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The existence of a simple spherically symmetric and static solution of the Einstein equations in
the presence of a cosmological constant vanishing outside a definite value of the radial distance
is investigated. A particular succession of field configurations, which are solutions of the Einstein
equations in the presence of the considered cosmological term and auxiliary external sources, is
constructed. Then, it is shown that the associated succession of external sources tend to zero in the
sense of the generalized functions. The type of weak solution that is found becomes the deSitter
homogeneous space-time for the interior region, and the Schwartzschild space in the outside zone.
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I. INTRODUCTION

The gravitational equations in the presence of a cosmological constant Λ have been the subject of continued attention
in the literature about Classical and Quantum Gravity, since their introduction by Einstein as a means to define a
static and homogeneous model for the Universe [1]. In particular the question about the physical relevance of these
equations [2–5] have received a large amount of interest in recent times, thanks to the modern experimental evidence
signalling the relevance of this quantity in describing the expansion rate of the Universe [6, 7].

It is an accepted fact that the satisfaction of the Einstein equations for spherically symmetric and static solutions
forces the value of the cosmological constant Λ to be rigorously constant, that is, independent of the radial coordinate.
The known solution in this situation is the deSitter space-time. Inside this space, the matter is pushed by the
gravitational force away from the centre, much as it could be attracted to the origin, in the interior of a Schwartzschild
black-hole [8].

In this work we discuss the possibility that the same original Einstein equations in the presence of a cosmological
term, could show a form for it that would be rigorously non-vanishing and space-independent inside a certain sphere,
but reducing to zero outside it. This field configuration will then define the deSitter solution as the internal space
and the Schwartzschild solution as the external one.

The main circumstance suggesting the existence of this solution is the fact that, at the special radial distance
in which the metric becomes singular for both the deSitter and Schwartzschild solutions, the non-linearity of the
equations could allow for solutions in the sense of the generalized functions, showing a sudden change in Λ.

The plan of the work will be as follows. In Section 2, the Einstein equations for a diagonal energy-momentum
tensor are written and the notation to be employed is defined. Section 3 continues by considering a rough motivation
for the existence of the solution after solving the basic radial and temporal Einstein equations. A main point is that,
assuming the exact equality between −g00 and 1/grr the equations for these quantities become linear and are exactly
satisfied in the sense of the generalized functions by the piecewise defined solution given by the Schwartzschild and
the deSitter fields for the external and internal regions respectively. As is known, for this class of centrally symmetric
problems, these two equations are sufficient to fully determine the only two unknown fields g00 and 1/grr. Therefore, if
the solution for these quantities would result in being to be non-vanishing and differentiable, the full set of equations
could be automatically solved. However, the non-linearity of the resting Einstein equation makes it necessary to
check that the full set of Einstein equations can be considered as solved in some generalized sense. For this purpose,
in Section 4, a physically grounded solubility criterion is defined for the satisfaction of the Einstein equations. It
rests in the natural assumption of considering as a weak solution of the non-linear equations, the limit of a particular
succession of field configurations, for which each element solve the equation in the presence of external sources and for
which, moreover, the corresponding succession of sources tends to zero in the sense of the generalized functions. The
need for involving a particular succession in the definition comes from the assumed non-linearity of the equations. In
the case where the equations are linear, the generalized functions, being the limit of the linear functionals associated
to each field configuration in the succession, could be considered as the solution. However, the non-linearity makes it
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necessary to have a more precise definition by including the particular succession that allows the limit of the external
sources to be vanishing.

Finally in Section 5 it is shown that the defined solubility criterion can be satisfied for the Einstein equations in
the presence of a cosmological constant which reduces to zero outside the radial distance r0 for which the deSitter
temporal metric component g00 vanishes. Roughly speaking, we found a particular succession of field configurations
that produce a vanishing limit for the externals sources associated to each of its elements, in the sense of the generalized
functions.

It becomes clear that the resulting gravitational field configuration shows a kind of naked singularity, since for
example, the radial derivative of the g00 metric components has a discontinuity at the boundary [9–11].

The results are reviewed and commented in the conclusions.

II. EINSTEIN EQUATIONS

The squared line element for spherically symmetric systems will be written in the form

ds2 = g00(r)dx02
+ grr dr2 + gφφ dφ2 + gθθ dθ2, (1)

= −v(r)dx02
+ u(r)−1dr2 + r2(sin2θ dφ2 + dθ2),

in which the functions u and v are defined in terms of the metric components as

v(r) = −g00 = exp(ν(r)), (2)

u(r) = grr = exp(−λ(r)).

