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I. ACCELERATION BY TIME VARYING FIELDS

I.1 - TIME VARYING MAGNETIC FIELD : THE BETATRON CONCEPT

The betatron accelerator is the only

circular machine which uses a time varying

magnetic field to accelerate the particle. It

is typically an induction accelerator. Notice
B that induction linear accelerators are also
0

used.

‘—R——"—\X The betatron, as shown on Fig. 1, is a

very simple machine which consists of a magnet

:

fed by an alternating current at a freguency

usually between 50 to 200 Hz. The magnet poles
which surround the vacuum chamber where parti-
FIG. 1 : The betatron scheme cles circulate are truncated cones. In this

machine the magnetic field is used for guiding

the particles on a circular trajectory as well as for acceleration.

The variable magnetic field produces an electric field component according to Maxwell's

equations :
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In the present case where there is no scalar potential, and according to the field

symmetry, one has :

v = 0
Ar = Az = 0 Ae = A(r,z,t)
]

6 3t

showing that the electric field is tangent to the circular orbit defined by

BR = - p/e
where e is the algebraic particle charge.

Moreover, from the single component A, one gets the magnetic field components

0
A
By T %z
Be = 0
B = li(rA)=A'+é
z r 3r r

The flux of B linking any circle r=cte is then :

3
3 (rA) rdr = 21 A

La g Rl

r r
¢ = J Bz 2ny dr = 27 J
o o

Denoting by ﬁz the average field value inside the circle,the flux will be also :

Q>

A

] = 9 =
Bg =~ 3t~ "2% FB) 3% B,

ST
IR

Putting r = R the voltage over one turn is :
dB dd

== 2 _zZ__
21rREe T R 3t 3E

which is a well known law in electronics that a time variation of the flux induces a voltage.
The induction accelerator is often considered as a transformer in which the primary current

is the alternating current and the secondary current is the circulating electron beam.

The acceleration is given by the Newton-Lorentz equation :

ap _
at - ¢ Eg
ap _ o G 1 dB
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If one wants to keep the particle on the same trajectory the following relation must also be

fulfilled :

d
R
dt dt
and hence

B =18 +cte
fe] 2 "z

which is the betatron relation.

I.2 - TIME VARYING ELECTRIC FIELD : LOCATED RF GAPS

Let's assume now that an RF cavity with an electric field component parallel to the

particle trajectory is located at some azimuthal position of a circular accelerator.

In the cavity gap the electric field is supposed to have a sinusoidal time variation

with angular frequency mRF' Then one can write

E(z,t) = El(z) Ez(t)

where El(z) is shown on Fig. 2 as a periodic function of period L = 27R, while Ez(t) is of
the form :

t
Ez(t) = Eo sin(Jt wRF dt+~¢°)
o

AE,

FIG. 2 : RF field envelope along the circumference

The particle position is given by :

t

z = zo + J vdt
t
[]

and the RF frequency is choosen to be an integer multiple of the revolution frequency :

where v is considered here as the average particle velocity over one turn.

The periodic function El(z) can be expanded in a Fourier series :

g 21z
= b 274
El(z) Ao + el An cos(n I )
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The integral of the force over many revolutions shows that all the trigonometric terms
in the expansion will give no effective contribution to the energy gain, apart from a single

term which corresponds to n = h. Then the average energy gain per turn can be written :

+L/2 +L/2
_ . 2nthz |, (2rhz
W = Fdz = eEo Ah cos T 51n< T + wo)dz
-L/2 ~L/2
with 21Thzo
Vo = ¢ L
+L/2
- 2 2thz |
W eEo Ah cos —~£——-51nwo. dz
~-L/2
eE L eE L Thg
W = o siny = sin — siny
2 o mh L o
sin Thg
w=e%g-ﬁmr—uwo=e%gsm% for g small enough
L

The energy gain per turn can also be expressed as :

+g/2 e
W =e E1 (z) Ez(t)=e Eo gsin<J LuRth+ ¢°>
to
~g/2

and since the gap center is at 2z = o one has :
= eE sin =V sin
w €59 84 lbo lpo

showing that wo represents the RF phase seen by the particle when crossing the gap.

