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Abstract

We consider neutralino production and decay e+e− → χ̃0
i χ̃

0
j , χ̃0

j → χ̃0
1f f̄

at a linear collider with transverse e+ and e− beam polarization. We propose
CP asymmetries by means of the azimuthal distribution of the produced neu-
tralinos and of that of the final leptons, while taking also into account the
subsequent decays of the neutralinos. We include the complete spin correla-
tions between production and decay. Our framework is the Minimal Super-
symmetric Standard Model with complex parameters. In a numerical study
we show that there are good prospects to observe these CP asymmetries at
the International Linear Collider and estimate the accuracy expected for the
determination of the phases in the neutralino sector.
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1 Introduction

Supersymmetry (SUSY) is at present one of the most prominent extensions of the
Standard Model (SM) [1]. It can solve the hierachy problem, allows the unification
of the gauge couplings and has the additional merit of providing new sources of CP
violation. In the chargino and neutralino sectors of the Minimal Supersymmetric
Standard Model (MSSM), the higgsino mass parameter µ and the gaugino mass
parameter M1 are in general complex, while the SU(2) gaugino mass parameter
M2 can be chosen real by redefining the fields. The precise determination of the
underlying SUSY parameters will be one of the main goals of the high-luminosity
e+e− International Linear Collider (ILC) [2].

The phases of the complex parameters µ and M1 may be constrained or correlated
by the experimental upper bounds on the electric dipole moments (EDM) of electron,
neutron and the atoms 199Hg and 205Tl [3]. These constraints, however, are rather
model dependent. In a constrained MSSM the restrictions on the phases of µ and
M1 can be rather severe. However, there may be cancellations between the different
SUSY contributions to the EDMs, which allow larger values for the phases (for
reviews see, e.g. [4]). If µ and M1 are complex and all other parameters are real,
in general the phase of µ has to be small. However, the restrictions on the phase
of µ may disappear if also lepton flavour violating terms in the MSSM lagrangian
are included [5]. It is, therefore, necessary to determine in an independent way the
phases of the complex SUSY parameters by measurements of suitable CP-sensitive
observables. Experiments with transverse e± beam polarization may allow us to
construct suitable observables for precision studies of the effects of new physics and
CP violation. Recent studies on the advantages of transversely polarized e+ and e−

beams are presented in [6, 7, 8].

The study of neutralino production

e+e− → χ̃0
i χ̃

0
j , i, j = 1, . . . , 4 , (1)

and subsequent two-body decay processes

χ̃0
j → ℓ±ℓ̃∓n → ℓ±ℓ∓χ̃0

1 , n = 1, 2 , (2)

with ℓ = e, µ, will play an important role at the ILC. The production process has
been studied extensively in the literature (see [2] and references therein). Production
and subsequent decay processes, and the decay angular and energy distributions have
been studied in detail in [9]–[11]. The properties of Majorana and Dirac particles
and their production and decay amplitudes under CP and CPT have been studied
in [12]–[15].

In [16]–[18] it has been shown that the parameters of the chargino and neutralino
systems can be determined by measuring suitable CP-even observables. However,
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the measurement of CP-odd observables is necessary to clearly demonstrate that CP
is violated and for the unambiguous determination of the CP-violating phases. Sev-
eral T-odd observables in neutralino production and decay applying triple product
correlations have been proposed in [19, 20].

Transversely polarized beams offer the possibility to construct further CP-sensitive
observables. This is the subject of the present paper. We propose and study CP-odd
asymmetries for the case of transverse e+ and e− beam polarizations. We define two
types of CP asymmetries, one that involves only neutralino production, the other
one involving production and decay if one of the neutralinos decays as in Eq. (2).
Note that in the case of chargino production it has been shown that the analogous
CP-odd asymmetries vanish [21]. In neutralino production it is possible, however, to
construct CP-odd asymmetries involving the transverse beam polarization, because
there are t-channel and u-channel contributions due to the Majorana nature of the
neutralinos [7]. The formulae for the production cross section of process (1), for
longitudinally and transversely polarized beams, have been given in [18, 22]. In this
paper we derive the compact analytic formulae for the CP asymmetries with the
help of the spin density matrix formalism [23], including the complete spin correla-
tions between production and decay of the neutralinos. We study numerically the
parameter and phase dependences of the CP asymmetries.

The paper is organized as follows: in Section 2 we set up the definitions. We
present the formulae for the cross section of (1) with transverse beam polarization
in Section 3. In Section 4 we define the CP-odd asymmetries. We present a numer-
ical investigation of these asymmetries in Section 5, while Section 6 contains our
conclusions.

2 Lagrangian and couplings

The tree-level Feynman diagrams for the production process (1) are given in Fig. 1.

e−(p1) χ̃0
j(p4)

e+(p2) χ̃0
i (p3)

Z0

e−(p1)

e+(p2)

χ̃0
j(p4)

χ̃0
i (p3)

ẽL,R

e−(p1)

e+(p2)

χ̃0
i (p3)

χ̃0
j(p4)

ẽL,R

Figure 1: Feynman diagrams of the production process e+e− → χ̃0
i χ̃

0
j .
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The interaction Lagrangians are [1]

LZ0ℓ+ℓ− = − g

cos ΘW
Zµℓ̄γ

µ[LℓPL + RℓPR]ℓ , (3)

LZ0χ̃iχ̃j
=

1

2

g

cos ΘW
Zµ

¯̃χ
0
i γ

µ[O′′L
ij PL + O′′R

ij PR]χ̃0
j , (4)

Lℓℓ̃χ̃i
= gfL

ℓi ℓ̄PRχ̃0
i ℓ̃L + gfR

ℓi ℓ̄PLχ̃0
i ℓ̃R + h.c. (5)

with i, j = 1, . . . , 4 and the couplings

fL
ℓi = −

√
2
[

1

cos ΘW

(

−1

2
+ sin2 ΘW

)

Ni2 − sin ΘW Ni1

]

, (6)

fR
ℓi =

√
2 sin ΘW [tanΘW N∗

i2 −N∗
i1] , (7)

O′′L
ij = −1

2
(Ni3N

∗
j3 −Ni4N

∗
j4) cos 2β − 1

2
(Ni3N

∗
j4 + Ni4N

∗
j3) sin 2β , (8)

O′′R
ij = −O′′L∗

ij , (9)

Lℓ = −1

2
+ sin2 ΘW , Rℓ = sin2 ΘW , (10)

where PL,R = 1
2
(1∓γ5). g is the weak coupling constant (g = e/ cos ΘW , e > 0), ΘW

is the weak mixing angle and tan β = v2/v1 is the ratio of the vacuum expectation
values of the Higgs fields. The unitary (4× 4) matrix Nij diagonalizes the complex
symmetric neutralino mass matrix in the basis (γ̃, Z̃, H̃0

a , H̃
0
b ) [9].

3 Cross section

In order to calculate the squared amplitude of process (1) with subsequent decay
(2), we use the spin density matrix formalism [23]. The squared amplitude of the
combined process of production and decay reads

|T |2 =
∑

λiλjλ
′

i
λ
′

j

|∆(χ̃0
i )|2|∆(χ̃0

j )|2ρ
λiλj ,λ

′

i
λ
′

j

P ρD,λ
′

i
λi

ρD,λ
′

j
λj

, (11)

where ∆(χ̃0
i,j) is the propagator of the corresponding neutralino; ρ

λiλj ,λ
′

i
λ
′

j

P denotes
the spin density matrix of the production, ρD,λ

′

i,j
λi,j

are the spin density matrices of

the decay; λi,j denotes the helicity of the neutralino χ̃0
i,j. The propagators are given

by
∆(χ̃0

k) = 1/[p2
χ̃k
−m2

χ̃k
+ imχ̃k

Γχ̃k
] , k = i, j . (12)
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Here pχ̃k
, mχ̃k

and Γχ̃k
denote the four-momentum, mass and total width of the

neutralino χ̃0
k. For these propagators we use the narrow-width approximation. The

(unnormalized) spin density production matrix is given by

ρ
λiλj ,λ

′

i
λ
′

j

P =
∑

λ
e−

λ
e+

λ
′

e−
λ
′

e+

ρ(e−)λ′

e−
λ

e−
ρ(e+)λ′

e+
λ

e+
T

λiλj

P,λ
e−

λ
e+

T
λ
′

i
λ
′

j
∗

P,λ′

e−
λ′

e+
, (13)

where T
λiλj

P,λ
e−

λ
e+

is the helicity amplitude of the production process and λe± is the

helicity of e±. The spin density decay matrices can be written as

ρD,λ
′

i
λi

= TD,λi
T ∗

D,λ′
i
, (14)

ρD,λ
′

j
λj

= TD,λj
T ∗

D,λ′
j

, (15)

where TD,λi,j
is the helicity amplitude for the decay. The spin density matrices of

the polarized e+ and e− beam in Eq. (13) can be written as

ρ(e±) =
1

2
(1 + P±

i σi) , (16)

where P±
1 is the degree of transverse e± beam polarization in the production plane,

P±
2 is the degree of transverse e± beam polarization perpendicular to the production

plane, P±
3 = P±

L (−1 ≤ P±
L ≤ 1) is the degree of longitudinal e± beam polarization

and σi (i = 1, 2, 3) are the Pauli matrices. For the degrees of transverse beam
polarizations we have the relation (P±

1 )2 +(P±
2 )2 = (P±

T )2 with P±
1 = cos φ±P±

T and
P±

2 = sin φ±P±
T (0 ≤ P±

T ≤ 1 and (P±
L )2 + (P±

T )2 ≤ 1), see Fig. 2 1.

