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Abstract: We consider neutralino production and decay e+e− → χ̃0
i χ̃

0
j , χ̃0

j → χ̃0
1f f̄ at a

linear collider with transverse e+ and e− beam polarization. We propose CP asymmetries

by means of the azimuthal distribution of the produced neutralinos and of that of the

final leptons, while taking also into account the subsequent decays of the neutralinos. We

include the complete spin correlations between production and decay. Our framework is

the Minimal Supersymmetric Standard Model with complex parameters. In a numerical

study we show that there are good prospects to observe these CP asymmetries at the

International Linear Collider and estimate the accuracy expected for the determination of

the phases in the neutralino sector.
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1. Introduction

Supersymmetry (SUSY) is at present one of the most prominent extensions of the Standard

Model (SM) [1]. It can solve the hierachy problem, allows the unification of the gauge

couplings and has the additional merit of providing new sources of CP violation. In the
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chargino and neutralino sectors of the Minimal Supersymmetric Standard Model (MSSM),

the higgsino mass parameter µ and the gaugino mass parameter M1 are in general complex,

while the SU(2) gaugino mass parameter M2 can be chosen real by redefining the fields.

The precise determination of the underlying SUSY parameters will be one of the main

goals of the high-luminosity e+e− International Linear Collider (ILC) [2].

The phases of the complex parameters µ and M1 may be constrained or correlated

by the experimental upper bounds on the electric dipole moments (EDM) of electron,

neutron and the atoms 199Hg and 205Tl [3]. These constraints, however, are rather model

dependent. In a constrained MSSM the restrictions on the phases of µ and M1 can be rather

severe. However, there may be cancellations between the different SUSY contributions to

the EDMs, which allow larger values for the phases (for reviews see, e.g. [4]). If µ and M1

are complex and all other parameters are real, in general the phase of µ has to be small.

However, the restrictions on the phase of µ may disappear if also lepton flavour violating

terms in the MSSM lagrangian are included [5]. It is, therefore, necessary to determine

in an independent way the phases of the complex SUSY parameters by measurements of

suitable CP-sensitive observables. Experiments with transverse e± beam polarization may

allow us to construct suitable observables for precision studies of the effects of new physics

and CP violation. Recent studies on the advantages of transversely polarized e+ and e−

beams are presented in [6 – 8].

The study of neutralino production

e+e− → χ̃0
i χ̃

0
j , i, j = 1, . . . , 4 , (1.1)

and subsequent two-body decay processes

χ̃0
j → `± ˜̀∓

n → `±`∓χ̃0
1 , n = 1, 2 , (1.2)

with ` = e, µ, will play an important role at the ILC. The production process has been

studied extensively in the literature (see [2] and references therein). Production and subse-

quent decay processes, and the decay angular and energy distributions have been studied

in detail in [9]–[11]. The properties of Majorana and Dirac particles and their production

and decay amplitudes under CP and CPT have been studied in [12]–[15].

In [16]–[18] it has been shown that the parameters of the chargino and neutralino

systems can be determined by measuring suitable CP-even observables. However, the mea-

surement of CP-odd observables is necessary to clearly demonstrate that CP is violated

and for the unambiguous determination of the CP-violating phases. Several T-odd observ-

ables in neutralino production and decay applying triple product correlations have been

proposed in [19, 20].

Transversely polarized beams offer the possibility to construct further CP-sensitive

observables. This is the subject of the present paper. We propose and study CP-odd

asymmetries for the case of transverse e+ and e− beam polarizations. We define two types

of CP asymmetries, one that involves only neutralino production, the other one involving

production and decay if one of the neutralinos decays as in eq. (1.2). Note that in the

case of chargino production it has been shown that the analogous CP-odd asymmetries
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vanish [21]. In neutralino production it is possible, however, to construct CP-odd asymme-

tries involving the transverse beam polarization, because there are t-channel and u-channel

contributions due to the Majorana nature of the neutralinos [7]. The formulae for the pro-

duction cross section of process (1.1), for longitudinally and transversely polarized beams,

have been given in [18, 22]. In this paper we derive the compact analytic formulae for

the CP asymmetries with the help of the spin density matrix formalism [23], including the

complete spin correlations between production and decay of the neutralinos. We study

numerically the parameter and phase dependences of the CP asymmetries.

The paper is organized as follows: in section 2 we set up the definitions. We present

the formulae for the cross section of (1.1) with transverse beam polarization in section 3.

In section 4 we define the CP-odd asymmetries. We present a numerical investigation of

these asymmetries in section 5, while section 6 contains our conclusions.

2. Lagrangian and couplings

The tree-level Feynman diagrams for the production process (1.1) are given in figure 1.

e−(p1) χ̃0
j (p4)

e+(p2) χ̃0
i (p3)

Z0

e−(p1)

e+(p2)

χ̃0
j(p4)

χ̃0
i (p3)

ẽL,R

e−(p1)

e+(p2)

χ̃0
i (p3)

χ̃0
j(p4)

ẽL,R

Figure 1: Feynman diagrams of the production process e+e− → χ̃0
i χ̃

0
j .

The interaction Lagrangians are [1]

LZ0`+`− = − g

cos ΘW
Zµ

¯̀γµ[L`PL + R`PR]` , (2.1)

LZ0χ̃iχ̃j
=

1

2

g

cos ΘW
Zµ

¯̃χ
0
i γ

µ[O′′L
ij PL + O′′R

ij PR]χ̃0
j , (2.2)

L`˜̀χ̃i
= gfL

`i
¯̀PRχ̃0

i
˜̀
L + gfR

`i
¯̀PLχ̃0

i
˜̀
R + h.c. (2.3)

with i, j = 1, . . . , 4 and the couplings

fL
`i = −

√
2

[

1

cos ΘW

(

−1

2
+ sin2 ΘW

)

Ni2 − sin ΘW Ni1

]

, (2.4)

fR
`i =

√
2 sin ΘW [tan ΘW N∗

i2 − N∗
i1] , (2.5)

O′′L
ij = −1

2
(Ni3N

∗
j3 − Ni4N

∗
j4) cos 2β − 1

2
(Ni3N

∗
j4 + Ni4N

∗
j3) sin 2β , (2.6)

O′′R
ij = −O′′L∗

ij , (2.7)

L` = −1

2
+ sin2 ΘW , R` = sin2 ΘW , (2.8)
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where PL,R = 1
2(1 ∓ γ5). g is the weak coupling constant (g = e/ cos ΘW , e > 0), ΘW is

the weak mixing angle and tan β = v2/v1 is the ratio of the vacuum expectation values

of the Higgs fields. The unitary (4 × 4) matrix Nij diagonalizes the complex symmetric

neutralino mass matrix in the basis (γ̃, Z̃, H̃0
a , H̃0

b ) [9].

3. Cross section

In order to calculate the squared amplitude of process (1.1) with subsequent decay (1.2),

we use the spin density matrix formalism [23]. The squared amplitude of the combined

process of production and decay reads

|T |2 =
∑

λiλjλ
′

i
λ
′

j

|∆(χ̃0
i )|2|∆(χ̃0

j )|2ρ
λiλj ,λ

′

iλ
′

j

P ρ
D,λ

′

iλi
ρ

D,λ
′

jλj
, (3.1)

where ∆(χ̃0
i,j) is the propagator of the corresponding neutralino; ρ

λiλj ,λ
′

iλ
′

j

P denotes the spin

density matrix of the production, ρ
D,λ

′

i,jλi,j
are the spin density matrices of the decay; λi,j

denotes the helicity of the neutralino χ̃0
i,j. The propagators are given by

∆(χ̃0
k) = 1/[p2

χ̃k
− m2

χ̃k
+ imχ̃k

Γχ̃k
] , k = i, j . (3.2)

Here pχ̃k
, mχ̃k

and Γχ̃k
denote the four-momentum, mass and total width of the neutralino

χ̃0
k. For these propagators we use the narrow-width approximation. The (unnormalized)

spin density production matrix is given by

ρ
λiλj ,λ

′

iλ
′

j

P =
∑

λ
e−

λ
e+

λ
′

e−
λ
′

e+

ρ(e−)λ′

e−
λ

e−
ρ(e+)λ′

e+
λ

e+
T

λiλj

P,λ
e−

λ
e+

T
λ
′

iλ
′

j∗

P,λ′

e−
λ′

e+
, (3.3)

where T
λiλj

P,λ
e−

λ
e+

is the helicity amplitude of the production process and λe± is the helicity

of e±. The spin density decay matrices can be written as

ρD,λ
′

iλi
= TD,λi

T ∗
D,λ′

i
, (3.4)

ρD,λ
′

j
λj

= TD,λj
T ∗

D,λ′
j
, (3.5)

where TD,λi,j
is the helicity amplitude for the decay. The spin density matrices of the

polarized e+ and e− beam in eq. (3.3) can be written as

ρ(e±) =
1

2
(1 + P±

i σi) , (3.6)

where P±
1 is the degree of transverse e± beam polarization in the production plane, P±

2

is the degree of transverse e± beam polarization perpendicular to the production plane,

P±
3 = P±

L (−1 ≤ P±
L ≤ 1) is the degree of longitudinal e± beam polarization and σi

(i = 1, 2, 3) are the Pauli matrices. For the degrees of transverse beam polarizations we
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have the relation (P±
1 )2 + (P±

2 )2 = (P±
T )2 with P±

1 = cos φ±P±
T and P±

2 = sin φ±P±
T

(0 ≤ P±
T ≤ 1 and (P±

L )2 + (P±
T )2 ≤ 1), see figure 2 1.

