determine L0 has been

varied within the given errors. As L0 is a constant of integration it is supposed to
affect mainly N0 and not CA/CF . Therefore N0 is varied freely when estimating the
effect of variations of L0. Indeed no dependence of CA/CF on the variation of L0 is
observed.

The relative uncertainties caused by the different sources are given in Tab. 14. Alter-
natively to estimating the systematic uncertainty inherent to the prediction Eqn. 7A by
varying the parameters as discussed above, it is suggested in [36] to study the difference
between the prediction Eqn. 5 based upon the colour-dipole model with predictions based
upon parton-shower evolution, as e. g. Eqn. 3. Since this measurement of CA/CF is sen-
sitive rather to the energy dependence of the multiplicities than to the absolute value
of multiplicity, the uncertainty of Eqn. 5 is relevant here. Both predictions, Eqn. 3 and
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κLe [GeV] Ngg ±(stat.)±(sys.) κLe [GeV] Ngg ±(stat.)±(sys.)
13.36 11.21± 0.14 ± 0.14 35.26 19.96± 0.14 ± 0.11
15.57 12.41± 0.12 ± 0.08 38.01 20.73± 0.16 ± 0.13
17.82 13.43± 0.11 ± 0.09 40.69 21.56± 0.16 ± 0.15
20.13 14.32± 0.11 ± 0.08 43.37 22.09± 0.17 ± 0.18
22.50 15.56± 0.11 ± 0.08 45.87 22.72± 0.18 ± 0.18
24.92 16.53± 0.11 ± 0.13 48.19 23.81± 0.19 ± 0.21
27.45 17.57± 0.12 ± 0.16 50.19 23.71± 0.19 ± 0.11
30.01 18.32± 0.13 ± 0.10 51.69 24.60± 0.20 ± 0.15
32.61 19.27± 0.14 ± 0.15 52.50 23.75± 0.22 ± 0.22

Table 15: Ngg extracted from three-jet events with symmetric topologies

Eqn. 5 are shown in Fig. 13. The difference between the two predictions, evaluated at
the centre of the data around ∼ 40GeV is ∼ 3.7%. This corresponds to an one-sigma
error-estimate of 2.1% which is completely compatible with the theoretical error given in
Tab. 14. The result obtained with symmetric topologies is therefore

CA

CF

= 2.257 ± 0.019stat. ± 0.056exp. ± 0.070theo. (27)

and
CA

CF

= 2.261 ± 0.014stat. ± 0.036exp. ± 0.066theo. (28)

with general topologies. Both results are strongly correlated due to a large fraction of
common events, so an average cannot be made here. Instead, the more precise result
obtained with general topologies is taken as the central result. This result is the most
precise measurement of the colour factor ratio so far with an overall relative uncertainty
of 3.4%.

In Fig. 9 the colour factor ratios CA/CF and TR/CF are mapped for several symmetry
groups where TR = NFTF with NF as the number of active quark flavours and TF = 1/2
as the normalisation of the SU(3) representation. In this plot the present analysis result
is indicated by the shaded vertical band. The shaded diagonal band is the result of a
measurement of the QCD β-function correlating TR/CF with CA/CF [37]. The dashed
ellipses represent measurements of the four-jet cross section as function of the inter-jet
angles [38]. The measurements are combined by adding their χ2-functions. The solid
contour represents the ∆χ2 = 2.4 limit, corresponding to a confidence level of 68%. It is
in excellent agreement with the QCD expectation of SU(3).

7 The extraction of Ngg

Instead of fitting CA/CF with the measured three-jet event multiplicities, the predic-
tions of Eqn. 7A and Eqn. 7B can be used to extract the multiplicities of unrestricted
two-gluon colour-singlet systems from the three-jet event multiplicity. As the direct ex-
perimental access to this quantity is severely limited, this proves to be an interesting
option. The predictions Eqn. 7A and Eqn. 7B are solved for the gluonic contribution
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Figure 9: The plot shows the Casimir eigenvalues expected for the special orthogonal
(SO(N), straight line on the left) and the special unitary (SU(N), curved line on the
right) groups as well as for the symplectic groups (SP(2N), straight line on the right).
E6, E7, E8, G2 and F are the five exceptional Lie groups. The shaded bands and the
dashed ellipses indicate the result of this and other [37,38] experimental analyses, which
are combined in the solid ellipse.

yielding

Ngg(κLe) = 2 ·
(

Nqq̄g(ϑ2, ϑ3) − Nqq̄(Lqq̄, κLu)
)

(29A)

Ngg(κLu) = 2 ·
(

Nqq̄g(ϑ2, ϑ3) − Nqq̄(L, κLu)
)

. (29B)

As discussed already in the previous section, Eqn. 7B fails to describe the data so only
Eqn. 29A, which is based on Eqn. 7A, is used to extract the gluon multiplicity. The
hadronisation correction discussed in Sect. 5 is taken into account by dividing Nqq̄g by
the appropriate correction factor. Nqq̄ is calculated for all three gluon-jet hypotheses and
averaged with the appropriate weights as discussed above before subtracting it from the
three-jet multiplicity. Analogously, the value of κLe, at which Ngg is being determined, is
the weighted average of the κLe-values for the three possible gluon-jet hypotheses.