The production and decay matrices are calculated with the help of the Bouchiat–
Michel formulae [24]:

u(p, λ
′

)ū(p, λ) =
1

2
[δλλ

′ + γ5 6saσa
λλ′ ]( 6p + m) , (17)

v(p, λ
′

)v̄(p, λ) =
1

2
[δλ′λ + γ5 6saσa

λ′λ]( 6p−m) . (18)

The three four-component spin basis vectors sa and the 4-vector p/m form an or-
thonormal system. For the incoming particles e+ and e− in the limit of vanishing
electron mass, me → 0, Eqs. (17) and (18) can be written as

u(pe−, λe−)ū(pe−, λ
′

e−) =
1

2
{(1 + 2λe−γ5)δλ

′

e−
λ

e−
+ γ5[6 t 1

e−σ1
λ
′

e−
λ

e−
+ 6 t 2

e−σ2
λ
′

e−
λ

e−
]} 6pe−,

(19)

1At this point we note that, contrary to the usual conditions at a circular accelerator, where the
Sokolov–Ternov effect orientates automatically both transverse polarization vectors either parallel
or antiparallel (depending on the sign of the charge of the incoming particle), there is the possibility,
at the ILC, to choose an arbitrary transverse polarization for both e+ and e−, independent from
each other.
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v(pe+, λ
′

e+)v̄(pe+ , λe+) =
1

2
{(1− 2λe+γ5)δλ

′

e+
λ

e+
+ γ5[6 t 1

e+σ1
λ
′

e+
λ

e+
+ 6 t 2

e+σ2
λ
′

e+
λ

e+
]} 6pe+ ,

(20)
where t1e± and t2e± are the basis 4-vectors of the transverse polarization of the electron
and positron beam, respectively. Thus, the transverse polarization 4-vectors can be
written as

t± = cos(φ± − φ)t1e± + sin(φ± − φ)t2e± , (21)

where φ is the azimuthal angle of the scattering plane and φ± are the azimuthal
angles of the transverse polarization with respect to a fixed reference system, see
Fig. 2. A convenient choice of t1e± and t2e± in the laboratory system is given in
Appendix A.

With Eqs. (17)–(20), the spin density production matrix and the spin density
decay matrices can be expanded in terms of the Pauli matrices σa and σb, where the
superscripts a (b) = 1, 2, 3 refer to the polarization vectors of χ̃0

i (χ̃0
j ):

ρ
λiλj ,λ

′

i
λ
′

j

P = δλiλ
′

i
δλjλ

′

j
P (χ̃0

i χ̃
0
j ) + δλjλ

′

j

3
∑

a=1

σa
λiλ

′

i

Σa
P (χ̃0

i )

+δλiλ
′

i

3
∑

b=1

σb
λjλ

′

j

Σb
P (χ̃0

j ) +
3
∑

a,b=1

σa
λiλ

′

i

σb
λjλ

′

j

Σab
P (χ̃0

i χ̃
0
j ) , (22)

ρD,λ
′

i
λi

= δλ
′

i
λi

D(χ̃0
i ) +

3
∑

a=1

σa
λ
′

i
λi

Σa
D(χ̃0

i ) , (23)

ρD,λ
′

j
λj

= δλ
′

j
λj

D(χ̃0
j) +

3
∑

b=1

σb
λ
′

j
λj

Σb
D(χ̃0

j) . (24)

The contribution P (χ̃0
i χ̃

0
j ) is independent of the neutralino polarization, whereas

Σa
P (χ̃0

i ) and Σb
P (χ̃0

j ) depend on the polarization of the corresponding neutralino.
Then Σ3

P (χ̃0
i,j)/P (χ̃0

i χ̃
0
j) gives the longitudinal polarization of the neutralino χ̃0

i,j;
Σ1

P (χ̃0
i,j)/P (χ̃0

i χ̃
0
j ) is the transverse polarization of the neutralino in the scatter-

ing plane; and Σ2
P (χ̃0

i,j)/P (χ̃0
i χ̃

0
j ) is the polarization perpendicular to the scattering

plane. The terms Σab
P (χ̃0

i χ̃
0
j) describe the spin correlations between the polarizations

of the two produced particles. The contribution of the decay matrix, which is inde-
pendent of the neutralino polarization, is denoted by D(χ̃0

i,j), and Σa,b
D (χ̃0

i,j) denotes
the contribution that depends on the neutralino polarization.

With Eqs. (22)–(24) the squared amplitude |T |2, Eq. (11), of the combined pro-
cess of production and decay, for arbitrarily polarized beams, is given by

|T |2 = 4|∆(χ̃0
i )|2|∆(χ̃0

j )|2
[

P (χ̃0
i χ̃

0
j)D(χ̃0

i )D(χ̃0
j) +

3
∑

a=1

Σa
P (χ̃0

i )Σ
a
D(χ̃0

i )D(χ̃0
j)

+
3
∑

b=1

Σb
P (χ̃0

j )Σ
b
D(χ̃0

j )D(χ̃0
i ) +

3
∑

a,b=1

Σab
P (χ̃0

i χ̃
0
j)Σ

a
D(χ̃0

i )Σ
b
D(χ̃0

j)
]

, (25)
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z

x

y

χ̃0
j

e
+

θ

φ+

φ−

φ

e
−

P
−
T

P
−
L

P
−

P
+
TP

+
L

P
+

Figure 2: Decomposition of the e± polarization vectors P± into the longitudinal
components P±

L in the direction of the electron/positron momentum and the trans-
verse components P±

T = P±
T
~t± with respect to a fixed coordinate system (x, y, z).

The z-axis is in the direction of the electron momentum.

where the contributions P (χ̃0
i χ̃

0
j), Σa

P (χ̃0
i ), Σb

P (χ̃0
j), Σab

P (χ̃0
i χ̃

0
j) of the production spin

density matrix include the terms for arbitrary beam polarizations. The differential
cross section of the production and decay process is given by

dσ =
1

2s
|T |2dLips(s, pi) , (26)

where dLips(s, pi) = (2π)4δ4(p1 + p2 −
∑

i pi)
∏

i
d3pi

(2π)32Ei
; see Appendix B for more

details.

3.1 Contributions to the production spin density matrix

independent of neutralino polarization

In the following we regard the contribution P (χ̃0
i χ̃

0
j) to the spin density production

matrix, see Eq. (22), that is independent of the polarization of the neutralinos χ̃0
i

and χ̃0
j . We only list the contribution P (χ̃0

i χ̃
0
j )T , which depends on the transverse

e± beam polarization:

P (χ̃0
i χ̃

0
j )T = P (ZZ)T + P (ZẽL)T + P (ZẽR)T + P (ẽLẽR)T , (27)

P (ZZ)T = −P−
T P+

T

g4

cos4 ΘW
|∆(Z)|2LeRe(|OL

ij|2 + |OR
ij|2)r1 , (28)

P (ZẽL)T = −P−
T P+

T

1

2

g2

cos2 ΘW
Re

7



× {Re(∆(Z)fL∗
ℓi fL

ℓjO
L
ij[∆(ẽL, t)∗ + ∆(ẽL, u)∗]) r1

+ Im(∆(Z)fL∗
ℓi fL

ℓjO
L
ij[∆(ẽL, t)∗ −∆(ẽL, u)∗]) r2} , (29)

P (ZẽR)T = −P−
T P+

T

1

2

g2

cos2 ΘW

Le

× {Re(∆(Z)fR∗
ℓi fR

ℓjO
R
ij[∆(ẽR, t)∗ + ∆(ẽR, u)∗]) r1

− Im(∆(Z)fR∗
ℓi fR

ℓjO
R
ij[∆(ẽR, t)∗ −∆(ẽR, u)∗]) r2} , (30)

P (ẽLẽR)T = P−
T P+

T

1

4
g4

× {Re([∆(ẽL, t)∆(ẽR, u)∗ + ∆(ẽL, u)∆(ẽR, t)∗]fL∗
ℓi fL

ℓjf
R∗
ℓi fR

ℓj ) r1

+ Im([∆(ẽL, t)∆(ẽR, u)∗ −∆(ẽL, u)∆(ẽR, t)∗]fL∗
ℓi fL

ℓjf
R∗
ℓi fR

ℓj) r2} , (31)

where we have introduced the notation

r1 = [(t−p4)(t+p3) + (t−p3)(t+p4)](p1p2)

+[(p1p4)(p2p3) + (p1p3)(p2p4)− (p1p2)(p3p4)](t−t+) , (32)

r2 = εµνρσ[t+,µp1νp2ρp4σ(t−p3) + t−,µp1νp2ρp3σ(t+p4)

+t−,µt+,νp2ρp4σ(p1p3) + t−,µt+,νp1ρp3σ(p2p4)] , (33)

where ε0123 = 1 and ∆(Z) = i/(s −m2
Z), ∆(ẽL,R, t) = i/(t −m2

ẽL,R
), ∆(ẽL,R, u) =

i/(u−m2
ẽL,R

) with s = (p1 + p2)
2, t = (p1 − p4)

2, u = (p1 − p3)
2. The masses of the

selectrons and the Z-boson are given by mẽL,R
and mZ . Since we study the process

far beyond the Z-threshold, the Z-width can be neglected, and all propagators can
be taken as purely imaginary.

