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1. Introduction

The study of the low-lying eigenmodes of the Dirac operator (LDE), those corresponding to
the smallest eigenvalues, has a rich history since these modes are thought to be representative of, if
not responsible for, much of the infrared behavior in QCD. Such effects include

• Chiral Symmetry Breaking à la Banks and Casher where〈ψ̄ψ〉 ∼ ρλ (0)

• The low eigenmodes of6D dominate quark propagators

• Confinement in many scenarios is thought to be related to topological excitations: instantons,
monopoles, or vortices. These objects all localize Dirac zero-modes in some way.

Thus we are interested to learn what we can about this localization, if indeed it exists, and then
to characterize it in some quantitative way. Hopefully thischaracterization can tell us something
about the mechanisms responsible for localization.

2. Inverse Participation Ratio

The Inverse Participation Ratio (IPR) provides a quantitative number which characterizes the
localization of a scalar field. For the LDEs, it is defined as

Ii = V ∑
x

ρ2
i (x)

whereV is the number of lattice sitesx, andi labels which eigenmode is under consideration,

ρi(x) = ψ†
i ψi(x).

ψi(x) is thei-th lowest eigenvector of the (asqtad) Dirac operator and

∑
x

ρi(x) = 1

The IPR takes the following values in cases of different localization:
I = 1 if ρ is constant,
I = 1/ f if ρ is localized (and constant) on a fractionf of sites, and
I = V if ρ = δx,x0.

As was first pointed out in [1], the fraction of points involved in localization should scale with
the dimension of the localizing manifold. For example,

f1−dim =
L /a
V/a4 or f2−dim =

A /a2

V/a4 , etc.

where in the first, one-dimensional, caseL is the total length of “localizing material” and lattice
spacinga, or in the two-dimensional case,A is the area of two-dimensional material, and so on
for higher dimensions. The (possibly fractal) dimension,d, of the localizing manifold is given by
the scaling of the IPR as the lattice spacing is varied,

I = 1/ f ∼ ad−4 (2.1)
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In recent years a growing number of authors have found evidence for localization of either the
LDE or other quantities, such as the topological charge density [2]. Since the appearance of [1]
other groups have analyzed the scaling of the IPR using improved [3] and alternative [4] operators,
finding similar conclusions.

While the scaling of the IPR is a rather clean indication of the underlying localization dimen-
sion, its extraction requires a wide range of lattice spacings to get a fit with good statistics. In [1]
for example, the dimension was given as somewhere between 2 and 3. For best results, scaling
measurements should be done atfixed physical volume, which can then be compared to similar
measurements atfixed lattice spacingto understand finite size issues.

3. Scaling of the IPR

In [1] we presented preliminary results for the scaling of the IPR using quenched lattices
(Symanzik 1-loop improved gauge action) ranging from 124 anda = 0.2 fm up to 244 anda∼ 0.1
fm. However, with better statistics on the finest lattices, we found that the lattice spacing was
closer toa = 0.095 fm, 5% from of our target ofa = 0.1 fm. In order to maintain a fixed volume
we regenerated this ensemble at the target lattice spacing.Furthermore, as our lattice spacing is
set usingr1 from the static quark potential, we use here an updated valueof r1 (0.317 fm) taken
from [5] (r1 = 0.344 fm was used in [1]). This increases all lattice spacings by ∼10%, but has
no effect on our results. Additionally, we have increased the convergence criteria for computing
eigenvectors and added a finer 284 ensemble.

The lattices and parameters used for the present work are collected in the table below.

a L vol β no. configs.

0.218 fm 12 (2.61)4 fm4 7.56 100
0.163 16 (2.61)4 7.847 100
0.128 20 (2.56)4 8.109 100
0.110 24 (2.64)4 8.295 100

0.0915 28 (2.56)4 8.527 100

with 64 eigenvectors per lattice. Theitalicizedensemble was rerun for better convergence of eigen-
vectors (with very little change), while ensembles inteletype are new.

Our main result is summarized in Figure 1, where we plot the scaling of the average IPR
using the lowest 8 eigenvectors. Compared with [1] we have better statistics on the IPR values
and, particularly, the new value at a smaller lattice spacing (0.0915 fm) gives a much more precise
scaling dimension for the IPR.

The best fit to the data hasd−4 = 0.934±0.149 (see eq. 2.1), thus the scaling dimension,d,
of the localization manifold is essentially 3.

4. Mobility Edge

In analogy with the mechanism of Anderson localization in condensed matter physics, we can
investigate whether our data shows amobility edge, an energy above which quarks are delocalized
and below which they show localization. This feature has been investigated by Golterman and
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Figure 1: The scaling of the IPR for the lowest 8 eigenvectors, in red. In green is the best fit, and associated
values. In blue is a fit to constant + constant/a for comparison.