According to the procedure of Sect. 6 the angular ordered Durham algorithm is applied
to obtain the central results. Also, only the topologies which entered the fit in Sect. 6
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κLe [GeV] Ngg ±(stat.)±(sys.) κLe [GeV] Ngg ±(stat.)±(sys.)
24.29 16.28± 0.09 ± 0.17 36.14 20.78± 0.12 ± 0.17
26.44 16.96± 0.09 ± 0.15 36.38 20.56± 0.12 ± 0.17
27.25 17.23± 0.28 ± 0.14 36.50 20.39± 0.14 ± 0.15
27.79 17.64± 0.10 ± 0.09 37.13 20.49± 0.11 ± 0.15
28.78 17.89± 0.10 ± 0.12 37.73 20.17± 0.38 ± 0.34
28.99 18.64± 0.33 ± 0.20 38.75 20.88± 0.11 ± 0.15
29.44 17.89± 0.10 ± 0.14 39.67 18.90± 1.19 ± 1.12
29.60 18.08± 0.10 ± 0.10 40.01 21.33± 0.12 ± 0.14
29.93 18.55± 0.10 ± 0.12 40.52 21.42± 0.12 ± 0.12
30.27 18.55± 0.11 ± 0.14 40.88 21.78± 0.13 ± 0.13
30.45 18.79± 0.11 ± 0.20 41.33 21.84± 0.18 ± 0.13
30.50 19.00± 0.17 ± 0.20 41.35 21.96± 0.13 ± 0.17
30.59 19.39± 0.11 ± 0.11 41.63 21.88± 0.13 ± 0.17
30.66 19.27± 0.13 ± 0.28 43.86 22.25± 0.09 ± 0.14
30.66 19.80± 0.16 ± 0.25 44.60 20.75± 0.59 ± 0.51
31.69 18.82± 0.10 ± 0.15 45.88 22.83± 0.09 ± 0.15
32.33 18.68± 0.32 ± 0.44 46.71 23.09± 0.13 ± 0.17
33.25 19.43± 0.10 ± 0.12 46.97 23.02± 0.10 ± 0.16
34.42 19.93± 0.11 ± 0.16 47.55 23.28± 0.10 ± 0.13
34.51 19.33± 0.55 ± 0.51 48.00 22.82± 0.46 ± 0.35
34.86 19.96± 0.11 ± 0.10 50.14 23.85± 0.15 ± 0.17
35.27 20.12± 0.11 ± 0.13 51.52 24.37± 0.18 ± 0.16
35.78 20.27± 0.12 ± 0.13 51.72 23.93± 0.12 ± 0.16
36.07 20.76± 0.20 ± 0.26

Table 16: Ngg extracted from three-jet events with general topologies

are considered in order to provide a good description of the three-jet multiplicity by the
prediction. As the additional multiplicity due to b-quark decays has been found to be
topology independent, udscb-events are used in order to avoid the uncertainties inherent
in the b-tagging procedure and N0 is fitted to the data yielding N0 = 0.628 ± 0.017 for
general and N0 = 0.628±0.024 for symmetric topologies with the χ2/Ndf values of 80.4/74
and 7.3/17 respectively. The differences between the prediction and the measured three-
jet event multiplicity are shown in Fig. 10. The agreement between data and prediction
is good, especially for symmetric topologies. Anti-b-tagged udsc-events, with N0 fixed at
0, are taken into account when estimating the systematic uncertainties of Ngg.

The gluon multiplicities obtained are given in Tab. 15 and Tab. 16. They are shown
in Fig. 11 as a function of pt,Le which has been identified with the centre-of-mass energy
of the unrestricted two-gluon colour-singlet system. Solid circles indicate the results from
symmetric, solid squares from general event topology. For clarity the multiplicities from
general topologies have been rebinned in pt in the upper plot. The unrebinned results
are shown in the lower plot of Fig. 11. Results of both topology classes are found to
be in good agreement. The good agreement between prediction and data in symmetric
topologies also for small opening angles allows gluon multiplicities at small values of κLe

to be obtained resulting in a larger kinematic range covered by the gluon multiplicities
from symmetric than from general topologies.
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Figure 10: Difference between the measured three-jet event multiplicity and the prediction
Eqn. 7A.