Note that only terms bilinearly dependent on transverse beam polarizations ap-
pear for me → 0, because the couplings to e+e− are vector- or axial-vector-like
[25, 26] (for the ẽL,R exchange the coupling to e+e− can be brought to that form
via Fierz identities [27]). Inspecting Eqs. (28)–(31), we note that transverse beam
polarization gives rise to the interference term P (ẽLẽR)T , which is absent for lon-
gitudinal beam polarization [11]. On the other hand, there are no terms P (ẽLẽL)T

and P (ẽRẽR)T for transversely polarized beams, but only for longitudinally polar-
ized beams. Both are consequences of the Dirac algebra, since transverse beam
polarization is described with an additional γ matrix; see Eqs. (19) and (20).

The differential cross section for the process e+e− → χ̃0
i χ̃

0
j is given by

dσ =
1

2(2π)2

q

s3/2
P (χ̃0

i χ̃
0
j) d cos θ dφ , (34)

where P (χ̃0
i χ̃

0
j ) contains the terms for arbitrary beam polarization and q is the

momentum of the neutralinos in the center-of-mass system (cms) (see Appendix A).
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3.1.1 CP-behaviour of the kinematical quantities

In the following, the CP properties of the kinematical quantity r2, Eq. (33), and
of the propagator difference [∆(ẽ, t)−∆(ẽ, u)] are discussed. These quantities con-
tribute to the interference terms of the matrix element squared and are proportional
to the imaginary parts of products of couplings, see Eqs. (29)–(31). In the cms, r2

is given by:
r2 = 2Eb [~t+(~p1 × ~p4)(t−p3) + ~t−(~p1 × ~p3)(t+p4)] , (35)

where Eb is the beam energy. Note that the second line of Eq. (33) vanishes in the
cms. Applying a CP transformation to r2, Eq. (35), with the following transforma-

tions (~p1, ~p2, ~p3, ~p4,~t−)
CP←→ (~p1, ~p2,−~p3,−~p4,~t+), we find that r2 is CP-even. Since

under CP ∆(ẽ, t)
CP←→ ∆(ẽ, u) the propagator differences in Eqs. (29)–(31) are CP-

odd, their products with the CP-even quantity r2 are CP-odd. We emphasize that
this is due to the Majorana nature of the neutralinos, which leads to the simultane-
ous presence of the t- and u-channel contributions, that the terms in Eqs. (29)–(31),
which involve the imaginary part of the couplings, are non-vanishing in general.

3.2 Contributions to the production spin density matrix

dependent on neutralino polarization

We now consider the terms Σb
P (χ̃0

j ) of the production spin density matrix, which
depend on the polarization 4-vector sb of the neutralino χ̃0

j . In the following we
only list the terms Σb

P (χ̃0
j )T , that involve the transverse beam polarization (for the

contributions independent of the beam polarization and the terms that depend on
the longitudinal beam polarization, see [11]):

Σb
P (χ̃0

j)T = Σb
P (ZẽL)T + Σb

P (ZẽR)T + Σb
P (ẽLẽR)T , (36)

Σb
P (ZẽL)T = P−

T P+
T

1

2

g2

cos2 ΘW

Re

× {Re(∆(Z)fL∗
ℓi fL

ℓjO
L
ij[∆(ẽL, u)∗ −∆(ẽL, t)∗]) rb

1

− Im(∆(Z)fL∗
ℓi fL

ℓjO
L
ij[∆(ẽL, u)∗ + ∆(ẽL, t)∗]) rb

2} , (37)

Σb
P (ZẽR)T = P−

T P+
T

1

2

g2

cos2 ΘW
Le

× {Re(∆(Z)fR∗
ℓi fR

ℓjO
R
ij[∆(ẽR, u)∗ −∆(ẽR, t)∗]) rb

1

+ Im(∆(Z)fR∗
ℓi fR

ℓjO
R
ij[∆(ẽR, u)∗ + ∆(ẽR, t)∗]) rb

2} , (38)
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Σb
P (ẽLẽR)T = P−

T P+
T

1

4
g4

× {Re([∆(ẽL, t)∆(ẽR, u)∗ −∆(ẽL, u)∆(ẽR, t)∗]fL∗
ℓi fL

ℓjf
R∗
ℓi fR

ℓj ) rb
1

+ Im([∆(ẽL, t)∆(ẽR, u)∗ + ∆(ẽL, u)∆(ẽR, t)∗]fL∗
ℓi fL

ℓjf
R∗
ℓi fR

ℓj ) rb
2} (39)

with the following notation

rb
1 = mχj

{[(t−sb)(t+p3) + (t−p3)(t+sb)](p1p2)

+[(p1s
b)(p2p3) + (p1p3)(p2s

b)− (p1p2)(p3s
b)](t−t+)} , (40)

rb
2 = εµνρσ mχj

[t+,µp1νp2ρs
b
σ(t−p3) + t−,µp1νp2ρp3σ(t+sb)

+t−,µt+,νp2ρs
b
σ(p1p3) + t−,µt+,νp1ρp3σ(p2s

b)] , (41)

where the e± polarization vector t± is given by Eq. (21). The polarization basis
4-vectors sb of the neutralino χ̃0

j fulfil the orthogonality relations sb · sc = −δbc and
sb·p4 = 0. The parametrization of the neutralino spin vectors is given in Appendix A.
The terms Σa

P (χ̃0
i )T , which depend on the polarization 4-vector sa of χ̃0

i , are obtained
by the substitutions sb → −sa, mχj

→ mχi
, p3 → p4 in Eqs. (40) and (41). Note

that, like P (χ̃0
i χ̃

0
j)T , the expressions Σb

P (χ̃0
j)T contain no contributions Σb

P (ẽLẽL)T

and Σb
P (ẽRẽR)T , but an interference term, Σb

P (ẽLẽR)T . Furthermore, owing to the
Majorana character of the neutralinos, there is no contribution Σb

P (ZZ)T . This is
contrary to the cases of unpolarized and longitudinally polarized beams [11].

4 CP asymmetries with transverse beam

polarization

4.1 CP asymmetries in neutralino production

In this section we construct CP asymmetries for the production process e+e− → χ̃0
i χ̃

0
j

with transverse e+ and e− beam polarizations. The corresponding cross section is
given in Eq. (34). Choosing the e− beam direction along the z-axis in the reference
system (see Appendix A and Fig. 2), the kinematical quantities in Eqs. (32) and
(33) can be rewritten as

r1 = −2E2
b q2 sin2 θ cos(η − 2φ) , (42)

r2 = 2E2
b q2 sin2 θ sin(η − 2φ) , (43)

where η = φ− + φ+. The CP-sensitive terms (∝ r2 ∝ sin(η − 2φ)) can be extracted
from the amplitude squared by an appropriate integration over the azimuthal angle

10



φ. We define the resulting asymmetry as

ACP (θ) =
N[ sin(η − 2φ) > 0; θ ]−N[ sin(η − 2φ) < 0; θ ]

N[ sin(η − 2φ) > 0; θ ] + N[ sin(η − 2φ) < 0; θ ]

=
1

σ

[

−
∫ π

2
+ η

2

η
2

+
∫ π+ η

2

π
2
+ η

2

−
∫ 3π

2
+ η

2

π+ η
2

+
∫ 2π+ η

2

3π
2

+ η
2

]

d2σ

dφ dθ
dφ , (44)

which depends on the polar angle θ. The first line in Eq. (44) exhibits how the
asymmetry is obtained in the experiment, where N[ sin(η − 2φ) > 0 (< 0) ] denotes
the number of events with sin(η − 2φ) > 0 (< 0). The second line in Eq. (44)
shows how the asymmetry is calculated. We can infer from Eqs. (29)–(31) that
ACP (θ), Eq. (44), would be zero if integrated over the whole range of θ: because
of the propagators, the contribution of the t-channel cancels that of the u-channel.
Therefore, we divide the integration over θ into two ranges in order to obtain the
CP asymmetry

ACP =
{

N[ sin(η − 2φ) > 0; cos θ > 0 ]− N[ sin(η − 2φ) > 0; cos θ < 0 ]

+N[ sin(η − 2φ) < 0; cos θ < 0 ]−N[ sin(η − 2φ) < 0; cos θ > 0 ]
}

/Ntot

=

[

∫ π/2

0
−
∫ π

π/2

]

ACP (θ) dθ , (45)

where Ntot denotes the total number of events. Note that for a measurement of
the CP asymmetry in Eq. (45) the production plane has to be reconstructed. In
Appendix C we propose how this can be done.