The production and decay matrices are calculated with the help of the Bouchiat-Michel

formulae [24]:

u(p, λ
′

)ū(p, λ) =
1

2
[δλλ′ + γ5 6saσa

λλ
′ ](6p + m) , (3.7)

v(p, λ
′

)v̄(p, λ) =
1

2
[δλ′λ + γ5 6saσa

λ′λ
](6p − m) . (3.8)

The three four-component spin basis vectors sa and the 4-vector p/m form an orthonormal

system. For the incoming particles e+ and e− in the limit of vanishing electron mass,

me → 0, eqs. (3.7) and (3.8) can be written as

u(pe− , λe−)ū(pe− , λ
′

e−) =
1

2

{

(1+2λe−γ5)δλ
′

e−
λ

e−
+ γ5

[

6 t 1
e−σ1

λ
′

e−
λ

e−
+ 6 t 2

e−σ2
λ
′

e−
λ

e−

]}

6pe− , (3.9)

v(pe+ , λ
′

e+)v̄(pe+ , λe+) =
1

2

{

(1−2λe+γ5)δλ
′

e+
λ

e+
+ γ5

[

6 t 1
e+σ1

λ
′

e+
λ

e+
+ 6 t 2

e+σ2
λ
′

e+
λ

e+

]}

6pe+ , (3.10)

where t1e± and t2e± are the basis 4-vectors of the transverse polarization of the electron and

positron beam, respectively. Thus, the transverse polarization 4-vectors can be written as

t± = cos(φ± − φ)t1e± + sin(φ± − φ)t2e± , (3.11)

where φ is the azimuthal angle of the scattering plane and φ± are the azimuthal angles

of the transverse polarization with respect to a fixed reference system, see figure 2. A

convenient choice of t1e± and t2e± in the laboratory system is given in appendix A.

With eqs. (3.7)–(3.10), the spin density production matrix and the spin density decay

matrices can be expanded in terms of the Pauli matrices σa and σb, where the superscripts

a (b) = 1, 2, 3 refer to the polarization vectors of χ̃0
i (χ̃0

j):

ρ
λiλj ,λ

′

iλ
′

j

P = δ
λiλ

′

i
δ
λjλ

′

j
P (χ̃0

i χ̃
0
j) + δ

λjλ
′

j

3
∑

a=1

σa
λiλ

′

i

Σa
P (χ̃0

i )

+δ
λiλ

′

i

3
∑

b=1

σb
λjλ

′

j

Σb
P (χ̃0

j) +
3

∑

a,b=1

σa
λiλ

′

i

σb
λjλ

′

j

Σab
P (χ̃0

i χ̃
0
j ) , (3.12)

ρ
D,λ

′

iλi
= δ

λ
′

iλi
D(χ̃0

i ) +
3

∑

a=1

σa
λ
′

iλi
Σa

D(χ̃0
i ) , (3.13)

ρD,λ
′

j
λj

= δλ
′

j
λj

D(χ̃0
j) +

3
∑

b=1

σb
λ
′

jλj
Σb

D(χ̃0
j ) . (3.14)

The contribution P (χ̃0
i χ̃

0
j) is independent of the neutralino polarization, whereas

Σa
P (χ̃0

i ) and Σb
P (χ̃0

j) depend on the polarization of the corresponding neutralino.

1At this point we note that, contrary to the usual conditions at a circular accelerator, where the Sokolov-

Ternov effect orientates automatically both transverse polarization vectors either parallel or antiparallel

(depending on the sign of the charge of the incoming particle), there is the possibility, at the ILC, to choose

an arbitrary transverse polarization for both e
+ and e

−, independent from each other.
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z

x

y

χ̃0
j

e+
θ

φ+

φ−

φ

e−

P−
T

P−
L

P−

P+

TP+

L

P+

Figure 2: Decomposition of the e± polarization vectors P± into the longitudinal components P±
L

in the direction of the electron/positron momentum and the transverse components P±
T = P±

T
~t±

with respect to a fixed coordinate system (x, y, z). The z-axis is in the direction of the electron

momentum.

Then Σ3
P (χ̃0

i,j)/P (χ̃0
i χ̃

0
j) gives the longitudinal polarization of the neutralino χ̃0

i,j;

Σ1
P (χ̃0

i,j)/P (χ̃0
i χ̃

0
j) is the transverse polarization of the neutralino in the scattering plane;

and Σ2
P (χ̃0

i,j)/P (χ̃0
i χ̃

0
j) is the polarization perpendicular to the scattering plane. The terms

Σab
P (χ̃0

i χ̃
0
j) describe the spin correlations between the polarizations of the two produced

particles. The contribution of the decay matrix, which is independent of the neutralino

polarization, is denoted by D(χ̃0
i,j), and Σa,b

D (χ̃0
i,j) denotes the contribution that depends

on the neutralino polarization.

With eqs. (3.12)–(3.14) the squared amplitude |T |2, eq. (3.1), of the combined process

of production and decay, for arbitrarily polarized beams, is given by

|T |2 = 4|∆(χ̃0
i )|2|∆(χ̃0

j)|2
[

P (χ̃0
i χ̃

0
j)D(χ̃0

i )D(χ̃0
j ) +

3
∑

a=1

Σa
P (χ̃0

i )Σ
a
D(χ̃0

i )D(χ̃0
j )

+
3

∑

b=1

Σb
P (χ̃0

j )Σ
b
D(χ̃0

j )D(χ̃0
i ) +

3
∑

a,b=1

Σab
P (χ̃0

i χ̃
0
j)Σ

a
D(χ̃0

i )Σ
b
D(χ̃0

j)

]

, (3.15)

where the contributions P (χ̃0
i χ̃

0
j ), Σa

P (χ̃0
i ), Σb

P (χ̃0
j), Σab

P (χ̃0
i χ̃

0
j) of the production spin den-

sity matrix include the terms for arbitrary beam polarizations. The differential cross section

of the production and decay process is given by

dσ =
1

2s
|T |2dLips(s, pi) , (3.16)

where dLips(s, pi) = (2π)4δ4(p1 + p2 −
∑

i pi)
∏

i
d3pi

(2π)32Ei
; see appendix B for more details.

3.1 Contributions to the production spin density matrix independent of neu-

tralino polarization

In the following we regard the contribution P (χ̃0
i χ̃

0
j) to the spin density production matrix,

see eq. (3.12), that is independent of the polarization of the neutralinos χ̃0
i and χ̃0

j . We only

– 6 –
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list the contribution P (χ̃0
i χ̃

0
j)T , which depends on the transverse e± beam polarization:

P (χ̃0
i χ̃

0
j )T = P (ZZ)T + P (ZẽL)T + P (ZẽR)T + P (ẽLẽR)T , (3.17)

P (ZZ)T = −P−
T P+

T

g4

cos4 ΘW
|∆(Z)|2LeRe(|OL

ij |2 + |OR
ij |2)r1 , (3.18)

P (ZẽL)T = −P−
T P+

T

1

2

g2

cos2 ΘW
Re

× {Re(∆(Z)fL∗
`i fL

`jO
L
ij [∆(ẽL, t)∗ + ∆(ẽL, u)∗]) r1

+ Im(∆(Z)fL∗
`i fL

`jO
L
ij [∆(ẽL, t)∗ − ∆(ẽL, u)∗]) r2} , (3.19)

P (ZẽR)T = −P−
T P+

T

1

2

g2

cos2 ΘW
Le

× {Re(∆(Z)fR∗
`i fR

`jO
R
ij [∆(ẽR, t)∗ + ∆(ẽR, u)∗]) r1

− Im(∆(Z)fR∗
`i fR

`jO
R
ij [∆(ẽR, t)∗ − ∆(ẽR, u)∗]) r2} , (3.20)

P (ẽLẽR)T = P−
T P+

T

1

4
g4

× {Re([∆(ẽL, t)∆(ẽR, u)∗ + ∆(ẽL, u)∆(ẽR, t)∗]fL∗
`i fL

`jf
R∗
`i fR

`j) r1

+ Im([∆(ẽL, t)∆(ẽR, u)∗ − ∆(ẽL, u)∆(ẽR, t)∗]fL∗
`i fL

`jf
R∗
`i fR

`j) r2} , (3.21)

where we have introduced the notation

r1 = [(t−p4)(t+p3) + (t−p3)(t+p4)](p1p2)

+[(p1p4)(p2p3) + (p1p3)(p2p4) − (p1p2)(p3p4)](t−t+) , (3.22)

r2 = εµνρσ [t+,µp1νp2ρp4σ(t−p3) + t−,µp1νp2ρp3σ(t+p4)

+t−,µt+,νp2ρp4σ(p1p3) + t−,µt+,νp1ρp3σ(p2p4)] , (3.23)

where ε0123 = 1 and ∆(Z) = i/(s − m2
Z), ∆(ẽL,R, t) = i/(t − m2

ẽL,R
), ∆(ẽL,R, u) = i/(u −

m2
ẽL,R

) with s = (p1 + p2)
2, t = (p1 − p4)

2, u = (p1 − p3)
2. The masses of the selectrons

and the Z-boson are given by mẽL,R
and mZ . Since we study the process far beyond the

Z-threshold, the Z-width can be neglected, and all propagators can be taken as purely

imaginary.