From above it is seen that the force acting on the particle can be considered as an
average force, continuously acting on the particle all over the circumference, provided the
initial phase of the particle entering the gap is maintained constant. In other words the
effect is equivalent to a force given by a travelling wave propagating at the same velocity

as the particle velocity.

Since only one harmonic of the Fourier expansion is acting effectively, one can write

the equivalent field as :
_ 2rhz . )
E = Eo Ah cos I sin (JmRth+ ¢°

E

—22 Ah ‘sin (JwRth +¢° -

. 2nh z
>+ 51n(JmRth+¢o+ I >

=
]

2mh z
L
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where the first term in the bracket represents a travelling wave with wavelength A = E and
phase velocity equal to the particle velocity, while the second term in the bracket gives no

effect on a time average.

I1. DISPERSION EFFECTS DUE TO THE GUIDE FIELD

II.1 - MOMENTUM COMPACTION

By definition the momentum compaction a is the constant parameter which relates the
variation of the orbit length of a particle, in a circular accelerator, to the momentum

deviation (note that the nominal closed orbit has been defined for the nominal energy E).

where p, L and R are respectively the particle momentum, the nominal circumference and the

physical radius (2R = L).

One has

.

_1f2
= 2 _ _ R 2
E =Y moc = (1-8°) m_c
moc2 ) _1p moc2
p = mv = yB o = B(1-B<) —
pc
E = &
B
and by logarithmic differentiation one gets :
4 _dp 4B
E P B
2 -
gg=9§+1£dﬁ=1_ﬂ<1+ B2\ _ 48 (;_g2,"1
p B8 2 1-82 1-82 B

The average magnetic field along the nominal closed orbit is given by :

1
“Be.o.” T ZmR § Be.0.98
= EZE—§ ds _ p/e {p = bending radius)
2TR [ R

< >R =
BC.O.R p/e

and by differentiating

d<s > 4dr dp




or
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< >

P dBmo. l1-a
<B >

c.o. dp

R d<B > 1-a

c.o. _

<B > drR o

c.o

exencise : catewlation of o

Consider an isomagnetic guide field where all the bending magnets have the same
curvature 1/p and are separated by straight sections (1/p=0) which can include quadru-

poles magnets.

To first order approximation only the curved part of the orbit in the bendings

contributes to a change of the length of the trajectory with momentum.

4X In a bending magnet one has :
PdPB 4
-7 _—— / ds_ = pdsé
-
s#, < PB sy
» \\ /’,' 7 ds = (p+x)dd
J /
S, N\ 0o ds - ds ds  x dx
\ ’Il /I _—°=——=—= c.o-
\ iy 7
\ i’lp dso dso [ p
A
\%é/ The radial change in closed orbit with momentum
AY

is given by :
dx
Bp - Ple D = _C:O-
x dp/p
where Dx is the dispersion function (or local momentum compaction factor).
A summation of all these small changes in the orbit length will give the change in

the circumference.

Jdl = dL = 27 dR

where the subscript m means that the integral has to be calculated in the magnets

only where 1/p # 0. Finally one gets :

It can be shown that in smooth machines (alternating gradient for instance) :
- 2
o 1/Qx
where Qx is the radial wavenumber.

In most cases however <Dx>m has to be numerically computed from lattice program-

mes.




- 131 -

II.2 - REVOLUTION FREQUENCY VERSUS MOMENTUM

1f fr is the nominal revolution frequency corresponding to the nominal energy E (or.

momentum p), the parameter n will be defined as follows :

p e 2%
fr dp
Since
- Be
£ = 27R
one gets
daf dg dR
T = TR
r
as (1 >
= _;,_
fr Y
and hence
1
n=-—-ua
2

Y

For an electron machine n =

II.3 - TRANSITION

dp dp
= (1-8%) — -a—
P p

dp

P

-Q

ENERGY

The
1
2
Ytr

=V k=3
Ytr 1/a

Q

X

transition energy Ytr is the energy which corresponds to n=0

For small machines Qx is of the order of a few units, while for very large machines it

can approach 100.