Finally we remark that an azimuthal asymmetry, analogous to that studied for
chargino production [21], can be defined also for neutralino production. It is given
by

Aφ =
N[ cos(η − 2φ) > 0 ]−N[ cos(η − 2φ) < 0 ]

N[ cos(η − 2φ) > 0 ] + N[ cos(η − 2φ) < 0 ]

=
1

σ

[

−
∫ 3π

4
+ η

2

π
4
+ η

2

+
∫ 5π

4
+ η

2

3π
4

+ η
2

−
∫ 7π

4
+ η

2

5π
4

+ η
2

+
∫ 9π

4
+ η

2

7π
4

+ η
2

]

dσ

dφ
dφ . (46)

In this case the integration over the polar angle θ is performed over the whole range.
This choice of the ranges of the integrations has the effect of extracting the terms
∝ r1 ∝ cos(η − 2φ), Eqs. (28)–(31), from the squared amplitude. Note however,
that this observable is CP-even.

4.2 CP asymmetries in neutralino production and decay

The reconstruction of the neutralino momenta is not necessary if we include the
subsequent decays χ̃0

j → ℓ̃± ℓ∓1 (where ℓ̃ = ℓ̃L, ℓ̃R) and ℓ̃± → ℓ±2 χ̃0
1, yielding to the

11



final state χ̃0
j → ℓ∓1 ℓ±2 χ̃0

1. The label of the leptons indicates whether they stem from
the first or the second decay. The cross sections for the combined processes are
given in Appendix B, Eqs. (69) and (70), respectively. The CP-sensitive terms of
the squared amplitudes depend on sin(η − 2φℓ1) or sin(η − 2φℓ2), where φℓ1 and
φℓ2 are the azimuthal angles of the final leptons ℓ∓1 and ℓ±2 . As a first step, we
integrate the differential cross section in Eq. (69) over all angles except φℓ1 (the
angles are integrated over their whole range). Then the CP asymmetry obtained by
the azimuthal distribution of ℓ−1 is given by

A−
1 =

N[ sin(η − 2φℓ1) > 0 ]− N[ sin(η − 2φℓ1) < 0 ]

N[ sin(η − 2φℓ1) > 0 ] + N[ sin(η − 2φℓ1) < 0 ]

=
1

σ1

[

−
∫ π

2
+ η

2

η

2

+
∫ π+ η

2

π
2
+ η

2

−
∫ 3π

2
+ η

2

π+ η

2

+
∫ 2π+ η

2

3π
2

+ η

2

]

dσ1

dφℓ1

dφℓ1 , (47)

where σ1 = σ(e+e− → χ̃0
1χ̃

0
j )×B(χ̃0

j → ℓ̃+ℓ−1 ) and the upper index of A−
1 corresponds

to the electric charge of the observed lepton ℓ−1 .

As a next step, we integrate the differential cross section in Eq. (70) over all angles
except φℓ2, in order to define the CP asymmetry of the azimuthal distribution of ℓ+

2 :

A+
2 =

N[ sin(η − 2φℓ2) > 0 ]− N[ sin(η − 2φℓ2) < 0 ]

N[ sin(η − 2φℓ2) > 0 ] + N[ sin(η − 2φℓ2) < 0 ]

=
1

σ2

[

−
∫ π

2
+ η

2

η
2

+
∫ π+ η

2

π
2
+ η

2

−
∫ 3π

2
+ η

2

π+ η
2

+
∫ 2π+ η

2

3π
2

+ η
2

]

dσ2

dφℓ2

dφℓ2 , (48)

where σ2 = σ(e+e− → χ̃0
1χ̃

0
j) × B(χ̃0

j → ℓ̃+ℓ−1 ) × B(ℓ̃+ → χ̃0
1ℓ

+
2 ). Note that, since

Σb
D(χ̃0

j) for the two C-conjugate decay modes of χ̃0
j → ℓ̃±ℓ∓ differs only by a sign

(see Eqs. (65) and (67)) the asymmetries with upper indices + and − are related
by A+

i = −A−
i , i = 1, 2. In order to measure both asymmetries, Eqs. (47) and (48),

it is necessary to distinguish the lepton ℓ∓1 , originating from the decay χ̃0
j → ℓ̃±ℓ∓1 ,

and the lepton ℓ±2 from the subsequent decay ℓ̃± → χ̃0
1ℓ

±
2 . This can be accomplished

by their different energy distributions, when the masses of the particles involved are
known, provided that their measured energies do not lie in the overlapping region
of their energy distributions [20].

However, we can also define a CP asymmetry where it is not necessary to distin-
guish whether the leptons stem from the first or the second step of the decay chain
χ̃0

j → ℓ̃± ℓ∓1 → ℓ∓1 ℓ±2 χ̃0
1. This asymmetry is defined by

A− =
N[ sin(η − 2φℓ−) > 0 ]− N[ sin(η − 2φℓ−) < 0 ]

N[ sin(η − 2φℓ−) > 0 ] + N[ sin(η − 2φℓ−) < 0 ]

=
(
∫+− ∫−)( dσ1

dφℓ1

dφℓ1 + dσ2

dφℓ2

dφℓ2)
∫ 2π
0 ( dσ1

dφℓ1

dφℓ1 + dσ2

dφℓ2

dφℓ2)
, (49)
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where ℓ− is either ℓ−1 or ℓ−2 and N[ sin(η − 2φℓ−) > 0 (< 0) ] denotes the number of
events where sin(η − 2φℓ−) > 0 (< 0). Hence, only the charge of the lepton and
its azimuthal angle φℓ− has to be determined. In Eq. (49)

∫± corresponds to an
integration over the azimuthal angles φℓ1 or φℓ2, where sin(η − 2φℓ1,2

) is positive or
negative, respectively. An analogous asymmetry can be defined for ℓ+ as well. The
asymmetry A−, Eq. (49), can be related to the asymmetries A−

1 and A−
2 , Eqs. (47)

and (48), by

A− =
1

[1 + B(ℓ̃− → ℓ−χ̃0
1)]

[

A−
1 + A−

2 B(ℓ̃− → ℓ−χ̃0
1)
]

. (50)

5 Numerical studies

5.1 CP-even observables in neutralino production

Before we concentrate on the numerical study of CP-odd observables, we would like
to give an example, which shows that a measurement of only CP-even observables
may not be sufficient to unambiguously determine the SUSY parameters of the
neutralino sector. However, a measurement of a CP-odd asymmetry may help to
single out the correct solution. This may be particularly important if only the two
lower states of the neutralino spectrum are kinematically accessible.

Scenario |M1| φM1
M2 |µ | φµ tanβ mẽL

mẽR

Complex 183 0.05π 311 343 1.9π 2.1 297 181
Real 180 0 310 335 0 3 300 180

Table 1: Input parameters |M1|, φM1
, M2, |µ|, mẽL

and mẽR
for the complex and

the real scenario. All mass parameters are given in GeV.

To this end we consider the complex scenario with the parameters given in Ta-
ble 1, leading to mχ̃0

1
= 170.9 GeV and mχ̃0

2
= 259.5 GeV. At

√
s = 500 GeV

only the cross sections of e+e− → χ̃0
1χ̃

0
2 would be measurable, giving σ(e+e− →

χ̃0
1χ̃

0
2) = (16.4, 18.3, 30.3) fb for the e+ and e− longitudinal beam polarizations

(P−
L ,P+

L ) = (0, 0), (−80%, +60%), (+80%,−60%), respectively. We assume that
the masses mχ̃0

1,2
and mẽL,R

are measured with 1% accuracy. For the cross sections

we take an error corresponding to a 1-σ deviation for a luminosity Lint = 100 fb−1.
Then within this accuracy, we would obtain compatible neutralino masses and cross
sections with the real SUSY parameter set, which is also given in Table 1, namely
mχ̃0

1
= 169.3 GeV and mχ̃0

2
= 258.3 GeV, and cross sections σ(e+e− → χ̃0

1χ̃
0
2) =
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Figure 3: (a) CP asymmetry ACP , Eq. (45), and (b) cross section σ(e+e− → χ̃0
1χ̃

0
2)

as a function of φM1
for scenario A of Tab.2, with tan β = 3 (solid line), tanβ = 10

(dashed line), tanβ = 30 (dotted line), for
√

s = 500 GeV and transverse beam
polarizations (P−

T ,P+
T ) = (100%, 100%).

(16.3, 18.2, 30.0) fb. The CP-odd asymmetry ACP , Eq. (45), however, would re-
sult in about 2.8% with (P−

T ,P+
T ) = (80%, 60%) for the complex scenario with

φM1
= 0.05π and φµ = 1.9π. Although the asymmetry is small it should be exper-

imentally measurable including the statistical uncertainty. Therefore the complex
scenario would be clearly distinguishable from the real scenario, which results in an
asymmetry identical to zero. This simple example illustrates that it is necessary to
measure CP-odd observables for truly identifying CP-violating effects.