Note that only terms bilinearly dependent on transverse beam polarizations appear

for me → 0, because the couplings to e+e− are vector- or axial-vector-like [25, 26] (for the

ẽL,R exchange the coupling to e+e− can be brought to that form via Fierz identities [27]).

Inspecting eqs. (3.18)–(3.21), we note that transverse beam polarization gives rise to the

interference term P (ẽLẽR)T , which is absent for longitudinal beam polarization [11]. On

the other hand, there are no terms P (ẽLẽL)T and P (ẽRẽR)T for transversely polarized

beams, but only for longitudinally polarized beams. Both are consequences of the Dirac

algebra, since transverse beam polarization is described with an additional γ matrix; see

eqs. (3.9) and (3.10).

The differential cross section for the process e+e− → χ̃0
i χ̃

0
j is given by

dσ =
1

2(2π)2
q

s3/2
P (χ̃0

i χ̃
0
j) d cos θ dφ , (3.24)

– 7 –
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where P (χ̃0
i χ̃

0
j) contains the terms for arbitrary beam polarization and q is the momentum

of the neutralinos in the center-of-mass system (cms) (see appendix A).

3.1.1 CP-behaviour of the kinematical quantities

In the following, the CP properties of the kinematical quantity r2, eq. (3.23), and of the

propagator difference [∆(ẽ, t) − ∆(ẽ, u)] are discussed. These quantities contribute to the

interference terms of the matrix element squared and are proportional to the imaginary

parts of products of couplings, see eqs. (3.19)–(3.21). In the cms, r2 is given by:

r2 = 2Eb [~t+(~p1 × ~p4)(t−p3) + ~t−(~p1 × ~p3)(t+p4)] , (3.25)

where Eb is the beam energy. Note that the second line of eq. (3.23) vanishes in the

cms. Applying a CP transformation to r2, eq. (3.25), with the following transformations

(~p1, ~p2, ~p3, ~p4,~t−)
CP←→ (~p1, ~p2,−~p3,−~p4,~t+), we find that r2 is CP-even. Since under CP

∆(ẽ, t)
CP←→ ∆(ẽ, u) the propagator differences in eqs. (3.19)–(3.21) are CP-odd, their

products with the CP-even quantity r2 are CP-odd. We emphasize that this is due to the

Majorana nature of the neutralinos, which leads to the simultaneous presence of the t- and

u-channel contributions, that the terms in eqs. (3.19)–(3.21), which involve the imaginary

part of the couplings, are non-vanishing in general.

3.2 Contributions to the production spin density matrix dependent on neu-

tralino polarization

We now consider the terms Σb
P (χ̃0

j ) of the production spin density matrix, which depend

on the polarization 4-vector sb of the neutralino χ̃0
j . In the following we only list the terms

Σb
P (χ̃0

j )T , that involve the transverse beam polarization (for the contributions independent

of the beam polarization and the terms that depend on the longitudinal beam polarization,

see [11]):

Σb
P (χ̃0

j )T = Σb
P (ZẽL)T + Σb

P (ZẽR)T + Σb
P (ẽLẽR)T , (3.26)

Σb
P (ZẽL)T = P−

T P+
T

1

2

g2

cos2 ΘW
Re

× {Re(∆(Z)fL∗
`i fL

`jO
L
ij [∆(ẽL, u)∗ − ∆(ẽL, t)∗]) rb

1

− Im(∆(Z)fL∗
`i fL

`jO
L
ij [∆(ẽL, u)∗ + ∆(ẽL, t)∗]) rb

2} , (3.27)

Σb
P (ZẽR)T = P−

T P+
T

1

2

g2

cos2 ΘW
Le

× {Re(∆(Z)fR∗
`i fR

`jO
R
ij [∆(ẽR, u)∗ − ∆(ẽR, t)∗]) rb

1

+ Im(∆(Z)fR∗
`i fR

`jO
R
ij [∆(ẽR, u)∗ + ∆(ẽR, t)∗]) rb

2} , (3.28)

Σb
P (ẽLẽR)T = P−

T P+
T

1

4
g4

× {Re([∆(ẽL, t)∆(ẽR, u)∗ − ∆(ẽL, u)∆(ẽR, t)∗]fL∗
`i fL

`jf
R∗
`i fR

`j) rb
1

+ Im([∆(ẽL, t)∆(ẽR, u)∗ + ∆(ẽL, u)∆(ẽR, t)∗]fL∗
`i fL

`jf
R∗
`i fR

`j) rb
2}(3.29)
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with the following notation

rb
1 = mχj

{[(t−sb)(t+p3) + (t−p3)(t+sb)](p1p2)

+[(p1s
b)(p2p3) + (p1p3)(p2s

b) − (p1p2)(p3s
b)](t−t+)} , (3.30)

rb
2 = εµνρσ mχj

[t+,µp1νp2ρs
b
σ(t−p3) + t−,µp1νp2ρp3σ(t+sb)

+t−,µt+,νp2ρs
b
σ(p1p3) + t−,µt+,νp1ρp3σ(p2s

b)] , (3.31)

where the e± polarization vector t± is given by eq. (3.11). The polarization basis 4-

vectors sb of the neutralino χ̃0
j fulfil the orthogonality relations sb · sc = −δbc and sb ·

p4 = 0. The parametrization of the neutralino spin vectors is given in appendix A. The

terms Σa
P (χ̃0

i )T , which depend on the polarization 4-vector sa of χ̃0
i , are obtained by the

substitutions sb → −sa,mχj
→ mχi

, p3 → p4 in eqs. (3.30) and (3.31). Note that, like

P (χ̃0
i χ̃

0
j)T , the expressions Σb

P (χ̃0
j )T contain no contributions Σb

P (ẽLẽL)T and Σb
P (ẽRẽR)T ,

but an interference term, Σb
P (ẽLẽR)T . Furthermore, owing to the Majorana character of the

neutralinos, there is no contribution Σb
P (ZZ)T . This is contrary to the cases of unpolarized

and longitudinally polarized beams [11].

4. CP asymmetries with transverse beam polarization

4.1 CP asymmetries in neutralino production

In this section we construct CP asymmetries for the production process e+e− → χ̃0
i χ̃

0
j

with transverse e+ and e− beam polarizations. The corresponding cross section is given

in eq. (3.24). Choosing the e− beam direction along the z-axis in the reference system

(see appendix A and figure 2), the kinematical quantities in eqs. (3.22) and (3.23) can be

rewritten as

r1 = −2E2
b q2 sin2 θ cos(η − 2φ) , (4.1)

r2 = 2E2
b q2 sin2 θ sin(η − 2φ) , (4.2)

where η = φ−+φ+. The CP-sensitive terms (∝ r2 ∝ sin(η−2φ)) can be extracted from the

amplitude squared by an appropriate integration over the azimuthal angle φ. We define

the resulting asymmetry as

ACP (θ) =
N[ sin(η − 2φ) > 0; θ ] − N[ sin(η − 2φ) < 0; θ ]

N[ sin(η − 2φ) > 0; θ ] + N[ sin(η − 2φ) < 0; θ ]

=
1

σ

[

−
∫ π

2
+ η

2

η
2

+

∫ π+ η
2

π
2
+ η

2

−
∫ 3π

2
+ η

2

π+ η
2

+

∫ 2π+ η
2

3π
2

+ η
2

]

d2σ

dφdθ
dφ , (4.3)

which depends on the polar angle θ. The first line in eq. (4.3) exhibits how the asymmetry

is obtained in the experiment, where N[ sin(η − 2φ) > 0 (< 0) ] denotes the number of

events with sin(η − 2φ) > 0 (< 0). The second line in eq. (4.3) shows how the asymmetry

is calculated. We can infer from eqs. (3.19)–(3.21) that ACP (θ), eq. (4.3), would be zero if
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integrated over the whole range of θ: because of the propagators, the contribution of the

t-channel cancels that of the u-channel. Therefore, we divide the integration over θ into

two ranges in order to obtain the CP asymmetry

ACP =
{

N[ sin(η − 2φ) > 0; cos θ > 0 ] − N[ sin(η − 2φ) > 0; cos θ < 0 ]

+N[ sin(η − 2φ) < 0; cos θ < 0 ] − N[ sin(η − 2φ) < 0; cos θ > 0 ]
}

/Ntot

=

[

∫ π/2

0
−

∫ π

π/2

]

ACP (θ) dθ , (4.4)

where Ntot denotes the total number of events. Note that for a measurement of the CP

asymmetry in eq. (4.4) the production plane has to be reconstructed. In appendix C we

propose how this can be done.