Hence, Yir

will be in the range of 1 to 100 which is of interest only for

proton machines because for electron machines y » Ytr’

Indeed it is possible in electron storage rings to make o very small by using special

focussing to make the transverse emittance very small as required for instance by synchro-

tron radiation users. In that case it is necessary to look to higher order in dp/p to get

coxrect dispersion relations.

There are specific problems in proton synchrotrons related to the crossing of the tran-

sition energy which will be treated in another lecture.

III.

SYNCHROTRON OSCILLATION IN ADIABATIC LIMIT

One will consider the acceleration of particles with a radio frequency (RF) electric

field which has a resonant condition with the nominal revolution frequency, or at least

approximately.
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II1.1 - SYNCHRONOUS PARTICLE

The accelerating voltage across the gap of the RF cavity can be expressed as :
- t -
V =V sin JOwRth' =V sin ¢ (t)

where V and wRF are slowly varying functions of t, but can alsc be constant as for instance

in storage rings.

The RF frequency fRF is set up to be an integer multiple of the nominal revolution

frequency fr :

fRF =h fr

where h is called the harmonic number.

In these conditions a particle which has the nominal energy and circulates on the
nominal trajectory will always experience the same RF phase when passing the RF gap :

P(t) = ¢

s

It is called the synchronous phase and it is related to the synchronous particle.

During the acceleration in a synchrotron the energy of the synchronous particle varies
and so does the revolution frequency (unless it is for medium or high energy elec-

trons) .

Clearly, if one wants to keep the accelerated particle on the same trajectory (R = cte)

the magnetic field must vary with time
2. =2
@<B>R = p = mocﬁ Yy =mc B(1-84)

92: d<B>= R<.>
at - R —gg T eR<B

The energy gain per turn for the synchronous particle is :

(Ap) = eR <B> T,

turn

where Tr is the revolution period :

r
Hence :
2
2T e R [ 2T e pR *
= —m—m—— LR = —m—m—m——
(Ap)turn Be B Bc B

And since :

A(E?) = A(p?c?)
one gets :

AE = Bclp
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and

(AE)turn = 2me pR B

where the energy per turn is obtained from the RF cavity at each turn :

(AE)turn = eV 51n¢s

exercise :
Assume a 10 GeV proton synchrotron where the magnetic field reaches 1.5 Tesla in

one second, following a linear variation.
For a 10 GeV proton kinetic energy one has :

Y2
pc = (EZ— mocz) = 10.9 GeVv

g = .99 ; y=11.7
hence
Bp = p/e = 36.4 T.m
and
p=24m (R=1.5p= 36m)

As a result :

V 3 8.14 KVolts (eVsin¢_ < mocz)

Notice that in an electron synchrotron the particle radiates some energy per
turn, and the amount of energy gain per turn must be greater than this loss in order

to get an acceleration process.

III.2 -~ NON SYNCHRONOUS PARTICLE

In the following the parameters of the synchronous particle will be defined by subscript

s. Any other particle will then be defined by its deviation from the synchronous one :

revolution frequency : fr = frs + Afr (or w = ws+ Aw)
RF phase : ¢ = ¢s + Ad
momentum : P =Dpg + Ap
Energy : E = Es + AE
azimuthal angle : 8 = Bs + A8

The azimuthal angle is related to the azimuthal position by ds = RdO6. Over one revolu-

tion this angle varies by 27 while the RF phase varies by the quantity 2wh. Hence, one has :

Ap = - hAe

The - sign comes from the fact that a particle behind the synchronous particle (A8 < o)

arrives later in the gap (At > o and 4¢ > o).

Moreover, since 6 = det, one has :
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and from the definition of 1 :

Ps

- ¢
hnws

Ap =

This can also be expressed in term of energy :

AE = dPAp—vAp-wRAp
AE PR
T e ¢

On each revolution the particle gains the energy :

AE = eV sin
( )turn sin¢
which corresponds to the momentum increment :

_ev .
4Py yrn = wr Sin?