We will consider for the start, a set of equations slightly generalizing the usual Einstein equations with a cosmological

term. For the case of a static and spherically symmetrical solution, when there are no external sources J0
0 ,Jr

r ,Jφ
φ and

Jθ
θ acting on the system, the equations to be examined cab be written in the form

J0
0 = −Λ0(r) −

u′(r)

r
+

1 − u(r)

r2
= −Λ0(r) + G0

0(r) = 0, (3)

Jr
r = −Λr(r) −

u(r)

v(r)

v′(r)

r
+

1 − u(r)

r2
= −Λr(r) + Gr

r(r) = 0, (4)

Jφ
φ = Jθ

θ = −Λ(r) − u(r)

2
(
v

′′

(r)

v(r)
− v′(r)2

2v(r)2
+ (5)

v′(r) u′(r)

2 v(r) u(r)
+

1

r
(
u′(r)

u(r)
+

v′(r)

v(r)
)),

= −Λ(r) + Gφ
φ(r),

= −Λ(r) + Gθ
θ(r) = 0,

in which the Einstein tensor Gν
µ is diagonal in the spherical coordinates, and its diagonal components are given as

G0
0 = Λ0(r),

Gr
r = Λr(r),

Gφ
φ = Gθ

θ = Λ(r).

These metric components are written in terms of the three functions Λ0, Λr and Λ, which only depend on the
radial coordinate. Since the vanishing of the covariant divergence of the Einstein tensor is an identity for any field
configuration (see[12]) it follows that

Gν
µ ; ν(r) =

1
√

−g(r)
∂ν(
√

−g(r)Gν
µ (r)) − 1

2
∂µ(gγν(r)) Gγν(r) = 0,

As usual, g is the determinant of the metric tensor

g(r) = −v(r) r4sin2θ

u(r)
.
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III. INDICATIONS FOR THE SOLUTION

Let us motivate the existence of a solution of the Einstein equation in the presence of a cosmological term that
does not reduce itself to a fixed constant times the metric tensor for all the points of the space-time. For this purpose
it can be first noticed that when all the Λ0, Λr and Λ functions are selected as equal among them and to a given
constant Λ, the set of equations (3)–(5) have the usual deSitter solution showing the regular behaviour at the origin

u(r) = 1 − Λ r2

3
, (6)

= 1 − φ2
0 r2

6
,

v(r) = 1 − Λ r2

3
(7)

= 1 − φ0
2 r2

6
,

in which the scalar field parameter φ0 is related to Λ through

Λ =
φ2

0

2
,

where φ2
0 can be interpreted as the square of the mass times the square of the scalar field producing the same

cosmological term as the Klein-Gordon Lagrangian, when the field is assumed to be a constant in all the space. The
reason for introducing this parameter is the fact that the field configuration discussed here has a close relationship
with a particular solution for the Einstein Klein Gordon system discussed in [13].

Consider now the external region to the sphere having radius r0 and assume that all three functions Λ0, Λr and Λ
in (6) vanish. Within this region, the Schwartzschild solution

u(r) = 1 − r0

r
, (8)

v(r) = 1 − r0

r
, (9)

satisfies equations (3) and (4), but for the case of a zero cosmological constant.
The above remarks suggest to check whether a composite configuration, coinciding with the above described

solutions in the internal and the external regions, globally satisfies the Einstein equations (3) and (4) for a cosmological
term being constant inside the mentioned sphere and vanishing out of it.

To examine this question, let us define the ansatz for u = 1/grr and v = −g00, for all values of the radial distance
by:

u(r) =
(

1 − r0

r

)

θ(r − r0)+

(

1 − φ2
0 r2

6

)

θ(r0 − r),

v(r) = u(r), (10)

where the constraint of making u and v to vanish in the limits taken from both sides at r = r0 has been imposed.
This condition determines r0 in terms of the cosmological constant through

φ2
0 r2

0

6
= 1. (11)

Henceforth, the derivative of u takes the explicit form

u′(r) =
( r0

r2

)

θ(r − r0)+
(

1 − r0

r

)

δ(r − r0)−

φ2
0 r

3
θ(r0 − r)−

(

1 − φ0
2 r2

6

)

δ(r0 − r),

=
( r0

r2

)

θ(r − r0) −
φ0

2 r

3
θ(r0 − r), (12)

where the terms of Dirac’s delta function cancel precisely owing to the selected condition (11).
After substituting u and u′ in the Einstein equation (3), it follows that
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FIG. 1: The common radial dependence of the functions u(r) and v(r). Note the abrupt change in the slope that is produced
by the sudden change in the cosmological constant.

u′(r)

r
− 1 − u(r)

r2
+Λ(r) =

(

−φ0
2

3

)

θ(r0 − r)+
( r0

r3

)

θ(r − r0)+

1

r2

(

1 − φ0

2 r2

6

)

θ(r0 − r) +
1

r2

(

1 − r0

r

)

θ(r − r0)+

(
φ0

2

2
)θ(r0 − r)− 1

r2
,

≡ 0.