Finally we remark that an azimuthal asymmetry, analogous to that studied for chargino

production [21], can be defined also for neutralino production. It is given by

Aφ =
N[ cos(η − 2φ) > 0 ] − N[ cos(η − 2φ) < 0 ]

N[ cos(η − 2φ) > 0 ] + N[ cos(η − 2φ) < 0 ]

=
1

σ

[

−
∫ 3π

4
+ η

2

π
4
+ η

2

+

∫ 5π
4

+ η
2

3π
4

+ η
2

−
∫ 7π

4
+ η

2

5π
4

+ η
2

+

∫ 9π
4

+ η
2

7π
4

+ η
2

]

dσ

dφ
dφ . (4.5)

In this case the integration over the polar angle θ is performed over the whole range.

This choice of the ranges of the integrations has the effect of extracting the terms ∝
r1 ∝ cos(η − 2φ), eqs. (3.18)–(3.21), from the squared amplitude. Note however, that this

observable is CP-even.

4.2 CP asymmetries in neutralino production and decay

The reconstruction of the neutralino momenta is not necessary if we include the subsequent

decays χ̃0
j → ˜̀± `∓1 (where ˜̀ = ˜̀

L, ˜̀
R) and ˜̀± → `±2 χ̃0

1, yielding to the final state χ̃0
j →

`∓1 `±2 χ̃0
1. The label of the leptons indicates whether they stem from the first or the second

decay. The cross sections for the combined processes are given in appendix B, eqs. (B.7)

and (B.8), respectively. The CP-sensitive terms of the squared amplitudes depend on

sin(η − 2φ`1) or sin(η − 2φ`2), where φ`1 and φ`2 are the azimuthal angles of the final

leptons `∓1 and `±2 . As a first step, we integrate the differential cross section in eq. (B.7)

over all angles except φ`1 (the angles are integrated over their whole range). Then the CP

asymmetry obtained by the azimuthal distribution of `−1 is given by

A−
1 =

N[ sin(η − 2φ`1) > 0 ] − N[ sin(η − 2φ`1) < 0 ]

N[ sin(η − 2φ`1) > 0 ] + N[ sin(η − 2φ`1) < 0 ]

=
1

σ1

[

−
∫ π

2
+ η

2

η
2

+

∫ π+ η
2

π
2
+ η

2

−
∫ 3π

2
+ η

2

π+ η
2

+

∫ 2π+ η
2

3π
2

+ η
2

]

dσ1

dφ`1

dφ`1 , (4.6)

where σ1 = σ(e+e− → χ̃0
1χ̃

0
j) × B(χ̃0

j → ˜̀+`−1 ) and the upper index of A−
1 corresponds to

the electric charge of the observed lepton `−1 .
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As a next step, we integrate the differential cross section in eq. (B.8) over all angles

except φ`2 , in order to define the CP asymmetry of the azimuthal distribution of `+
2 :

A+
2 =

N[ sin(η − 2φ`2) > 0 ] − N[ sin(η − 2φ`2) < 0 ]

N[ sin(η − 2φ`2) > 0 ] + N[ sin(η − 2φ`2) < 0 ]

=
1

σ2

[

−
∫ π

2
+ η

2

η
2

+

∫ π+ η
2

π
2
+ η

2

−
∫ 3π

2
+ η

2

π+ η
2

+

∫ 2π+ η
2

3π
2

+ η
2

]

dσ2

dφ`2

dφ`2 , (4.7)

where σ2 = σ(e+e− → χ̃0
1χ̃

0
j) × B(χ̃0

j → ˜̀+`−1 ) × B(˜̀+ → χ̃0
1`

+
2 ). Note that, since Σb

D(χ̃0
j )

for the two C-conjugate decay modes of χ̃0
j → ˜̀±`∓ differs only by a sign (see eqs. (B.3) and

(B.5)) the asymmetries with upper indices + and − are related by A+
i = −A−

i , i = 1, 2. In

order to measure both asymmetries, eqs. (4.6) and (4.7), it is necessary to distinguish the

lepton `∓1 , originating from the decay χ̃0
j → ˜̀±`∓1 , and the lepton `±2 from the subsequent

decay ˜̀± → χ̃0
1`

±
2 . This can be accomplished by their different energy distributions, when

the masses of the particles involved are known, provided that their measured energies do

not lie in the overlapping region of their energy distributions [20].

However, we can also define a CP asymmetry where it is not necessary to distinguish

whether the leptons stem from the first or the second step of the decay chain χ̃0
j → ˜̀± `∓1 →

`∓1 `±2 χ̃0
1. This asymmetry is defined by

A− =
N[ sin(η − 2φ`−) > 0 ] − N[ sin(η − 2φ`−) < 0 ]

N[ sin(η − 2φ`−) > 0 ] + N[ sin(η − 2φ`−) < 0 ]

=
(
∫ + −

∫ −
)( dσ1

dφ`1

dφ`1 + dσ2

dφ`2

dφ`2)
∫ 2π
0 ( dσ1

dφ`1

dφ`1 + dσ2

dφ`2

dφ`2)
, (4.8)

where `− is either `−1 or `−2 and N[ sin(η − 2φ`−) > 0 (< 0) ] denotes the number of events

where sin(η − 2φ`−) > 0 (< 0). Hence, only the charge of the lepton and its azimuthal

angle φ`− has to be determined. In eq. (4.8)
∫ ±

corresponds to an integration over the

azimuthal angles φ`1 or φ`2, where sin(η − 2φ`1,2
) is positive or negative, respectively. An

analogous asymmetry can be defined for `+ as well. The asymmetry A−, eq. (4.8), can be

related to the asymmetries A−
1 and A−

2 , eqs. (4.6) and (4.7), by

A− =
1

[1 + B(˜̀− → `−χ̃0
1)]

[

A−
1 + A−

2 B(˜̀− → `−χ̃0
1)

]

. (4.9)

5. Numerical studies

5.1 CP-even observables in neutralino production

Before we concentrate on the numerical study of CP-odd observables, we would like to

give an example, which shows that a measurement of only CP-even observables may not

be sufficient to unambiguously determine the SUSY parameters of the neutralino sector.

However, a measurement of a CP-odd asymmetry may help to single out the correct so-

lution. This may be particularly important if only the two lower states of the neutralino

spectrum are kinematically accessible.
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Scenario |M1| φM1
M2 |µ | φµ tan β mẽL

mẽR

Complex 183 0.05π 311 343 1.9π 2.1 297 181

Real 180 0 310 335 0 3 300 180

Table 1: Input parameters |M1|, φM1
, M2, |µ|, mẽL

and mẽR
for the complex and the real

scenario. All mass parameters are given in GeV.

To this end we consider the complex scenario with the parameters given in table 1,

leading to mχ̃0
1

= 170.9 GeV and mχ̃0
2

= 259.5 GeV. At
√

s = 500 GeV only the cross sec-

tions of e+e− → χ̃0
1χ̃

0
2 would be measurable, giving σ(e+e− → χ̃0

1χ̃
0
2) = (16.4, 18.3, 30.3) fb

for the e+ and e− longitudinal beam polarizations (P−
L ,P+

L ) = (0, 0), (−80%,+60%),

(+80%,−60%), respectively. We assume that the masses mχ̃0
1,2

and mẽL,R
are measured

with 1% accuracy. For the cross sections we take an error corresponding to a 1-σ de-

viation for a luminosity Lint = 100 fb−1. Then within this accuracy, we would obtain

compatible neutralino masses and cross sections with the real SUSY parameter set, which

is also given in table 1, namely mχ̃0
1

= 169.3 GeV and mχ̃0
2

= 258.3 GeV, and cross sections

σ(e+e− → χ̃0
1χ̃

0
2) = (16.3, 18.2, 30.0) fb. The CP-odd asymmetry ACP , eq. (4.4), however,

would result in about 2.8% with (P−
T ,P+

T ) = (80%, 60%) for the complex scenario with

φM1
= 0.05π and φµ = 1.9π. Although the asymmetry is small it should be experimentally

measurable including the statistical uncertainty. Therefore the complex scenario would be

clearly distinguishable from the real scenario, which results in an asymmetry identical to

zero. This simple example illustrates that it is necessary to measure CP-odd observables

for truly identifying CP-violating effects.