In the following we analyse numerically the CP-odd asymmetries, Eq. (45) and
Eqs. (47)–(49), at the ILC with

√
s = 500 GeV and transversely polarized e±

beams. We especially focus on the influence of the phase φM1
of the gaugino mass

parameter M1 = |M1|eiφM1 . Throughout we assume the GUT-inspired releation
|M1| = 5/3 tan2 ΘW M2. Furthermore we show that CP-odd observables are nec-
essary to determine unambiguously the underlying SUSY parameters. In order to
study the full phase dependences of the CP-odd observables, we do not take into
account the restrictions from the EDMs and vary φµ and φM1

in the whole range.

5.2 CP-odd asymmetries in neutralino production

First we discuss the CP-odd asymmetry ACP , Eq. (45), for the neutralino production
processes e+e− → χ̃0

1χ̃
0
2 and e+e− → χ̃0

1χ̃
0
3. CP violation is due to the interference

terms P (ZẽL)T , P (ZẽR)T , and P (ẽLẽR)T , Eqs. (29)–(31). We assume that the mo-
menta of the produced neutralinos can be reconstructed by analysing the subsequent
two-body decays; see Appendix C.
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Scenario A B

|M1| 123.3 120.8
φM1

0.5π 0.5π
M2 245 240
|µ | 160 300
φµ 0 0
mẽL

400 400
mẽR

150 150

tanβ 3 30 3
mχ̃0

1
99.4 105.5 117.0

mχ̃0
2

143.0 144.1 197.6

mχ̃0
3

169.7 178.6 303.9

mχ̃0
4

289.7 281.5 351.7

Table 2: Input parameters |M1|, M2, |µ|, mẽL
and mẽR

and the resulting masses
mχ̃0

i
, i = 1, . . . , 4 for tan β = 3, 30 and specific values of the phases φM1

and φµ. All
mass parameters and masses are given in GeV.

5.2.1 CP-odd asymmetries in e+e− → χ̃0
1χ̃

0
2 production

In Fig. 3a we show ACP , Eq. (45), for e+e− → χ̃0
1χ̃

0
2 as a function of φM1

for scenario
A, given in Table 2, for tanβ = 3, 10, 30, with

√
s = 500 GeV and transverse beam

polarization (P−
T ,P+

T ) = (100%, 100%). For this scenario we obtain for tanβ = 3
(30) an asymmetry ACP of about 8.2 (7.8)%, for φM1

= 0.5π. The peculiar shape of
the curve is a result of the combined contributions of the Z–ẽR interference term,
which has its maximum at φM1

≈ 0.4π, and of the ẽL–ẽR interference term, with
its maximum at φM1

≈ 0.8π. The contribution of the Z–ẽL interference term is
suppressed because of the large mass of the left-handed selectron. The cross sections
for the process e+e− → χ̃0

1χ̃
0
2 are plotted in Fig. 3b and are about 163 (144) fb for

φM1
= 0.5π. Note that the cross sections are independent of the transverse beam

polarization, because these contributions depend on cos 2φ (sin 2φ), see Eq. (42),
and disappear if integrated over the whole range of φ. In Figs. 3a and b we can
clearly see the antisymmetric dependence of the CP asymmetry and the symmetric
behaviour of the cross section on the phase φM1

. It is therefore obvious that both
kinds of observables are needed for an unambiguous determination of the phase.
Note that ACP can be sizeable even for values of φM1

close to 0 and π, which would
be favoured by the EDM constraints.

Now we estimate the observability of the asymmetry. One assumes that the same
degree of transverse beam polarization is feasible as for the longitudinal polarization
(P−

T = 80% and P+
T = 60%). Since the CP asymmetry ACP depends bilinearly on
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Figure 4: (a) contours of the CP asymmetry ACP , Eq. (45), in % for the process
e+e− → χ̃0

1χ̃
0
2 in the |µ|–M2 plane. The MSSM parameters are φM1

= 0.5π, φµ = 0,
tan β = 3, mẽL

= 400 GeV and mẽR
= 150 GeV at

√
s = 500 GeV with transverse

beam polarizations (P−
T ,P+

T ) = (100%, 100%). (b) shows the contours of the lumi-
nosity Lint, Eq. (51), needed to measure the CP-odd asymmetry ACP at the 5-σ
level with degrees of transverse polarization (P−

T ,P+
T ) = (80%, 60%). The light-grey

region is experimentally excluded by the exclusion bound mχ̃±

1
< 104 GeV [28].

the degrees of transverse beam polarization P−
T (P+

T ) of the e− (e+), see Eqs. (29)–
(31), we have to multiply the asymmetry ACP for (P−

T ,P+
T ) = (100%, 100%) with a

factor 0.48. The luminosity Lint required for a measurement with specific significance
can be estimated as

Lint = (Nσ)2/[A2
CP σ] , (51)

where Nσ denotes the number of standard deviations and σ the corresponding cross
section for neutralino production. We obtain a luminosity Lint ≈ 99 (124) fb−1

needed for a discovery with 5-σ, for tan β = 3 (30) and φM1
= 0.5π.

Figure 4a shows the contour lines of the CP asymmetry ACP , Eq. (45), at
√

s =
500 GeV for e+e− → χ̃0

1χ̃
0
2 in the |µ|–M2 plane. The MSSM parameters are chosen

to be φM1
= 0.5π, φµ = 0, tanβ = 3, mẽL

= 400 GeV and mẽR
= 150 GeV. The

largest CP-odd asymmetry ACP is attained for sizeable gaugino–higgsino mixing.
If the beams are fully transversely polarized, (P−

T ,P+
T ) = (100%, 100%), then ACP

could reach up to about 8.8% for M2 ≈ 240 GeV and |µ| ≈ 140 GeV. With a higher
centre-of-mass energy

√
s = 800 GeV, the asymmetry ACP increases to about 12%,

because the cross section, which is the denominator of ACP , decreases stronger
than its numerator. In this region of the parameter space the Z–ẽR interference
term, Eq. (30), is the main contribution to the asymmetry ACP . In a gaugino-like
scenario, for instance M2 = 250 GeV and |µ| = 450 GeV, the ẽL–ẽR interference
term is dominant and the others are suppressed. Generally the ẽL–ẽR contribution
to the asymmetry is small for e+e− → χ̃0

1χ̃
0
2 and ACP is therefore reduced to about

1.6%. In order to obtain a larger ẽL–ẽR contribution, a larger mass splitting of ẽL
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Figure 5: Contours of the CP asymmetry ACP , Eq. (45), in % for the process (a)
e+e− → χ̃0

1χ̃
0
2 and (b) e+e− → χ̃0

1χ̃
0
3 in the φµ–φM1

plane, for scenario A with
tan β = 3, see Table 2, for

√
s = 500 GeV and transverse beam polarizations

(P−
T ,P+

T ) = (100%, 100%).

and ẽR is necessary. If mẽL
≈ mẽR

the interference term P (ẽLẽR)T is very small,
see Eq. (31). In Fig. 4b we plot the corresponding luminosity Lint, Eq. (51), for
transverse beam polarizations of (P−

T ,P+
T ) = (80%, 60%). For the maximum value

of ACP , a luminosity Lint of about 81 fb−1 would be needed for a discovery with 5-σ.

In Fig. 5a we show the contour lines of ACP , Eq. (45), for e+e− → χ̃0
1χ̃

0
2 in

the φµ–φM1
plane for scenario A (Table 2) at

√
s = 500 GeV and with transverse

beam polarizations (P−
T ,P+

T ) = (100%, 100%). We obtain a maximum value of
the CP-odd asymmetry ACP of about 8.9% for φµ ≈ 1.6π and φM1

≈ 0.4π. In
this scenario the φM1

and the φµ dependence are of the same order of magnitude.
The main contribution to the CP-odd asymmetry originates from the interference
term P (ZẽR)T , Eq. (30), i.e. the primarily involved coupling is fR∗

ℓ1 fR
ℓ2O

R
12. The

corresponding cross section for φµ = 1.6π and φM1
= 0.4π is about 139 fb and

the luminosity Lint for a discovery with 5-σ is about 99 fb−1 for transverse beam
polarizations (P−

T ,P+
T ) = (80%, 60%). Note also in this case the CP asymmetry

ACP can be sizeable for values of φM1
and φµ close to 0 and π.