Dividing by the revolution period one gets the rate per second :

A w (Ap)turn_ ev in¢
p= 27 ~ 27R sin

oxr 2TR 1.3 = eVsing

and for the synchronous particle :

2TR p_ = eV sin
sps ¢s

By substracting the two last expressions one gets :
2mA (Rp) = eV (sin¢ - sin¢ )

Expanding the left hand side to first order in AR and A£> gives :

Rp-Rp_ = (Rs+ AR) (ps+ Ap) - R_p

A(Ré) s s

13

. N .
Ps AR RS Ap

i

. /dR .
—) Ap + R_A
o (Gp) b + B0

. . a 4a AE
R 8p+ RAp = g (R Ap) = ¢ <§>

1

The motion of any arbitrary particle in terms of deviations from the synchronous

particle is then expressed by the following set of first order differential equations :

dw - . .

aE - eV (sin¢ - s:m¢s)
YL

dt 27 psRs

where the new variable W = 27 RsAp = 27 AE/ms has been introduced.

It is worthwhile mentioning that the two variables ¢, W are canonical since the equa-

tion of motion can be derived from an hamiltonian H(¢$, W, t) :




- 135 -

% _ am
dt Iw
aw __3H
dt 3
with :
- 1 hntg 2
H($,W,t) = eV [cos¢ - cosci)S + (¢—¢S) Sln¢s] - Er-———RspS W

From the set of first order equations of motion one can also derive a second order

differential equation for each variable. For instance the phase motion is given by :

:i. Rsps do ev

dt hnws de +§_1r (sin¢ - Sln‘i’s)= 0

III.3 - SMALL AMPLITUDE OSCILLATIONS - PHASE STABILITY

Let's consider the case where the parameters RS, ps, n, ws and V are constant or at

least change very slowly with time as compared to the variable A = ¢-¢S. Hence one can

write :
QZ
. s . . _
¢ +W (51n¢- s:.n¢s) =0
s
where :
2= eV}mwscos¢s

s 2m RspS
Within the approximation A¢ «< 1 the equation of motion for small amplitudes becomes :

¥ +alag=0

whereihsnow represents the synchrotron angular frequency. This quantity must be real in
order to get a stable motion which means that n cos¢>s has to be positive. Stable synchro-

tron phase motion needs the following conditions to be satisfied :

LA n>o o<¢_ <

i

sin >0
¢s

> <o < < T sin >0
Y Yy n L bg

(ST

having eliminated the cases where sin¢s < o which correspond to a deceleration.

At transition energy n vanishes,ﬂs goes to zero and there is no more phase stability,
at least within the first order approximation. During acceleration through transition ener-
gy, in a proton synchrotron, the RF phase must be switched rapidly from ¢s to m- ¢S in order

to maintain stability above transition.

In the case of electron machines, either synchrotrons or storage rings, where the

particle velocity is practically constant and equal to ¢, one has the following simplifica-

tions :
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= ¢/R =E [o] ~ oo
ws / s Ps s/ n a
-1/2
c hacos¢s ev
Q = —f —
s R 27 E
s s

The synchrotron tune which is the number of synchrotron oscillations per turn is repre-
sented by the bracket :
Q

S
Q =
s c/Rs

Note : In an electron machine the RF frequency does not change and this is also trwe for R

a.”.dw .

I1T1.4 - LARGE AMPLITUDE OSCILLATIONS - RF ACCEPTANCE

Cconsidering again the equation of motion :
92

s S : . _

$ + cos¢s (sin¢ 51n¢s) 0

multiplying by d.S and integrating lead to the invariant of the motion :

‘52 92
s 3 -_—
5 - cos¢s (cosé + ¢ sin ¢s) = cte
It is already known that around the stable
synchronous phase cbs the small amplitude motions
are pure harmonic oscillations which correspond
gsz ¢s'15d /——-\ to circles in the frame (%érb) . For larger am-
//;_\ plitudes the circles will be distorted by the
1 non-linearity of the motion but the curves will
/ still close on themselves (Fig. 3). The extreme
\ ¢ elongations of the oscillation correspond to