In the following we analyse numerically the CP-odd asymmetries, eq. (4.4) and eqs. (4.6)–

(4.8), at the ILC with
√

s = 500 GeV and transversely polarized e± beams. We especially

focus on the influence of the phase φM1
of the gaugino mass parameter M1 = |M1|eiφM1 .

Throughout we assume the GUT-inspired relation |M1| = 5/3 tan2 ΘW M2. Furthermore

we show that CP-odd observables are necessary to determine unambiguously the underlying

SUSY parameters. In order to study the full phase dependences of the CP-odd observables,

we do not take into account the restrictions from the EDMs and vary φµ and φM1
in the

whole range.

5.2 CP-odd asymmetries in neutralino production

First we discuss the CP-odd asymmetry ACP , eq. (4.4), for the neutralino production

processes e+e− → χ̃0
1χ̃

0
2 and e+e− → χ̃0

1χ̃
0
3. CP violation is due to the interference terms

P (ZẽL)T , P (ZẽR)T , and P (ẽLẽR)T , eqs. (3.19)–(3.21). We assume that the momenta

of the produced neutralinos can be reconstructed by analysing the subsequent two-body

decays; see appendix C.

5.2.1 CP-odd asymmetries in e+e− → χ̃0

1
χ̃0

2
production

In figure 3a we show ACP , eq. (4.4), for e+e− → χ̃0
1χ̃

0
2 as a function of φM1

for scenario A,

given in table 2, for tan β = 3, 10, 30, with
√

s = 500 GeV and transverse beam polarization
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2

Figure 3: (a) CP asymmetry ACP , eq. (4.4), and (b) cross section σ(e+e− → χ̃0
1χ̃

0
2) as a function

of φM1
for scenario A of table 2, with tanβ = 3 (solid line), tanβ = 10 (dashed line), tanβ = 30

(dotted line), for
√

s = 500GeV and transverse beam polarizations (P−
T ,P+

T ) = (100%, 100%).

Scenario A B

|M1| 123.3 120.8

φM1
0.5π 0.5π

M2 245 240

|µ | 160 300

φµ 0 0

mẽL
400 400

mẽR
150 150

tan β 3 30 3

mχ̃0
1

99.4 105.5 117.0

mχ̃0
2

143.0 144.1 197.6

mχ̃0
3

169.7 178.6 303.9

mχ̃0
4

289.7 281.5 351.7

Table 2: Input parameters |M1|, M2, |µ|, mẽL
and mẽR

and the resulting masses mχ̃0

i

, i = 1, . . . , 4

for tanβ = 3, 30 and specific values of the phases φM1
and φµ. All mass parameters and masses

are given in GeV.

(P−
T ,P+

T ) = (100%, 100%). For this scenario we obtain for tan β = 3 (30) an asymmetry

ACP of about 8.2 (7.8)%, for φM1
= 0.5π. The peculiar shape of the curve is a result

of the combined contributions of the Z–ẽR interference term, which has its maximum at

φM1
≈ 0.4π, and of the ẽL–ẽR interference term, with its maximum at φM1

≈ 0.8π. The

contribution of the Z–ẽL interference term is suppressed because of the large mass of the

left-handed selectron. The cross sections for the process e+e− → χ̃0
1χ̃

0
2 are plotted in

figure 3b and are about 163 (144) fb for φM1
= 0.5π. Note that the cross sections are

independent of the transverse beam polarization, because these contributions depend on

cos 2φ (sin 2φ), see eq. (4.1), and disappear if integrated over the whole range of φ. In

figures 3a and b we can clearly see the antisymmetric dependence of the CP asymmetry

and the symmetric behaviour of the cross section on the phase φM1
. It is therefore obvious

that both kinds of observables are needed for an unambiguous determination of the phase.
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Figure 4: (a) contours of the CP asymmetry ACP , eq. (4.4), in % for the process e+e− → χ̃0
1χ̃

0
2 in

the |µ|–M2 plane. The MSSM parameters are φM1
= 0.5π, φµ = 0, tanβ = 3, mẽL

= 400GeV and

mẽR
= 150GeV at

√
s = 500GeV with transverse beam polarizations (P−

T ,P+

T ) = (100%, 100%).

(b) shows the contours of the luminosity Lint, eq. (5.1), needed to measure the CP-odd asymmetry

ACP at the 5-σ level with degrees of transverse polarization (P−
T ,P+

T ) = (80%, 60%). The light-grey

region is experimentally excluded by the exclusion bound mχ̃
±

1

< 104GeV [28].

Note that ACP can be sizeable even for values of φM1
close to 0 and π, which would be

favoured by the EDM constraints.

Now we estimate the observability of the asymmetry. One assumes that the same

degree of transverse beam polarization is feasible as for the longitudinal polarization (P−
T =

80% and P+
T = 60%). Since the CP asymmetry ACP depends bilinearly on the degrees

of transverse beam polarization P−
T (P+

T ) of the e− (e+), see eqs. (3.19)–(3.21), we have

to multiply the asymmetry ACP for (P−
T ,P+

T ) = (100%, 100%) with a factor 0.48. The

luminosity Lint required for a measurement with specific significance can be estimated as

Lint = (Nσ)2/[A2
CP σ] , (5.1)

where Nσ denotes the number of standard deviations and σ the corresponding cross section

for neutralino production. We obtain a luminosity Lint ≈ 99 (124) fb−1 needed for a

discovery with 5-σ, for tan β = 3 (30) and φM1
= 0.5π.

Figure 4a shows the contour lines of the CP asymmetry ACP , eq. (4.4), at
√

s =

500 GeV for e+e− → χ̃0
1χ̃

0
2 in the |µ|–M2 plane. The MSSM parameters are chosen to

be φM1
= 0.5π, φµ = 0, tan β = 3, mẽL

= 400 GeV and mẽR
= 150 GeV. The largest

CP-odd asymmetry ACP is attained for sizeable gaugino-higgsino mixing. If the beams

are fully transversely polarized, (P−
T ,P+

T ) = (100%, 100%), then ACP could reach up to

about 8.8% for M2 ≈ 240 GeV and |µ| ≈ 140 GeV. With a higher centre-of-mass energy√
s = 800 GeV, the asymmetry ACP increases to about 12%, because the cross section,

which is the denominator of ACP , decreases stronger than its numerator. In this region of

the parameter space the Z–ẽR interference term, eq. (3.20), is the main contribution to the

asymmetry ACP . In a gaugino-like scenario, for instance M2 = 250 GeV and |µ| = 450 GeV,

the ẽL–ẽR interference term is dominant and the others are suppressed. Generally the

ẽL–ẽR contribution to the asymmetry is small for e+e− → χ̃0
1χ̃

0
2 and ACP is therefore
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Figure 5: Contours of the CP asymmetry ACP , eq. (4.4), in % for the process (a) e+e− → χ̃0
1χ̃

0
2 and

(b) e+e− → χ̃0
1χ̃

0
3 in the φµ–φM1

plane, for scenario A with tanβ = 3, see table 2, for
√

s = 500GeV

and transverse beam polarizations (P−
T ,P+

T ) = (100%, 100%).

reduced to about 1.6%. In order to obtain a larger ẽL–ẽR contribution, a larger mass

splitting of ẽL and ẽR is necessary. If mẽL
≈ mẽR

the interference term P (ẽLẽR)T is very

small, see eq. (3.21). In figure 4b we plot the corresponding luminosity Lint, eq. (5.1), for

transverse beam polarizations of (P−
T ,P+

T ) = (80%, 60%). For the maximum value of ACP ,

a luminosity Lint of about 81 fb−1 would be needed for a discovery with 5-σ.

In figure 5a we show the contour lines of ACP , eq. (4.4), for e+e− → χ̃0
1χ̃

0
2 in the φµ–

φM1
plane for scenario A (table 2) at

√
s = 500 GeV and with transverse beam polarizations

(P−
T ,P+

T ) = (100%, 100%). We obtain a maximum value of the CP-odd asymmetry ACP

of about 8.9% for φµ ≈ 1.6π and φM1
≈ 0.4π. In this scenario the φM1

and the φµ

dependence are of the same order of magnitude. The main contribution to the CP-odd

asymmetry originates from the interference term P (ZẽR)T , eq. (3.20), i.e. the primarily

involved coupling is fR∗
`1 fR

`2O
R
12. The corresponding cross section for φµ = 1.6π and φM1

=

0.4π is about 139 fb and the luminosity Lint for a discovery with 5-σ is about 99 fb−1

for transverse beam polarizations (P−
T ,P+

T ) = (80%, 60%). Note also in this case the CP

asymmetry ACP can be sizeable for values of φM1
and φµ close to 0 and π.