5.2.2 CP-odd asymmetries in e+e− → χ̃0
1χ̃

0
3 production

Figure 5b shows the contour lines of the CP asymmetry ACP , Eq. (45), in the φµ–
φM1

plane for e+e− → χ̃0
1χ̃

0
3. As shown in the case before, a large gaugino–higgsino

mixing is necessary to obtain sizeable CP asymmetries. We investigate scenario
A of Table 2, at

√
s = 500 GeV and (P−

T ,P+
T ) = (100%, 100%). In this scenario

the maximum value of ACP is about 9.8% for φµ ≈ 0.1π and φM1
≈ 1.2π. Again

the main CP-violating contribution is due to the Z–ẽR interference term. In this
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Figure 6: (a) CP asymmetry ACP , Eq. (45), and (b) cross section σ(e+e− → χ̃0
1χ̃

0
3) as

a function of φM1
for scenario A of Table 2, with tanβ = 3 (solid line), tan β = 10

(dashed line), tanβ = 30 (dotted line), for
√

s = 500 GeV and transverse beam
polarizations (P−

T ,P+
T ) = (100%, 100%).

example the largest asymmetries are obtained for small values of φµ. For φµ = 0.1π
and φM1

= 1.2π the cross section σ(e+e− → χ̃0
1χ̃

0
3) is 76 fb and the luminosity for a

discovery with 5-σ is about 150 fb−1.

Figure 6a shows the CP asymmetry ACP , Eq. (45), for the process e+e− → χ̃0
1χ̃

0
3

as a function of φM1
for scenario A defined in Table 2, for tan β = 3, 10, 30 and√

s = 500 GeV. For tanβ = 3 (30) the asymmetry ACP reaches its maximum of
about 9.6 (7.4)% at φM1

= 1.25 (1.55)π. Here again the dominant contribution to
ACP comes from the interference term P (ZẽR)T ; see Eq. (30). Note that the maximal
CP-violating phase φM1

= π
2

(mod π) does not necessarily lead to the highest value
of the asymmetry. The reason for this is an interplay between the φM1

dependence of
the cross section, shown in Fig. 6b, and that of the numerator of the asymmetry. In
Fig. 6b the corresponding cross section σ(e+e− → χ̃0

1χ̃
0
3) is plotted. For the maximal

asymmetry it is about 78 (91) fb. In order to measure the asymmetry ACP at 5-σ,
the required luminosity is Lint ≈ 150 (217) fb−1.

5.3 Neutralino production and subsequent two-body decays

Now we discuss neutralino production e+e− → χ̃0
i χ̃

0
j with the subsequent decays

χ̃0
j → ℓ̃±Rℓ∓1 and ℓ̃±R → χ̃0

1ℓ
±
2 . We study the CP-odd asymmetries, Eqs. (47)–(49),

which are defined by the azimuthal distribution of the final leptons ℓ1 and ℓ2. In
this case CP-violation effects arise from the contributions of the spin correlations
of the decaying neutralino, Eqs. (37)–(39), which depend on the transverse beam
polarization. We give numerical examples for e+e− → χ̃0

1χ̃
0
2 and e+e− → χ̃0

1χ̃
0
3.

18



x

x

0 1 2
-0.15

-0.1

-0.05

0

0.05

0.1

0.15
(a)

�

M

1

[ � ℄

A

+ i

x

x

0 1 2
30

40

50

60
(b)

�

M

1

[ � ℄

�

[

f

b

℄

A+
1

A+
2

A+

e
+
e
− → χ̃0

1χ̃0
2 → χ̃0

1χ̃0
1ℓ∓1 ℓ±2 e

+
e
− → χ̃0

1χ̃0
2 → χ̃0

1χ̃0
1ℓ

∓
1 ℓ±2

Figure 7: (a) CP-odd asymmetries A+
1 (solid), A+

2 (dashed) and A+ (dotted),
Eqs. (47)–(49), for the process e+e− → χ̃0

1χ̃
0
2 → χ̃0

1χ̃
0
1ℓ

∓
1 ℓ±2 and (b) the corresponding

cross section as a function of φM1
in scenario B (Table 2) with tanβ = 3. The centre-

of-mass energy is fixed at
√

s = 500 GeV and the transverse beam polarizations are
(P−

T ,P+
T ) = (100%, 100%).

5.3.1 CP-odd asymmetries in e+e− → χ̃0
1χ̃

0
2 production and decay

In Figure 7a we show the CP asymmetries A+
1,2 and A+, Eqs. (47)–(49), as a function

of φM1
for scenario B defined in Table 2. The beam energy is

√
s = 500 GeV

with degrees of transverse beam polarizations (P−
T ,P+

T ) = (100%, 100%). We study
neutralino production e+e− → χ̃0

1χ̃
0
2, with the subsequent decays χ̃0

2 → ℓ̃±Rℓ∓1 and
ℓ̃±R → χ̃0

1ℓ
±
2 . For A+

1 we obtain a maximal value of about 11.6% for φM1
= 0.45π.

The asymmetry A+
2 is reduced to 2.1% by the additional contribution to the phase

space from the decay ℓ̃±R → χ̃0
1ℓ

±
2 . Since the branching ratio B(ℓ̃±R → χ̃0

1ℓ
±
2 ) = 1,

we obtain a CP-odd asymmetry A+ ≈ 6.9%, see Eq. (50), for φM1
= 0.45π. In this

scenario the main contribution to the CP-odd asymmetries comes from the ẽL–ẽR

term, Eq. (39). With a smaller mass splitting between mẽL
and mẽR

the contribution
to the asymmetry of Σb

P (ẽLẽR)T becomes larger, but as the cross section is increasing,
the combination of the two effects leads to a smaller asymmetry. The corresponding
cross section σ(e+e− → χ̃0

1χ̃
0
2 → χ̃0

1χ̃
0
1ℓ

∓
1 ℓ±2 ) is plotted in Fig. 7b. For φM1

= 0.45π,
we obtain a cross section of about 46 fb. Thus, for (P−

T ,P+
T ) = (80%, 60%), the

luminosity Lint needed for a discovery with 5-σ of the asymmetry A+
1 is about

176 fb−1. For a discovery with 5-σ of A+, Lint ≈ 517 fb−1 are needed.

In Fig. 8a we show the contour lines of the CP-odd asymmetry A+
1 , Eq. (47), for

e+e− → χ̃0
1χ̃

0
2 → χ̃0

1ℓ̃
−
Rℓ+

1 in the |µ|–M2 plane. The other parameters are φM1
= 0.5π,

φµ = 0, tan β = 3, mẽL
= 400 GeV and mẽR

= 150 GeV. The centre-of-mass
energy is fixed at

√
s = 500 GeV with degrees of transverse beam polarizations

(P−
T ,P+

T ) = (100%, 100%). In this figure we only consider the parameter regions
where the decay channel χ̃0

2 → ℓ̃±Rℓ∓1 is kinematically accessible. The maximum
value of the CP asymmetry A+

1 ≈ 12.6% is obtained for a gaugino-like scenario
with M2 = 200 GeV and |µ| = 280 GeV. For these parameters the neutralino
masses are mχ̃0

1
= 97 GeV and mχ̃0

2
= 163.5 GeV, and therefore the branching ratio
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Figure 8: Contours of the CP-odd asymmetry A+
1 , Eq. (47), in % in the |µ|–M2

plane for the process (a) e+e− → χ̃0
1χ̃

0
2 → χ̃0

1ℓ̃
−
Rℓ+

1 and (b) e+e− → χ̃0
1χ̃

0
3 → χ̃0

1ℓ̃
−
Rℓ+

1 .
The MSSM parameters are φM1

= 0.5π, φµ = 0, tan β = 3, mẽL
= 400 GeV and

mẽR
= 150 GeV. The centre-of-mass energy is fixed at

√
s = 500 GeV and the

transverse beam polarizations are (P−
T ,P+

T ) = (100%, 100%). The light-grey region
is excluded by mχ̃±

1
< 104 GeV [28].

B(χ̃0
2 → ℓ̃±Rℓ∓1 ) = 1 and the cross section σ(e+e− → χ̃0

1χ̃
0
2 → χ̃0

1ℓ̃
±
Rℓ∓1 ) = 54 fb.

Thus for (P−
T ,P+

T ) = (80%, 60%) the required luminosity Lint for a discovery with
5-σ, Eq. (51), is about 128 fb−1. For this parameter point the asymmetry A+,
Eq. (49), is about 6.7% and the luminosity Lint ≈ 456 fb−1. For higgsino-like
scenarios (M2 > |µ|) the Σb

P (ZẽR)T interference term, Eq. (38), gives the main
contribution to the CP-odd asymmetry, which can be traced back to the structure of
the corresponding coupling fR∗

ℓ1 fR
ℓ2O

R
12. On the other hand for gaugino-like scenarios

(|µ| > M2) the contribution of the interference term Σb
P (ẽLẽR)T dominates, with the

corresponding coupling fL∗
ℓ1 fL

ℓ2f
R∗
ℓ1 fR

ℓ2. The sign change of the asymmetry in the |µ|–
M2 plane is therefore due to a cancellation of the Z–ẽR and the ẽL–ẽR contributions
which have opposite signs.