(78]
S,
o
=2}
(=1
©
cﬂ
5
Q|
@
S
=]
—
~
S)

é = 0 and the constant of the motion can be

1 \// expressed in terms of these values.
N~ | /

, \tj When.¢ reac}.\es the value 7~ ¢s thc.e factor
(sin¢ - sin ¢s) in the equation of motion
becomes zero and for higher values of ¢ the

FIG. 3 : Stable phase space trajectories force is no more attractive so that the motion

becomes unstable. Hence 7w - ¢S is an extreme

?, ¢$) space or
fig
in the (W,¢) space is called the separatrix and the area delimited by this curve is called

elongation corresponding to a stable motion. The corresponding curve in the (

the RF bucket. The equation of the separatrix is :

$2 Q2 02
- - ———s—(cos¢+¢sin¢ )=~
2 cos(i’s s

Egi;s—— [cos(m-9) + (1-¢ ) sin¢ ]
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The second value ¢m’ for which $= 0, is such that :

co + i = ™= + - i
s¢m ¢m 51n¢s cos ( ¢S) (m ¢S) 51n¢s

From the equation of motion it is also seen that é reaches an extremum when b.= 0
corresponding to ¢ = ¢s. Introducing this value in the equation of the separatrix gives the

maximum stable values of $ and W :

2 5 02l (na &
Oraye = 2 92[2- (m-2¢) g¢ ]
- prSRs
2 _ - ; 8 8
W oax 2 ev][2 cos ¢>s (w 2¢s) sin ¢S] T o

or

- 32
eV
nhr]Es G(¢SJ

AE
s/max

This last expression is called the RF acceptance. The function G(¢s) is given by :
G(o) = [2 cos¢_- (m-2¢) 51n¢s]
and varies from + 2 to O when sin¢s'varies from O to 1.

The RF acceptance plays an important role when designing a machine, since it determines
the capture efficiency at injection and the lifetime of stored beams. Outside the stable
region plots of the trajectories (Fig. 4) show that particles get out of synchronism, their
phase sliding along. Moreover the energy is continuously changing which means that the par-

ticles may get lost.

[

§

JanY ) N .
NSO NN % &

L
]
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%

)
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N
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L]

|

R
L]
S

FIG. 4 : Phase space trajectories for different ¢S
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For any invariant of the motion there exists a relation between the maximum energy and
the maximum phase deviations. However it is in general difficult to get it analytically
unless special assumptions are made. For instance in the case of small amplitude oscilla-
tions the invariant becomes simply :

82 | g2 8o

2 s 2
which leads to :

hnE AE

Ap = R

max p R I \E
s max

S s s

= cte

since ¢ is directly related to AE
max max

In the case of ultra relativistic electrons this reduces to

ah [AE
Mnax o (F)
s S/max

III.5 - POTENTIAL ENERGY FUNCTION

The synchrotron motion is produced by a force field which can be derived from a scalar

potential :
2
§*$-=F(¢)
at?
3u
Flo)=-32
92
u(¢)=-J F($)d¢ = - EESJTS (cos¢ +¢ sin )

The sum of the potential energy and the kinetic energy is a constant (the total energy):

2 .
T+ u(¢) = R

A“V The RF voltage as well as the corresponding

V-- potential enerqgy function are shown on Fig. 5.
//’-\\\ H The shape of the latter correspond to the sum

/’ ¢k n \. ,/ 5” l of a linear function and a sinusoidal one. An

oscillation can only take place if the parti-

cle is trapped in the potential well which
means that the total energy cannot exceed a
certain value (dotted line) otherwise the par-
ticle will slide along the curve. Hence the

maxima of the curve correspond to unstable

equilibrium for the synchrotron motion.