Shamir [6] and observed in SU(2) [3] using an overlap Dirac operator with exact zero modes. The
signal is a reduction in the IPR (less localization) at some critical value for the eigenvalue–the
mobility edge.

In our SU(3) data the IPR values are rather low as compared to IPR values in SU(2) studies [3],
[4] (3-4 vs 5-20). One possible reason for this might be that the localization is due to topology of
one of the SU(2) subgroups, while the other two subgroups randomize the eigenvectors. Whatever
the reason, this is an interesting clue to understanding thelocalization.

Only our 284 lattice ata = 0.0915 fm shows a weak indication of the mobility edge, shown in
Figure 2. Its value in physical units, around 50∼ 100 MeV is consistent with that seen in [3] . A
study of the IPR on various volumes would be required to confirm this.

5. Two-point Correlations

While the IPR is a good quantitative indicator of localization, it only tells us the fraction of
lattice sites where the eigenvector is large. If we rearranged the lattice sites we would obtain the
same IPR. The two-point correlator on the other hand gives information on the connectedness of
the eigenvector, and should drop off as∼ rd−4 if the eigenvector is localized uniformly on ad-
dimensional manifold.

We have computed the “all-to-all” correlator,〈ρ(x)ρ(y)〉 and present the average at different
spatial separation|x− y| for eigenvalue 0 in Figure 3. These correlators have parity sawtooth
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Figure 2: 〈IPR〉 vs eigenvalue in physical units. The mobility edge is weaklyindicated by a decrease in IPR
at about 60−100 MeV.

behavior familiar in staggered fermion propagators, whichlessens as the lattice spacing decreases.
Taking the slope of the correlator from the even points, we show a line withd = 3.5 (a very similar
result if achieved for the odd points which lie slightly below the line). We see that in physical units,
the correlation disappears by about 1 fermi, for all of our lattices.

6. Conclusions

We have extended our study of the IPR of the lowest eigenvectors of the asqtad Dirac operator
computed on quenched background gauge fields. A number of conclusions are apparent.

• The IPR scaling∼ 1/a implies a dimensiond = 3 for the localizing manifold. The signal is
quite a bit clearer than in our previous study.

• We see a weak mobility edge in our finest lattices (only) at 50∼100 MeV. This is consistent
with other work. The fact that our signal is weak is likely attributed to the lack of exact zero
modes of our Dirac operator and possibly to the larger gauge group (SU(3) vs SU(2)).

• The two point correlator〈ρ(x)ρ(x+ r)〉 suggests a fractal dimension of∼ 3.5. It should be
noted that we have not finished computing this quantity on allof our largest lattices (Figure
3 represents only about 8 of our 284 dataset, however the correlator shows little fluctuation
from lattice to lattice). In physical units the correlationdisappears at∼1 fm.

Our findings do not support the naive picture where the low-lying Dirac eigenmodes are lo-
calized on monopoles (d=1) or vortices (d=2). The relationship between topological excitations
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Figure 3: The two-point correlator of the lowest eigenvector,∑x 〈ρ(x)ρ(x+ r)〉 as a function of distancer.
Plots (except a=0.0915) are displaced upward for clarity. The axes are log-log.

and eigenvector localization is more subtle. For instance,a set of center vortices gives eigenvectors
localized weakly on the vortices themselves, and more strongly on their intersections [7].

References

[1] C. Aubin et al., The scaling dimension of low lying dirac eigenmodes and of the topological charge
density, Nucl. Phys. (Proc.Suppl.)140 (626) [hep-lat/0410024]

[2] I. Horvathet al. On the local structure of topological charge fluctuations in QCD, Phys. Rev.D67
(011501) [hep-lat/0203027]

[3] F.V. Gubarevet al., Evidence for fine tuning of fermionic modes in latticegluodynamics
[hep-lat/0505016]

[4] J. Greensiteet al., Localized eigenmodes of covariant Laplacians in theYang-Mills vacuum, Phys.
Rev.D71 (114507) [hep-lat/0504008]

[5] C. Aubin et al., Light pseudoscalar decay constants, quark masses, and low energy constants from
three-flavor lattice QCD, Phys. Rev.D70 (114501) [hep-lat/0407028]

[6] M. Golterman and Y. Shamir,Localization in lattice QCD, Phys. Rev.D68 (074501)
[hep-lat/0306002]

[7] H. Reinhardtet al., Quark zero modes in intersecting vortex gauge fields,Phys Rev.66 (085004)
[hep-th/0203012]

299 / 6