5.3.2 CP-odd asymmetries in e+e− → χ̃0
1χ̃

0
3 production and decay

In Fig. 8b we show the contour lines of the CP asymmetry A+
1 for the process e+e− →

χ̃0
1χ̃

0
3 → χ̃0

1ℓ̃
−
Rℓ+

1 in the |µ|–M2 plane. We fix the MSSM parameters at φM1
= 0.5π,

φµ = 0, tan β = 3, mẽL
= 400 GeV and mẽR

= 150 GeV with
√

s = 500 GeV
and (P−

T ,P+
T ) = (100%, 100%). The maximal CP asymmetry A+

1 is about 31% for
M2 = 300 GeV and |µ| = 160 GeV. For this parameter point we obtain neutralino
masses of mχ̃0

1
= 115 GeV and mχ̃0

2
= 156 GeV, and therefore the branching ratio

is again B(χ̃0
2 → ℓ̃±R ℓ∓1 ) = 1. Hence the cross section σ(e+e− → χ̃0

1χ̃
0
3 → χ̃0

1ℓ̃
±
R ℓ∓1 ) =

83 fb. For transverse beam polarizations (P−
T ,P+

T ) = (80%, 60%) the luminosity Lint,
Eq. (51), for a discovery with 5-σ of A+

1 is about 14 fb−1. For these parameters the
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Figure 9: CP-odd asymmetries A+
1 (solid), A+

2 (dashed) and A+ (dotted), Eqs. (47)–
(49), for the process e+e− → χ̃0

1χ̃
0
3 → χ̃0

1χ̃
0
1ℓ

∓
1 ℓ±2 and (b) the corresponding cross

section as a function of φM1
in scenario A, see Table 2, with tan β = 3. The

centre-of-mass energy is
√

s = 500 GeV and the transverse beam polarizations are
(P−

T ,P+
T ) = (100%, 100%).

CP-odd asymmetry A+ is 17.3% and the necessary luminosity (for a discovery with
5-σ) Lint ≈ 43 fb−1. In the case of e+e− → χ̃0

1χ̃
0
3 the CP-violating contributions

Σb
P (ZẽR)T and Σb

P (ẽLẽR)T , Eqs. (38) and (39), enter with the same sign due to
the corresponding couplings. In gaugino-like scenarios the contributions of both
interference terms are suppressed, therefore the asymmetry decreases.

In Fig. 9a the CP-odd asymmetries A+
1,2 and A+, Eqs. (47)–(49), for the pro-

cess e+e− → χ̃0
1χ̃

0
3 → χ̃0

1χ̃
0
1ℓ

∓
1 ℓ±2 are plotted as a function of φM1

for scenario
A, see Table 2. For a centre-of-mass energy

√
s = 500 GeV and with transverse

beam polarization (P−
T ,P+

T ) = (100%, 100%) the maximum of the CP asymmetry
A+

1 (A+) ≈ 26.2 (14.3)% is obtained for φM1
≈ 0.75π. In this scenario we have large

mixing between the gaugino and the higgsino components, the main contribution to
A+

1 stems again from the Z–ẽR interference term, which is about 21.4%. The ẽR–ẽL

contribution is 4%, wheras the Z–ẽL contribution is suppressed by the large mass of
the left selectron. Figure 9b shows the cross section σ(e+e− → χ̃0

1χ̃
0
3 → χ̃0

1ℓ̃
±
Rℓ∓1 ). For

the maximum of the CP asymmetries A+
1 (A+), for φM1

≈ 0.75π, the cross section
is 78 fb. For (P−

T ,P+
T ) = (80%, 60%) the luminosity Lint for a discovery with 5-σ is

about 20 (68) fb−1.

5.4 Determination of the SUSY parameters

In the following we will give an example for the accuracy that can be expected
in the determination of the MSSM parameters, focusing on the determination of
the complex parameter M1 = |M1|ei φM1 . In order to determine the parameters
unambiguously, CP-even as well as CP-odd observables have to be included in the
set of observables from which the underlying parameters are extracted.
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(P−
L ,P+

L ) (0, 0) (−80%, +60%) (+80%,−60%)

σ(e+e− → χ̃0
1χ̃

0
2) 47.27 fb 87.13 fb 52.80 fb

σ(e+e− → χ̃0
2χ̃

0
2) 11.59 fb 33.12 fb 1.186 fb

σ(e+e− → χ̃0
1χ̃

0
3) 9.83 fb 5.68 fb 23.42 fb

σ(e+e− → χ̃0
1χ̃

0
4) 7.86 fb 7.74 fb 15.53 fb

Table 3: Cross sections for different sets of longitudinal beam polarizations in
scenario B with φM1

= 0.5π and φµ = 0 for
√

s = 500 GeV.

Our set of observables contains the neutralino masses mχ̃0
j
, the cross sections

e+e− → χ̃0
i χ̃

0
j for different choices of longitudinal beam polarizations (P−

L ,P+
L ) =

(0, 0), (−80%, +60%), (+80%,−60%) and the CP-odd asymmetry ACP , Eq. (45).
We now take scenario B with φM1

= 0.5π and φµ = 0, see Table 2, as our ref-
erence point of input parameters. We calculate the neutralino masses mχ̃0

1
, mχ̃0

2
,

mχ̃0
3

and mχ̃0
4
, see Table 2. The cross sections for e+e− → χ̃0

1χ̃
0
2, e+e− → χ̃0

2χ̃
0
2,

e+e− → χ̃0
1χ̃

0
3 and e+e− → χ̃0

1χ̃
0
4 for

√
s = 500 GeV with different sets of lon-

gitudinal beam polarizations are displayed in Table 3. The CP asymmetry ACP

for the process e+e− → χ̃0
1χ̃

0
2 is about +2% for transverse beam polarizations

(P−
T ,P+

T ) = (80%, 60%). We regard these calculated values as real experimental
data, where we assume errors of 1% for the masses. For the error of the cross
sections of each polarization configuration and of the asymmetry we take a 1-σ de-
viation for a luminosity Lint = 100 fb−1. Our approach for the determination of
the error of the parameters (in particular the error of M1) is described as follows:
we perform a random scan over the input parameters |M1|, φM1

, M2, |µ |, φµ and
tan β around our reference point and select the points which pass the condition
|Omeas

i − Ocalc
i | < |∆Omeas

i |, where Omeas
i are the values of the observables at our

reference point, see Table 3, ∆Omeas
i is the corresponding error, and Ocalc

i are the
values of the calculated observables obtained through the random scan.

In Fig. 10 we show the SUSY parameter points compatible with our reference
scenario in the Re(M1)–Im(M1) plane. If we consider only the CP-even observables
(cross sections and masses) then we obtain two regions in the parameter space com-
patible with our reference scenario. This ambiguity can be resolved if one includes
in addition the CP-odd observable ACP , Eq. (45). For the error of M1 we obtain:
Re(M1) = 0± 5.9 GeV and Im(M1) = 120.8± 1.3 GeV.

6 Conclusion

We have studied the processes e+e− → χ̃0
1χ̃

0
2 and e+e− → χ̃0

1χ̃
0
3 with subsequent

decays χ̃0
2,3 → ℓ̃Rℓ and ℓ̃R → χ̃0

1ℓ, where ℓ = e, µ, at a linear collider with transverse
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Figure 10: SUSY parameter points in the Re(M1)–Im(M1) plane consistent with
scenario B, if one assumes an uncertainty of 1% for the masses and 1-σ deviation
(Lint = 100 fb−1) for the cross sections and the asymmetry. The parameters |M1|,
φM1

, M2, |µ |, φµ and tanβ have been randomly scanned around the reference point
B. The grey points are excluded if one takes into account the CP-odd observable
ACP , Eq. (45).

e+ and e− beam polarizations. We have discussed different CP asymmetries, which
are due to azimuthal distributions of the neutralinos or the final leptons. We have
pointed out that these CP asymmetries are non-vanishing thanks to the Majorana
character of the neutralinos. We have given the analytical expressions for the CP
asymmetries and the cross sections in the spin density matrix formalism, including
the complete spin correlations between production and decay of the neutralinos. At
the ILC at

√
s = 500 GeV and with degrees of transverse e± beam polarizations

(P−
T ,P+

T ) = (80%, 60%), the CP asymmetries can reach up to about 15%. Also
we have shown that these CP asymmetries can be observed in a broad range of
the MSSM parameter space. Furthermore, we have discussed the unambiguous
determination of the underlying SUSY parameters, which requires CP-even as well
as CP-odd observables.
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Appendices

A Momentum and polarization vectors

The basis vectors for transverse e− beam polarization are

~t 1
e− = (~t 2

e− × ~pe−)/|~t 2
e− × ~pe−| , (52)

~t 2
e− = (~pe− × ~pχj

)/|~pe− × ~pχj
| . (53)

The basis vectors for transverse e+ beam polarization are defined analogously. In a
fixed coordinate system (x, y, z), with the z-axis pointing along the beam direction
the basis vectors in the cms are given by

t1e± = (0, cosφ, sin φ, 0) and t2e± = (0,− sin φ, cos φ, 0) . (54)

The momentum 4-vectors of χ̃0
i and χ̃0

j are

pχj , µ = p4, µ = q(Eχj
/q, cos φ sin θ, sin φ sin θ, cos θ) ,

pχi, µ = p3, µ = q(Eχi
/q,− cos φ sin θ,− sin φ sin θ,− cos θ) , (55)

with

Eχi,j
=

s + m2
χi,j
−m2

χj,i

2
√

s
, q =

λ
1

2 (s, m2
χi

, m2
χj

)