5.2.2 CP-odd asymmetries in e+e− → χ̃0

1
χ̃0

3
production

Figure 5b shows the contour lines of the CP asymmetry ACP , eq. (4.4), in the φµ–φM1

plane for e+e− → χ̃0
1χ̃

0
3. As shown in the case before, a large gaugino-higgsino mixing

is necessary to obtain sizeable CP asymmetries. We investigate scenario A of table 2, at√
s = 500 GeV and (P−

T ,P+
T ) = (100%, 100%). In this scenario the maximum value of ACP

is about 9.8% for φµ ≈ 0.1π and φM1
≈ 1.2π. Again the main CP-violating contribution is

due to the Z–ẽR interference term. In this example the largest asymmetries are obtained

for small values of φµ. For φµ = 0.1π and φM1
= 1.2π the cross section σ(e+e− → χ̃0

1χ̃
0
3)

is 76 fb and the luminosity for a discovery with 5-σ is about 150 fb−1.

Figure 6a shows the CP asymmetry ACP , eq. (4.4), for the process e+e− → χ̃0
1χ̃

0
3 as a

function of φM1
for scenario A defined in table 2, for tan β = 3, 10, 30 and

√
s = 500 GeV.

For tan β = 3 (30) the asymmetry ACP reaches its maximum of about 9.6 (7.4)% at φM1
=
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Figure 6: (a) CP asymmetry ACP , eq. (4.4), and (b) cross section σ(e+e− → χ̃0
1χ̃

0
3) as a function

of φM1
for scenario A of table 2, with tanβ = 3 (solid line), tanβ = 10 (dashed line), tanβ = 30

(dotted line), for
√

s = 500GeV and transverse beam polarizations (P−
T ,P+

T ) = (100%, 100%).

1.25 (1.55)π. Here again the dominant contribution to ACP comes from the interference

term P (ZẽR)T ; see eq. (3.20). Note that the maximal CP-violating phase φM1
= π

2 (mod π)

does not necessarily lead to the highest value of the asymmetry. The reason for this is

an interplay between the φM1
dependence of the cross section, shown in figure 6b, and

that of the numerator of the asymmetry. In figure 6b the corresponding cross section

σ(e+e− → χ̃0
1χ̃

0
3) is plotted. For the maximal asymmetry it is about 78 (91) fb. In order

to measure the asymmetry ACP at 5-σ, the required luminosity is Lint ≈ 150 (217) fb−1.

5.3 Neutralino production and subsequent two-body decays

Now we discuss neutralino production e+e− → χ̃0
i χ̃

0
j with the subsequent decays χ̃0

j → ˜̀±
R`∓1

and ˜̀±
R → χ̃0

1`
±
2 . We study the CP-odd asymmetries, eqs. (4.6)–(4.8), which are defined by

the azimuthal distribution of the final leptons `1 and `2. In this case CP-violating effects

arise from the contributions of the spin correlations of the decaying neutralino, eqs. (3.27)–

(3.29), which depend on the transverse beam polarization. We give numerical examples for

e+e− → χ̃0
1χ̃

0
2 and e+e− → χ̃0

1χ̃
0
3.

5.3.1 CP-odd asymmetries in e+e− → χ̃0

1
χ̃0

2
production and decay

In figure 7a we show the CP asymmetries A+
1,2 and A+, eqs. (4.6)–(4.8), as a function of

φM1
for scenario B defined in table 2. The beam energy is

√
s = 500 GeV with degrees of

transverse beam polarizations (P−
T ,P+

T ) = (100%, 100%). We study neutralino production

e+e− → χ̃0
1χ̃

0
2, with the subsequent decays χ̃0

2 → ˜̀±
R`∓1 and ˜̀±

R → χ̃0
1`

±
2 . For A+

1 we obtain

a maximal value of about 11.6% for φM1
= 0.45π. The asymmetry A+

2 is reduced to

2.1% by the additional contribution to the phase space from the decay ˜̀±
R → χ̃0

1`
±
2 . Since

the branching ratio B(˜̀±R → χ̃0
1`

±
2 ) = 1, we obtain a CP-odd asymmetry A+ ≈ 6.9%,

see eq. (4.9), for φM1
= 0.45π. In this scenario the main contribution to the CP-odd

asymmetries comes from the ẽL–ẽR term, eq. (3.29). With a smaller mass splitting between

mẽL
and mẽR

the contribution to the asymmetry of Σb
P (ẽLẽR)T becomes larger, but as the

cross section is increasing, the combination of the two effects leads to a smaller asymmetry.

The corresponding cross section σ(e+e− → χ̃0
1χ̃

0
2 → χ̃0

1χ̃
0
1`

∓
1 `±2 ) is plotted in figure 7b. For

φM1
= 0.45π, we obtain a cross section of about 46 fb. Thus, for (P−

T ,P+
T ) = (80%, 60%),
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Figure 7: (a) CP-odd asymmetries A+
1 (solid), A+

2 (dashed) and A+ (dotted), eqs. (4.6)–(4.8), for

the process e+e− → χ̃0
1χ̃

0
2 → χ̃0

1χ̃
0
1`

∓
1 `±2 and (b) the corresponding cross section as a function of

φM1
in scenario B (table 2) with tanβ = 3. The centre-of-mass energy is fixed at

√
s = 500GeV

and the transverse beam polarizations are (P−
T ,P+

T ) = (100%, 100%).

the luminosity Lint needed for a discovery with 5-σ of the asymmetry A+
1 is about 176 fb−1.

For a discovery with 5-σ of A+, Lint ≈ 517 fb−1 are needed.

In figure 8a we show the contour lines of the CP-odd asymmetry A+
1 , eq. (4.6), for

e+e− → χ̃0
1χ̃

0
2 → χ̃0

1
˜̀−
R`+

1 in the |µ|–M2 plane. The other parameters are φM1
= 0.5π,

φµ = 0, tan β = 3, mẽL
= 400 GeV and mẽR

= 150 GeV. The centre-of-mass energy is fixed

at
√

s = 500 GeV with degrees of transverse beam polarizations (P−
T ,P+

T ) = (100%, 100%).

In this figure we only consider the parameter regions where the decay channel χ̃0
2 → ˜̀±

R`∓1
is kinematically accessible. The maximum value of the CP asymmetry A+

1 ≈ 12.6% is

obtained for a gaugino-like scenario with M2 = 200 GeV and |µ| = 280 GeV. For these

parameters the neutralino masses are mχ̃0
1

= 97 GeV and mχ̃0
2

= 163.5 GeV, and therefore

the branching ratio B(χ̃0
2 → ˜̀±

R`∓1 ) = 1 and the cross section σ(e+e− → χ̃0
1χ̃

0
2 → χ̃0

1
˜̀±
R`∓1 ) =

54 fb. Thus for (P−
T ,P+

T ) = (80%, 60%) the required luminosity Lint for a discovery with

5-σ, eq. (5.1), is about 128 fb−1. For this parameter point the asymmetry A+, eq. (4.8),

is about 6.7% and the luminosity Lint ≈ 456 fb−1. For higgsino-like scenarios (M2 >

|µ|) the Σb
P (ZẽR)T interference term, eq. (3.28), gives the main contribution to the CP-

odd asymmetry, which can be traced back to the structure of the corresponding coupling

fR∗
`1 fR

`2O
R
12. On the other hand for gaugino-like scenarios (|µ| > M2) the contribution of

the interference term Σb
P (ẽLẽR)T dominates, with the corresponding coupling fL∗

`1 fL
`2f

R∗
`1 fR

`2.

The sign change of the asymmetry in the |µ|–M2 plane is therefore due to a cancellation

of the Z–ẽR and the ẽL–ẽR contributions which have opposite signs.

5.3.2 CP-odd asymmetries in e+e− → χ̃0

1
χ̃0

3
production and decay

In figure 8b we show the contour lines of the CP asymmetry A+
1 for the process e+e− →

χ̃0
1χ̃

0
3 → χ̃0

1
˜̀−
R`+

1 in the |µ|–M2 plane. We fix the MSSM parameters at φM1
= 0.5π, φµ = 0,

tan β = 3, mẽL
= 400 GeV and mẽR

= 150 GeV with
√

s = 500 GeV and (P−
T ,P+

T ) =

(100%, 100%). The maximal CP asymmetry A+
1 is about 31% for M2 = 300 GeV and

|µ| = 160 GeV. For this parameter point we obtain neutralino masses of mχ̃0
1

= 115 GeV

and mχ̃0
2

= 156 GeV, and therefore the branching ratio is again B(χ̃0
2 → ˜̀±

R `∓1 ) = 1. Hence

the cross section σ(e+e− → χ̃0
1χ̃

0
3 → χ̃0

1
˜̀±
R `∓1 ) = 83 fb. For transverse beam polarizations
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Figure 8: Contours of the CP-odd asymmetry A+
1 , eq. (4.6), in % in the |µ|–M2 plane for the

process (a) e+e− → χ̃0
1χ̃

0
2 → χ̃0

1
˜̀−
R`+

1 and (b) e+e− → χ̃0
1χ̃

0
3 → χ̃0

1
˜̀−
R`+

1 . The MSSM parameters are

φM1
= 0.5π, φµ = 0, tanβ = 3, mẽL

= 400GeV and mẽR
= 150GeV. The centre-of-mass energy is

fixed at
√

s = 500GeV and the transverse beam polarizations are (P−
T ,P+

T ) = (100%, 100%). The

light-grey region is excluded by mχ̃
±

1

< 104GeV [28].