The solid line in Fig. 11 represents the prediction for the gluon multiplicity which
has been described in Sect. 5. The agreement between this prediction and the extracted
gluon multiplicities reflects the good description of the three-jet event multiplicities by
Eqn. 7A. The measurement of Ngg of the Cleo collaboration at ∼ 10 GeV shown in
Fig. 11 has been used to fix the constant of integration when setting up the prediction
for Ngg, therefore it agrees by definition with the prediction. However, this value does
not enter in the determination of Ngg. The measurement at ∼ 5 GeV is represented with
statistical errors only. The Opal measurement of Ngg around 80 GeV is based on the
measurement of gluon jets recoiling against two identified b-quark jets [10]. The Opal

measurements at lower energies used identified gluon jets from three-jet events and an
effective jet energy scale [12]. Also included is a measurement of the Topaz collaboration
obtained from fully symmetric events [6]. The measurement [18] is not included in Fig. 11,
as it is based on Eqn. 7B which has been found not to describe the data satisfactorily.
The overall agreement between the several measurements is good.

After the preliminary presentation of the analysis of symmetric three-jet events in [17],
a similar analysis has been published [18], where different conclusions have been reached.
Especially the prediction Eqn. 7B has been preferred over Eqn. 7A due to the observed
extrapolation behaviour of the extracted gluon multiplicities. However, only symmetric
topologies have been studied in [18], while the main arguments of this analysis to disfavour
Eqn. 7B compared to Eqn. 7A are the inconsistent results for symmetric and general
topologies obtained when using Eqn. 7B. Moreover, the extrapolation behaviour of the
gluon multiplicities extracted with Eqn. 7A to direct measurements at lower energies is
satisfying, when a hadronisation correction is applied. Note that in [18] no hadronisation
correction has been used and the extrapolation behaviour of the gluon multiplicities
extracted using Eqn. 7A has been found to be unsatisfying, leading to the preference of
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Figure 11: Gluon and quark multiplicities. For clarity, gluon multiplicities from general
topologies are rebinned in the upper plot. In the bottom plot these Multiplicities are
shown for each topology bin.
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Figure 12: Measurements of r as defined in Eqn. 1 in comparison with theoretical pre-
dictions. The shaded bands indicate the effects of a variation of NF between 3 and 5.

Eqn. 7B over Eqn. 7A in [18]. A more extensive attempt to compare both analyses can
be found in [39].

In addition to the gluon multiplicity, in Fig. 11 the unrestricted qq̄-multiplicity mea-
sured by several e+e− experiments which have been used to parametrise the prediction
are shown. The measurements have been corrected for the varying b-contributions, so the
multiplicity of udsc-events is shown. The line indicates the fitted parametrisation from
Eqn. 9. The higher multiplicity and the larger slope of the gluon multiplicity with respect
to energy in comparison with the qq̄ multiplicity can be clearly observed illustrating the
observation of the larger colour charge of gluons.

In order to obtain the ratio r of the gluon and quark multiplicity, the extracted gluon
multiplicities are divided by the parametrisation of Nqq̄ evaluated at the respective energy.
The obtained values for r are shown in Fig. 12. Open dots represent the results from
general, solid dots from symmetric topologies. The curves indicate the LO, NLO and
3NLO predictions of r discussed in Sect. 3 with the shaded area representing the effects
of a variation of NF between 3 and 5. Additionally, the result of a numeric calculation [40]
is indicated. The predictions clearly overestimate the measured ratio. The overestimate
is larger the lower the order of the calculation is. The difference between the predictions
is also rather large. The reason for the poor description of the measurement by these
predictions are non-perturbative effects to which the absolute value of multiplicity is
especially sensitive. Only the line derived from the prediction of Eqn. 5 describes the data,
but in the determination of this curve experimental input, especially the measurement of
the gluon multiplicity at

√
s = 10 GeV which fixes the constant of integration, enters, so

this line includes a non-perturbative correction.

The ratio of the derivatives of gluon and quark multiplicity with respect to the energy,
r(1), is expected to be less sensitive to such non-perturbative effects. r(1) is obtained from
the measured gluon multiplicities by taking the linear slope of mutually exclusive pairs
of measured multiplicities which is then divided by the derivative of the parametrisation
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Figure 13: Measurements of r(1) as defined in Eqn. 3 in comparison with theoretical
predictions. The shaded bands indicate the effects of a variation of NF between 3 and 5.

k Q0[GeV] χ2/Ndf

Nqq̄ 0.243 ± 0.011 0.454 ± 0.051 0.75
Ngg 0.1980 ± 0.0005 8.5
Ngg 0.343 ± 0.012 1.317 ± 0.084 1.1