FIG. 5 : Accelerating voltage and potential
energy function
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IV. ADIABATIC DAMPING OF SYNCHROTRON OSCILLATIONS

So far one has assumed that the parameters RS,ps,ws and & did not change appreciably
at least over a time scale of one synchrotron period. However in a synchrotron these para-
meters will vary over a large range, even slowly, during an acceleration cycle. Then one
needs to study the long term evolution of the motion under adiabatic changes of these para-
meters. This is possible with the help of the BOLTZMAN-EHRENFEST adiabatic theorem which
states that, if p and g are canonically conjugate variables of an oscillatory system with

slowly changing parameters, then the action integral is constant

I= } pdq = cte

the integral being taken over one period of oscillation. It has been already mentionned that
the variables W and ¢, describing the synchrotron motion, were canonically conjugate. Hence

applying the theorem leads to :
1= § wd¢ = cte

Consider the corresponding hamiltonian of the motion and let's expand it to second

order approximation to take care of small amplitude oscillations only
1
ev hnms

H(W,¢,t) = - - cos¢_ A7~ — — >
s s

leading to harmonic solutions for the motions:
W=Wcosfi t
s

Ap = A sin Qst

d¢ 3H 1 hnuw
= S

aE " w 7 Rp "
s S

one gets the action integral :

at
1 hnow
I=-— Sszdt
21 R p
s's

2
1 h11ws W

— ——— =-=cte
2 RiPg Qs

I = -
where W is the amplitude of the energy oscillation related to the amplitude of the phase
displacement through :

27 psRst -

w=——25 5 p¢
hrlws




- 140 -

S0 one gets : 1u

A & {f——D——
E R2vV cos ¢
s s s

Keeping all parameters constant except the energy which is ramping, the formula shows

that the phase excursion A¢ is reduced as the one-fourth power of the energy.

It appears also that the product W.A¢ is invariant which means that the phase space
area is invariant and Liouville's theorem still holds in adiabatic conditions. The phase

space area is not damped, only the shape of the ellipse is modified.

From the previous treatment one also gets :
- E R2V cos¢ W+
s s s

AE = @
s

- o |V cosd
AR < - £

the last formula representing the orbit excursion due to the momentum deviation during the

ramping.

The adiabatic damping can also be treated without the hamiltonian formulation. Remem-

bering the general equation for synchrotron oscillations limited to small phase deviations:

d Es d¢ ev cos¢S
— |+ ————— A =0 (for the case B = 1)
dt hr1w§ at 2w

one can write it in the form :

E a2¢ E dé eV cosé
g 4 S  _+—— % Ap =0
hnw? at? nno? dt 2
s s
or
d2¢ E_ d¢
—+ =2 — 102 Mp=0
at? E  at s . .
E Q
where the second term represents a damping term. From the definition of Qsone has : E§=-Q-§§.
s s

To integrate this equation the procedure consists of choosing a solution similar to the

one obtained without the additional damping term

~

t ~
Ap = A sin (] QS(T)dT + cte) = A (t) siny(t)

and assuming A$ and és are small first order quantities (adiabatic limit). Putting this

solution into the differential equation and neglecting all second order terms gives
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[2 4¢ a_- 2% Ezs] cosy(t) = 0
Y

2—--2 =0

8% 9

and integrating leads to :

result which is similar to the one obtained previously.

V. TRAPPING, MATCHING, ACCUMULATING AND ACCELERATING PROCESSES

Whether the circular accelerator is used as a synchrotron or a storage ring, the opera-

tion of the RF will be quite different.

V.1 - ACCELERATION INTO A SYNCHROTRON

In that case, as mentioned before, the accelerating cycle is fast. Only a single injec-
ted pulse is accelerated. This injected pulse must be trapped in the RF buckets with a
maximum efficiency which means that the RF acceptance hence the RF voltage has to be large
enough, campatible with the energy spread of the transferred puise. The RF frequency at
injection must be such that it will fit with the bending field and the injection orbit. The
synchronous phase is then set automatically at ¢s = 0 or m which means no average accelera-

tion.

Matching means that the RF frequency and the RF voltage are adjusted such that the
phase space trajectories are homothetic to the contour of the injected bunch. If this wasnot
the case the shape of the bunch would change during the synchrotron period and for instance
the bunch length could become short giving rise to instabilities. Matching also requires
careful adjustment of the injector to make it compatible with the possibilities of the

synchrotron.