(P−
T ,P+

T ) = (80%, 60%) the luminosity Lint, eq. (5.1), for a discovery with 5-σ of A+
1 is

about 14 fb−1. For these parameters the CP-odd asymmetry A+ is 17.3% and the necessary

luminosity (for a discovery with 5-σ) Lint ≈ 43 fb−1. In the case of e+e− → χ̃0
1χ̃

0
3 the CP-

violating contributions Σb
P (ZẽR)T and Σb

P (ẽLẽR)T , eqs. (3.28) and (3.29), enter with the

same sign due to the corresponding couplings. In gaugino-like scenarios the contributions

of both interference terms are suppressed, therefore the asymmetry decreases.

In figure 9a the CP-odd asymmetries A+
1,2 and A+, eqs. (4.6)–(4.8), for the process

e+e− → χ̃0
1χ̃

0
3 → χ̃0

1χ̃
0
1`

∓
1 `±2 are plotted as a function of φM1

for scenario A, see table 2. For

a centre-of-mass energy
√

s = 500 GeV and with transverse beam polarization (P−
T ,P+

T ) =

(100%, 100%) the maximum of the CP asymmetry A+
1 (A+) ≈ 26.2 (14.3)% is obtained

for φM1
≈ 0.75π. In this scenario we have large mixing between the gaugino and the

higgsino components, the main contribution to A+
1 stems again from the Z–ẽR interference

term, which is about 21.4%. The ẽR–ẽL contribution is 4%, wheras the Z–ẽL contribution

is suppressed by the large mass of the left selectron. Figure 9b shows the cross section

σ(e+e− → χ̃0
1χ̃

0
3 → χ̃0

1
˜̀±
R`∓1 ). For the maximum of the CP asymmetries A+

1 (A+), for

φM1
≈ 0.75π, the cross section is 78 fb. For (P−

T ,P+
T ) = (80%, 60%) the luminosity Lint for

a discovery with 5-σ is about 20 (68) fb−1.

5.4 Determination of the SUSY parameters

In the following we will give an example for the accuracy that can be expected in the

determination of the MSSM parameters, focusing on the determination of the complex

parameter M1 = |M1|ei φM1 . In order to determine the parameters unambiguously, CP-

even as well as CP-odd observables have to be included in the set of observables from which

the underlying parameters are extracted.
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Figure 9: CP-odd asymmetries A+
1 (solid), A+

2 (dashed) and A+ (dotted), eqs. (4.6)–(4.8), for the

process e+e− → χ̃0
1χ̃

0
3 → χ̃0

1χ̃
0
1`

∓
1 `±2 and (b) the corresponding cross section as a function of φM1

in scenario A, see table 2, with tanβ = 3. The centre-of-mass energy is
√

s = 500GeV and the

transverse beam polarizations are (P−
T ,P+

T ) = (100%, 100%).

(P−
L ,P+

L ) (0, 0) (−80%,+60%) (+80%,−60%)

σ(e+e− → χ̃0
1χ̃

0
2) 47.27 fb 87.13 fb 52.80 fb

σ(e+e− → χ̃0
2χ̃

0
2) 11.59 fb 33.12 fb 1.186 fb

σ(e+e− → χ̃0
1χ̃

0
3) 9.83 fb 5.68 fb 23.42 fb

σ(e+e− → χ̃0
1χ̃

0
4) 7.86 fb 7.74 fb 15.53 fb

Table 3: Cross sections for different sets of longitudinal beam polarizations in scenario B with

φM1
= 0.5π and φµ = 0 for

√
s = 500GeV.

Our set of observables contains the neutralino masses mχ̃0
j
, the cross sections e+e− →

χ̃0
i χ̃

0
j for different choices of longitudinal beam polarizations (P−

L ,P+
L ) = (0, 0), (−80%,+60%),

(+80%,−60%) and the CP-odd asymmetry ACP , eq. (4.4). We now take scenario B with

φM1
= 0.5π and φµ = 0, see table 2, as our reference point of input parameters. We

calculate the neutralino masses mχ̃0
1
, mχ̃0

2
, mχ̃0

3
and mχ̃0

4
, see table 2. The cross sections

for e+e− → χ̃0
1χ̃

0
2, e+e− → χ̃0

2χ̃
0
2, e+e− → χ̃0

1χ̃
0
3 and e+e− → χ̃0

1χ̃
0
4 for

√
s = 500 GeV with

different sets of longitudinal beam polarizations are displayed in table 3. The CP asym-

metry ACP for the process e+e− → χ̃0
1χ̃

0
2 is about +2% for transverse beam polarizations

(P−
T ,P+

T ) = (80%, 60%). We regard these calculated values as real experimental data,

where we assume errors of 1% for the masses. For the error of the cross sections of each

polarization configuration and of the asymmetry we take a 1-σ deviation for a luminosity

Lint = 100 fb−1. Our approach for the determination of the error of the parameters (in

particular the error of M1) is described as follows: we perform a random scan over the

input parameters |M1|, φM1
, M2, |µ |, φµ and tan β around our reference point and select

the points which pass the condition |Omeas
i −Ocalc

i | < |∆Omeas
i |, where Omeas

i are the values

of the observables at our reference point, see table 3, ∆Omeas
i is the corresponding error,

and Ocalc
i are the values of the calculated observables obtained through the random scan.

In figure 10 we show the SUSY parameter points compatible with our reference sce-

nario in the Re(M1)–Im(M1) plane. If we consider only the CP-even observables (cross

sections and masses) then we obtain two regions in the parameter space compatible with
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Figure 10: SUSY parameter points in the Re(M1)–Im(M1) plane consistent with scenario B, if

one assumes an uncertainty of 1% for the masses and 1-σ deviation (Lint = 100 fb−1) for the cross

sections and the asymmetry. The parameters |M1|, φM1
, M2, |µ |, φµ and tanβ have been randomly

scanned around the reference point B. The grey points are excluded if one takes into account the

CP-odd observable ACP , eq. (4.4).

our reference scenario. This ambiguity can be resolved if one includes in addition the CP-

odd observable ACP , eq. (4.4). For the error of M1 we obtain: Re(M1) = 0± 5.9 GeV and

Im(M1) = 120.8 ± 1.3 GeV.

6. Conclusion

We have studied the processes e+e− → χ̃0
1χ̃

0
2 and e+e− → χ̃0

1χ̃
0
3 with subsequent decays

χ̃0
2,3 → ˜̀

R` and ˜̀
R → χ̃0

1`, where ` = e, µ, at a linear collider with transverse e+ and

e− beam polarizations. We have discussed different CP asymmetries, which are due to az-

imuthal distributions of the neutralinos or the final leptons. We have pointed out that these

CP asymmetries are non-vanishing thanks to the Majorana character of the neutralinos.

We have given the analytical expressions for the CP asymmetries and the cross sections

in the spin density matrix formalism, including the complete spin correlations between

production and decay of the neutralinos. At the ILC at
√

s = 500 GeV and with degrees of

transverse e± beam polarizations (P−
T ,P+

T ) = (80%, 60%), the CP asymmetries can reach

up to about 15%. Also we have shown that these CP asymmetries can be observed in a

broad range of the MSSM parameter space. Furthermore, we have discussed the unam-

biguous determination of the underlying SUSY parameters, which requires CP-even as well

as CP-odd observables.
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A. Momentum and polarization vectors

The basis vectors for transverse e− beam polarization are

~t 1
e− = (~t 2

e− × ~pe−)/|~t 2
e− × ~pe− | , (A.1)

~t 2
e− = (~pe− × ~pχj

)/|~pe− × ~pχj
| . (A.2)

The basis vectors for transverse e+ beam polarization are defined analogously. In a fixed

coordinate system (x, y, z), with the z-axis pointing along the beam direction the basis

vectors in the cms are given by

t1e± = (0, cos φ, sin φ, 0) and t2e± = (0,− sin φ, cos φ, 0) . (A.3)