Table 17: Parameter values of the 3NLO-fits of Nqq̄ and Ngg

of Nqq̄ taken at the respective energy value. The obtained values for r(1) are shown
in Fig. 13. Only symmetric topologies have been considered here, as they cover a larger
kinematic range and are more evenly distributed in energy. However, the results obtained
from general topologies for r(1) are in full agreement with the results shown in Fig. 13.
The measured r(1) are constant within their errors, the weighted mean is:

r(1) = 1.75 ± 0.07 . (30)

r(1) is therefore significantly higher than r due to the weaker dependence on non-
perturbative effects, which reduce the ratio from the asymptotic value of CA/CF . The
predictions Eqn. 3 and Eqn. 5 are indicated in Fig. 13 as curves. A reasonable agreement
between the perturbative calculation and data can be observed here. Note that Eqn. 5 is
a purely perturbative prediction for the slopes. Also the difference between both predic-
tions is smaller for r(1) than for r. Both observations confirm that the energy dependence
of multiplicity is an observable superior to the absolute value of multiplicity.

The scale-independent values obtained for r(1) already indicate that there is no direct
sensitivity to the ratio r(2) of the second derivatives of the multiplicities with respect
to energy. However, the parametrisations of Eqn. 12 and Eqn. 13 can be fitted to the
data and derivatives can then be obtained analytically. This procedure has already been
applied in [18] in order to obtain r(2). As already observed in [3], the use of a common
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Figure 14: The top plots show the 3NLO predictions Eqn. 12 and Eqn. 13 fitted to the
measured multiplicities. The lower plot shows from bottom to top r, r(1) and r(2) which
are derived from the fitted parametrisations together with the measured points for r and
r(1).
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normalisation k for quark and gluon multiplicity leads to a significant underestimation of
the quark multiplicity and a wrong energy dependence. Therefore, the normalisations kq

and kg are allowed to vary independently. As the quark multiplicities are measured more
directly, Q0 is fixed by the fit of Nqq̄. This leaves kg as the only free parameter in Ngg.
The values obtained for the parameters are given in Tab. 17, the fitted parametrisations
are shown in the upper two plots of Fig. 14 as a solid line for Nqq̄ and as a dashed line
for Ngg. The fit of Nqq̄ describes the data well, the value obtained for χ2 is small and
Q0 = 454 MeV is of of the same order of magnitude as ΛQCD. However, the energy
dependence of the gluon multiplicity is not described well with this value of Q0, the
obtained χ2 is quite large. Therefore, Q0 is also allowed to vary freely in the fit of Ngg

resulting in two different effective energy scales for quarks and gluons. This apparently
implausible finding can be motivated by the fact that due to the choice of evolution
parameters leading to Eqn. 12 and Eqn. 13 both quantities are predicted not in exactly
the same order leading to different effective scales. The variation of Q0 leads to a good
description also of the gluon multiplicities by the prediction as indicated by the solid line
in the upper right plot of Fig. 14, the parameter values obtained for Ngg are given in the
last line of Tab. 17.

The derivatives of these fitted parametrisations can now be calculated analytically to
any order and the ratios of these derivatives can be built. In the lower plot of Fig. 14 from
bottom to top the ratios r, r(1) and r(2) are shown in comparison with the measurements
of r and r(1). The agreement between the measurement and the derived ratios is good,
especially the energy dependence of r is well reproduced. The shaded area indicates the
result obtained for r(2) within the uncertainty given by the errors of the fit parameters.
Interpreting this curve as a measurement of r(2) the value obtained e.g. at 30 GeV would
be found as

r(2)(30 GeV) = 1.97 ± 0.09 . (31)

This value is in good agreement with the value obtained by a similar procedure in [18].
However, theoretical assumptions about the energy dependence of quark and gluon mul-
tiplicity are the basis of the parametrisations used, so that a theoretical bias cannot be
avoided in obtaining this quantity.

8 Conclusions

The multiplicity of hadronic three-jet events has been measured as a function of vari-
ables depending on the event topology. A MLLA-prediction of this quantity has been
fitted to the data yielding a measurement of the colour factor ratio

CA

CF

= 2.261 ± 0.014stat. ± 0.036exp. ± 0.066theo. .

With an overall relative uncertainty of 3.4% this is the most precise measurement of this
quantity so far. It has been shown that the formulation Eqn. 7B of the prediction should
be rejected in favour of the formulation Eqn. 7A. Using the MLLA-prediction to subtract
the quark-contribution from the three-jet event multiplicity, the multiplicity of two-gluon
colour-singlet systems has been extracted over a wide range of the effective energy scale.
Comparing these multiplicities with the known multiplicities of quark-antiquark colour-
singlet systems, the ratios r, r(1) and r(2) have been studied. It has been found that r(1) is
an observable superior to r as non-perturbative effects affect the energy development of
multiplicity less than the absolute value of multiplicity. However, the data do not show
any significant sensitivity to the ratio r(2).
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