2
√

s
, (56)

where λ(a, b, c) = a2 + b2 + c2 − 2(ab + ac + bc). The three spin-basis vectors sb
χj , µ

of χ̃0
j are chosen to be

s1
χj , µ =

(

0,
~s2 × ~s3

|~s2 × ~s3|

)

= (0,− cos φ cos θ,− sin φ cos θ, sin θ) ,

s2
χj , µ =

(

0,
~pχj
× ~pe−

|~pχj
× ~pe−|

)

= (0, sin φ,− cos φ, 0) ,

s3
χj , µ =

1

mχj

(

q,
Eχj

q
~pχj

)

=
Eχj

mχj

(q/Eχj
, cos φ sin θ, sin φ sin θ, cos θ) , (57)

where ~s 1
χ̃j

, ~s 2
χ̃j

and ~s 3
χ̃j

build a right-handed-system. The momentum 4-vector of the

lepton in the decay χ̃0
j → ℓ̃L,R ℓ is given by

pℓ1, µ = |~pℓ1|(1, cosφℓ1 sin θℓ1 , sin φℓ1 sin θℓ1 , cos θℓ1) (58)

with

|~pℓ1| =
m2

χj
−m2

ℓ̃

2(Eχj
− q cos ϑ)

(59)
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and
cos ϑ = sin θ sin θℓ1 cos(φ− φℓ1) + cos θ cos θℓ1 . (60)

The momentum 4-vector of the lepton from the decay ℓ̃→ χ̃0
1ℓ2 is given by

pℓ2, µ = |~pℓ2|(1, cosφℓ2 sin θℓ2 , sin φℓ2 sin θℓ2 , cos θℓ2) , (61)

where

|~pℓ2| =
m2

ℓ̃
−m2

χ1

2(Eℓ̃ − |~pℓ̃| (~̂pℓ̃·~̂pℓ2))
. (62)

B Decay matrix and phase space of 2-body decay

The spin density matrix of the decay χ̃0
j → ℓ̃∓L,R ℓ± can be written as

ρD,λ′
j
λj

= δλ′
j
λj

D(χ̃0
j) +

3
∑

c=1

σc
λ′

j
λj

Σc
D(χ̃0

j) , (63)

where the expansion coefficient D(χ̃0
j) is the part that is independent of the polar-

ization of the decaying neutralino χ̃0
j , and Σa

D(χ̃0
j ) is the part that depends on the

polarization of χ̃0
j . For the sake of simplicity we consider ℓ = e, µ, where the mixing

in the slepton sector can be neglected. Then we have, for χ̃0
j → ℓ̃∓L ℓ±:

D(χ̃0
j → ℓ̃∓L ℓ±) =

g2

2
|fL

ℓj|2(m2
χj
−m2

ℓ̃L
) , (64)

Σc
D(χ̃0

j → ℓ̃∓L ℓ±) = ∓g2|fL
ℓj|2mχj

(sc · pℓ) (65)

and for χ̃0
j → ℓ̃∓R ℓ±

D(χ̃0
j → ℓ̃∓R ℓ±) =

g2

2
|fR

ℓj |2(m2
χj
−m2

ℓ̃R
) , (66)

Σc
D(χ̃0

j → ℓ̃∓R ℓ±) = ±g2|fR
ℓj |2mχj

(sc · pℓ) , (67)

where mχj
(mℓ̃L,R

) is the mass of χ̃0
j (ℓ̃L,R). The parametrizations of the momentum

4-vector pℓ, µ and the polarization 4-vector sc
χ̃j , µ of the neutralino χ̃0

j are given in
Eqs. (55) and (57) in Appendix A. Finally, the matrix element squared for the
two-body decay ℓ̃∓ → χ̃0

1 ℓ∓ in the decay chain, Eq. (2), is

D2(ℓ̃
∓
L,R → χ̃0

1 ℓ±) = g2|fL,R
ℓ1 |2 (m2

ℓ̃L,R
−m2

χ1
) . (68)
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From (25) and (63), summing over the polarization of χ̃0
i , whose decay is not con-

sidered, the differential cross section for e+e− → χ̃0
i χ̃

0
j → χ̃0

i ℓ̃
∓
L,R ℓ±1 is:

dσ1 =
2

s
[PD + Σa

P Σa
D] |∆(χ̃0

j )|2dLips1 . (69)

Similarly one obtains the differential cross section for e+e− → χ̃0
i χ̃

0
j → χ̃0

i ℓ̃
∓
L,R ℓ±1 →

ℓ±1 ℓ∓2 χ̃0
1χ̃

0
i from (25), (63) and (68) and summing over the polarization of χ̃0

i :

dσ2 =
2

s
[PD + Σa

P Σa
D] D2 |∆(χ̃0

j)|2|∆(ℓ̃)|2dLips2 , (70)

where P and Σa
P involve the terms for arbitrary beam polarization. For the calcula-

tion of the cross section we use the narrow widths approximation (
∫ |∆(χ̃0

j)|2dŝχ̃j
=

π
mχ̃j

Γχ̃j

and
∫ |∆(ℓ̃)|2dŝℓ̃ = π

m
ℓ̃
Γ

ℓ̃

, where dŝχ̃j
= p2

χ̃j
and dŝℓ̃ = p2

ℓ̃
). The Lorentz-

invariant phase-space elements in Eqs. (69) and (70) for the decay chain χ̃0
j →

ℓ̃∓L,Rℓ±1 → χ̃0
1ℓ

±
1 ℓ∓2 are

dLips1 =
1

2π
dLips(s, pχi

, pχj
)dŝmχj

dLips(ŝmχj
, pℓ̃, pℓ1) , (71)

dLips2 =
1

(2π)2
dLips(s, pχi

, pχj
)dŝmχj

dLips(ŝmχj
, pℓ̃, pℓ1)dŝm

ℓ̃
dLips(ŝm

ℓ̃
, pχ1

, pℓ2)

(72)
with the Lorentz invariant phase space elements

dLips(s, pχi
, pχj

) =
1

4(2π)2

q√
s

sin θ dθ dφ , (73)

dLips(ŝmχj
, pℓ̃, pℓ1) =

1

2(2π)2

|~pℓ1 |
m2

χj
−m2

ℓ̃

sin θℓ1 dθℓ1 dφℓ1 , (74)

dLips(ŝm
ℓ̃
, pχ1

, pℓ2) =
1

2(2π)2

|~pℓ2|
m2

ℓ̃
−m2

χ1

sin θℓ2 dθℓ2 dφℓ2 . (75)

C Reconstruction of the production plane

As an example, we consider the process e+e− → χ̃0
1χ̃

0
2 with the decays χ̃0

2 → ℓ1 ℓ̃
and ℓ̃ → ℓ2 χ̃′ 0

1 , where we denote the neutralino from the decay by χ̃′ 0
1 (here again

the labels of the leptons indicate their origin). We assume that the masses of all
particles involved are known.

We rotate to a coordinate system where the 3-momentum vector of ℓ1 is along
the z-axis and that of ℓ2 is in the x–z plane. The unit vectors of the 3-momenta of
ℓ1, ℓ2, ℓ̃ are

~̂pℓ1 = (0, 0, 1) , ~̂pℓ2 = (sin c, 0, cos c) , ~̂pℓ̃ = (sin b cos A, sin b sin A, cos b). (76)
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From the relation (~pℓ1 + ~pℓ̃)
2 = ~p 2

χ2
we obtain

cos b =
1

2|~pℓ1||~pℓ̃|
[

|~pχ2
|2 − |~pℓ1|2 − |~pℓ̃|2

]

, (77)

where |~pℓ̃|2 = E2
ℓ̃
−m2

ℓ̃
and Eℓ̃ = Eχ2

−Eℓ1 . From a second relation (~pℓ̃− ~pℓ2)
2 = ~p 2

χ′
1

between momentum vectors we obtain

cos a =
1

2|~pℓ2||~pℓ̃|
[

|~pℓ̃|2 + |~pℓ2|2 − |~pχ′
1
|2
]

, (78)

where |~pχ′
1
|2 = E2

χ′
1
− m2

χ1
and Eχ′

1
= Eχ2

− Eℓ1 − Eℓ2 or Eχ′
1

= 6E − Eχ1
, and 6E

is the missing energy. From spherical geometry with ~̂pℓ2 · ~̂pℓ̃ = cos a, we obtain the
following relation between the angles

cos A =
cos a− cos b cos c

sin c sin b
. (79)

Inserting (77), (78) and (79) into ~̂pℓ̃ in (76), this vector is determined up to a twofold
ambiguity in the second component. In order to resolve this ambiguity, a reference
vector is needed, which tells us in which hemisphere of the x–z plane the momentum
vector ~̂pℓ̃ is. For instance, this is possible in the process e+e− → χ̃0

1χ̃
0
3 with the decays

χ̃0
3 → ℓ1 ℓ̃, ℓ̃→ ℓ2 χ̃ 0

2 and χ̃0
2 → χ̃′ 0

1 Z, where the 3-momentum of the Z boson is the
reference vector.
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