The momentum 4-vectors of χ̃0
i and χ̃0

j are

pχj , µ = p4, µ = q(Eχj
/q, cos φ sin θ, sinφ sin θ, cos θ) ,

pχi, µ = p3, µ = q(Eχi
/q,− cos φ sin θ,− sinφ sin θ,− cos θ) , (A.4)

with

Eχi,j
=

s + m2
χi,j

− m2
χj,i

2
√

s
, q =

λ
1

2 (s,m2
χi

,m2
χj

)

2
√

s
, (A.5)

where λ(a, b, c) = a2 + b2 + c2 − 2(ab + ac + bc). The three spin-basis vectors sb
χj , µ of χ̃0

j

are chosen to be

s1
χj , µ =

(

0,
~s2 × ~s3

|~s2 × ~s3|

)

= (0,− cos φ cos θ,− sinφ cos θ, sin θ) ,

s2
χj , µ =

(

0,
~pχj

× ~pe−

|~pχj
× ~pe−|

)

= (0, sin φ,− cos φ, 0) ,

s3
χj , µ =

1

mχj

(

q,
Eχj

q
~pχj

)

=
Eχj

mχj

(q/Eχj
, cos φ sin θ, sinφ sin θ, cos θ) , (A.6)

where ~s 1
χ̃j

, ~s 2
χ̃j

and ~s 3
χ̃j

build a right-handed-system. The momentum 4-vector of the lepton

in the decay χ̃0
j → ˜̀

L,R ` is given by

p`1, µ = |~p`1|(1, cos φ`1 sin θ`1, sin φ`1 sin θ`1, cos θ`1) (A.7)

with

|~p`1| =
m2

χj
− m2

˜̀

2(Eχj
− q cos ϑ)

(A.8)

and

cos ϑ = sin θ sin θ`1 cos(φ − φ`1) + cos θ cos θ`1 . (A.9)
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The momentum 4-vector of the lepton from the decay ˜̀→ χ̃0
1`2 is given by

p`2, µ = |~p`2 |(1, cos φ`2 sin θ`2, sin φ`2 sin θ`2, cos θ`2) , (A.10)

where

|~p`2 | =
m2

˜̀ − m2
χ1

2(E˜̀− |~p˜̀| (~̂p˜̀·~̂p`2))
. (A.11)

B. Decay matrix and phase space of 2-body decay

The spin density matrix of the decay χ̃0
j → ˜̀∓

L,R `± can be written as

ρD,λ′
jλj

= δλ′
jλj

D(χ̃0
j ) +

3
∑

c=1

σc
λ′

jλj
Σc

D(χ̃0
j ) , (B.1)

where the expansion coefficient D(χ̃0
j) is the part that is independent of the polarization

of the decaying neutralino χ̃0
j , and Σa

D(χ̃0
j ) is the part that depends on the polarization of

χ̃0
j . For the sake of simplicity we consider ` = e, µ, where the mixing in the slepton sector

can be neglected. Then we have, for χ̃0
j → ˜̀∓

L `±:

D(χ̃0
j → ˜̀∓

L `±) =
g2

2
|fL

`j|2(m2
χj

− m2
˜̀
L
) , (B.2)

Σc
D(χ̃0

j → ˜̀∓
L `±) = ∓g2|fL

`j|2mχj
(sc · p`) (B.3)

and for χ̃0
j → ˜̀∓

R `±

D(χ̃0
j → ˜̀∓

R `±) =
g2

2
|fR

`j |2(m2
χj

− m2
˜̀
R
) , (B.4)

Σc
D(χ̃0

j → ˜̀∓
R `±) = ±g2|fR

`j |2mχj
(sc · p`) , (B.5)

where mχj
(m˜̀

L,R
) is the mass of χ̃0

j (˜̀L,R). The parametrizations of the momentum 4-

vector p`, µ and the polarization 4-vector sc
χ̃j , µ of the neutralino χ̃0

j are given in eqs. (A.4)

and (A.6) in appendix A. Finally, the matrix element squared for the two-body decay
˜̀∓ → χ̃0

1 `∓ in the decay chain, eq. (1.2), is

D2(˜̀
∓
L,R → χ̃0

1 `±) = g2|fL,R
`1 |2 (m2

˜̀
L,R

− m2
χ1

) . (B.6)

From (3.15) and (B.1), summing over the polarization of χ̃0
i , whose decay is not considered,

the differential cross section for e+e− → χ̃0
i χ̃

0
j → χ̃0

i
˜̀∓
L,R `±1 is:

dσ1 =
2

s
[PD + Σa

P Σa
D] |∆(χ̃0

j )|2dLips1 . (B.7)

Similarly one obtains the differential cross section for e+e− → χ̃0
i χ̃

0
j → χ̃0

i
˜̀∓
L,R `±1 →

`±1 `∓2 χ̃0
1χ̃

0
i from (3.15), (B.1) and (B.6) and summing over the polarization of χ̃0

i :

dσ2 =
2

s
[PD + Σa

P Σa
D] D2 |∆(χ̃0

j)|2|∆(˜̀)|2dLips2 , (B.8)
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where P and Σa
P involve the terms for arbitrary beam polarization. For the calculation of

the cross section we use the narrow widths approximation (
∫

|∆(χ̃0
j)|2dŝχ̃j

= π
mχ̃j

Γχ̃j

and
∫

|∆(˜̀)|2dŝ ˜̀ = π
m˜̀Γ˜̀

, where dŝχ̃j
= p2

χ̃j
and dŝ ˜̀ = p2

˜̀). The Lorentz-invariant phase-space

elements in eqs. (B.7) and (B.8) for the decay chain χ̃0
j → ˜̀∓

L,R`±1 → χ̃0
1`

±
1 `∓2 are

dLips1 =
1

2π
dLips(s, pχi

, pχj
)dŝmχj

dLips(ŝmχj
, p˜̀, p`1) , (B.9)

dLips2 =
1

(2π)2
dLips(s, pχi

, pχj
)dŝmχj

dLips(ŝmχj
, p˜̀, p`1)dŝm˜̀

dLips(ŝm˜̀
, pχ1

, p`2) (B.10)

with the Lorentz invariant phase space elements

dLips(s, pχi
, pχj

) =
1

4(2π)2
q√
s

sin θ dθ dφ , (B.11)

dLips(ŝmχj
, p˜̀, p`1) =

1

2(2π)2
|~p`1 |

m2
χj

− m2
˜̀

sin θ`1 dθ`1 dφ`1 , (B.12)

dLips(ŝm˜̀
, pχ1

, p`2) =
1

2(2π)2
|~p`2 |

m2
˜̀ − m2

χ1

sin θ`2 dθ`2 dφ`2 . (B.13)

C. Reconstruction of the production plane

As an example, we consider the process e+e− → χ̃0
1χ̃

0
2 with the decays χ̃0

2 → `1
˜̀ and

˜̀→ `2 χ̃′ 0
1 , where we denote the neutralino from the decay by χ̃′ 0

1 (here again the labels

of the leptons indicate their origin). We assume that the masses of all particles involved

are known.

We rotate to a coordinate system where the 3-momentum vector of `1 is along the

z-axis and that of `2 is in the x–z plane. The unit vectors of the 3-momenta of `1, `2, ˜̀ are

~̂p`1 = (0, 0, 1) , ~̂p`2 = (sin c, 0, cos c) , ~̂p˜̀ = (sin b cos A, sin b sinA, cos b). (C.1)

From the relation (~p`1 + ~p˜̀)
2 = ~p 2

χ2
we obtain

cos b =
1

2|~p`1 ||~p˜̀|
[

|~pχ2
|2 − |~p`1|2 − |~p˜̀|2

]

, (C.2)

where |~p˜̀|2 = E2
˜̀ − m2

˜̀ and E˜̀ = Eχ2
− E`1 . From a second relation (~p˜̀ − ~p`2)

2 = ~p 2
χ′

1

between momentum vectors we obtain

cos a =
1

2|~p`2 ||~p˜̀|
[

|~p˜̀|2 + |~p`2|2 − |~pχ′
1
|2

]

, (C.3)

where |~pχ′
1
|2 = E2

χ′
1

− m2
χ1

and Eχ′
1

= Eχ2
− E`1 − E`2 or Eχ′

1
= 6E − Eχ1

, and 6E is the

missing energy. From spherical geometry with ~̂p`2 · ~̂p˜̀ = cos a, we obtain the following

relation between the angles

cos A =
cos a − cos b cos c

sin c sin b
. (C.4)
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Inserting (C.2), (C.3) and (C.4) into ~̂p˜̀ in (C.1), this vector is determined up to a twofold

ambiguity in the second component. In order to resolve this ambiguity, a reference vector

is needed, which tells us in which hemisphere of the x–z plane the momentum vector ~̂p˜̀

is. For instance, this is possible in the process e+e− → χ̃0
1χ̃

0
3 with the decays χ̃0

3 → `1
˜̀,

˜̀→ `2 χ̃ 0
2 and χ̃0

2 → χ̃′ 0
1 Z, where the 3-momentum of the Z boson is the reference vector.
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