To start the acceleration it is necessary to move the synchronous phase so that the
synchronous particle gets energy at each revolution from the RF cavities. This can be done

by off~setting the magnetic field followed by a change of the RF frequency.
The synchronous particle is the one for which the revolution frequency satisfies

W

and it follows a closed orbit for which the physical radius satisfies

w(B =
(,Rs) W,

As mentioned previously the rate of change of momentum for the synchronous particle is:
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—2 - e R_<B>
s

Hence the RF frequency must follow :

for (0 1 { e
P =WB°=2—MM <B(t)>
fRF(t)_ 1 ec? © no)
h 27 E_(t) R
Since
2 2 2 2.2
Es = (moc )+ psc

the RF frequency must follow the magnetic field variation with the following law :

32

£ _(t B(t)2
RF()_ c (t)
h 2mR_ (m_c2/ecp) 2+ B(t)2
c m_c?
This asymptotically tends towards fr = E?i;-when B is getting large compare to eco

corresponding to v + ¢ (pc> mocz).

In practice the magnetic field can either follow an approximately linear law or a

sinusoidal one

(1-cos wt) =B sin?

t

Nt

B(t) =

NIE

In the case of an electron synchrotron it is not necessary to vary the RF frequency
because the particle velocity is very close to ¢ and does not change with energy. However
the electron looses energy in each revolution due to synchrotron radiation. Hence the
synchronous particle is the one which arrives at the right phase ¢S to compensate for both

this energy lost and the field variation.

V.2 - ACCUMULATION INTO A STORAGE RING

A storage ring is roughly a synchrotron operating at fixed energy. In some cases a

very slow ramping can be done if the operating fixed energy differs from the injection one.

V.2.1 - Electron storage rings

As for the electron synchrotron the energy lost has to be compensated. If the energy

lost per turn is 8E, then the synchronous phase is such that :
SE = eV sin¢s

which means that ¢S will depend on the peak RF voltage V. Moreover the energy lost per turn

is a strong function of the operating energy :

SE = 8 _—
[kev] p [m]
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If the storage ring operates between two energies, the maximum voltage will be determi-
ned by the upper energy and for the reason of beam lifetime due to particle diffusion through
the separatrix, sin¢s £ .7. If one keeps at injection the same voltage as required at the
highest energy then sin¢s at injection can be very small leading to a large bucket accep-
tance.

Since the particle motion is damped around the synchronous particle the bunch length
and energy spread become quite small leaving most of the bucket empty for a new injected
pulse which will damp also and so on. This is the simple way of accumulating particle in an
electron storage ring where Liouville's theorem does not hold any more due to non-conserva-

tive forces.

However accumulation of very high circulating currents in an electron storage ring may
lead to typical instabilities related to coherent motion in the transverse phase space.
Hence it is often desirable to keep Qs constant when ramping the energy even slowly. Of
course this will lower quite a lot the peak voltage required at injection and make the
bucket smaller. Then the injector and the transport system to the storage ring have to be

matched to the injection conditions.

V.2.2 - Proton storage rings

3

Here the accumulation process is often called "stacking". It consists of trapping par-
ticles into buckets on a special orbit, called the injection orbit, close to the injection
septum. Then the buckets are accelerated towards an inner orbit in the vacuum chamber,

Such an acceleration is done with constant bending field, just by changing the RF frequency.
Finally the RF voltage is switched off so that particles will debunch. Hence, the RF is
switched on again at the injection RF frequency to take care of new injected particles and
the new buckets are accelerated to another stacking orbit close to the Previous one. In
doing so the previous injected particles will be slightly disturbed. The enerqgy difference
AES between RF switch off of successive pulses is normally choosen to be approximately the
bunch area divided by 2m which corresponds to the energy width of an ideally debunched pulse.
In this process the stacking efficiency suffers from the non-linearity of the motion in the

neighbourhood of the separatrix.
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