Therefore, an exact solution of the couple of Einstein equations (3) and (4), in the sense of the distribution functions
can be written, in the simple form:

u(r) = v(r) =
(

1 − r0

r

)

θ(r − r0)+

(

1 − r2

r2
0

)

θ(r0 − r),

r0 =

√
6

|φ0 |
. (13)

Fig.1 illustrates the radial dependence of the u(r) = v(r) functions. It becomes clear that there is, for example, a
finite change in the slope of the g00 component of the metric. Thus a singularity is a associated to the boundary.

Concerning the resting equation (5), it is not clear that it can be satisfied. Its non-linear nature is the main source
of the difficulty, since the candidate solutions (13) for u and v and their derivatives are singular quantities, and their
products at the point r0 are not well defined. In spite of this, the above discussion leads to the expectation that a
weak solution could exists, showing the considered sudden change in the cosmological term.
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IV. SOLUBILITY CRITERION

The results of the previous section suggest the existence of solutions of the Einstein equations in the presence of a
cosmological constant which, suddenly reduces to zero outside a sphere of radius r0.

In this section we will argue that this system of equations can be solved in a concrete sense to be defined below.

Definition

Consider the linear functionals in the space D′ of test functions f (see [14]) and the generalized functions ug and vg

defined in D′ by a given succession S of fields (un(r), vn(r)), n = 1, 2, 3, ...∞ through

ug = lim
n→∞

∫

∞

0

dr f(r)un(r),

vg = lim
n→∞

∫

∞

0

dr f(r)vn(r).

We will say that the set of equations (3)-(5) are solved in a weak sense by (ug,vg), if the three successions of

linear functionals associated to the external sources J0
0 , Jr

r and Jφ
φ = Jθ

θ and determined by each field configuration

(un(r), vn(r)) through

F 0
0 [un, vn] =

∫

∞

0

dr f(r)J0
0 (un, vn), (14)

F r
r [un, vn] =

∫

∞

0

dr f(r)Jr
r [un, vn],

Fφ
φ [un, vn] = F θ

θ [un, vn],

=

∫

∞

0

dr f(r)Jφ
φ (un, vn), for all f ∈ D′,

all vanish in the limit n → ∞.
It should be stressed that any field configuration can be considered as a solution of the Einstein equations associated

to its corresponding external sources. These sources are nothing other than the result of evaluating the given fields
in the equations. Therefore the above definition declares as a solution of the equations in the absence of sources, a
generalized function defined by a particular succession of field configurations, whenever it turns out that the sources
for the configurations forming the succession converge to zero in the sense of the generalized functions. Such a
definition implies, in particular, the physically desirable property that the limit n → ∞ of the variation of the action
defining the equations, after being evaluated in the fields (un, vn) tends to vanish.

In the next section we will show that the given solubility criterion for the equations (3)-(5) is satisfied by a specially
chosen succession of functions (un(r), vn(r)), n = 1, 2, 3, ...,∞.

For the purposes of the next section, we will consider a useful representation of any spherically symmetric field
configuration of the Einstein equations. It can be found for example in Ref. [12], and will be employed here as
specialized for the static situation under consideration. The first two equations (3) and (4) allow us to obtain, for
the functions λ and ν in (2):

λ(r) = − log (1 − 1

2

∫ r

0

r2G0
0(r) dr), (15)

ν(r) =

∫ r

0

dr(
exp(λ(r)) − 1

r
− r exp(λ(r))Gr

r(r)),

(16)

expressing these functions in terms of the two components of the Einstein tensor Gr
r(r) and G0

0(r). Then, the field
configurations (u, v) are also fully defined as functions of G1

1(r) and G0
0(r) by (2) in the form

v(r) = g00(r) = exp(ν(r)), (17)

u(r) = −grr(r) = exp(−λ(r)). (18)

Moreover, the vanishing of the covariant divergence of the Einstein tensor as an identity, allows the expression of

the components Gφ
φ a Gθ

θ as functions of G1
1(r) and G0

0(r) through [12]

Gφ
φ = Gθ

θ =
r

2
∂rG

r
r (r) + Gr

r(r) +
r

4
∂rν(r)(Gr

r(r) − G0
0(r)). (19)
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As discussed in Ref. [12], the meaning of the written expressions is that it becomes possible to determine the metric
by arbitrarily fixing the two components G1

1(r) and G0
0(r) of the Einstein tensor, and afterwards simply select the

resting components Gφ
φ and Gθ

θ as defined by (19) in order to complete the satisfaction of the Einstein equations.
Clearly, in these equations the energy-momentum tensor is assumed to be equal to the Einstein tensor, fixed in the
explained way.

Let us now consider that all three functions Λ are equal to a common one, Λ(r), for all the radial axis except
within a small open neighbourhood B of the boundary point r0. Then, the eq. (19) implies, for these regions:

∂rΛ(r) = 0.

Thus, the function Λ(r) should be strictly constant in each of the two zones. However, the possibility is not yet
discarded that the two values associated to each of the two disjoint regions in which r0 divides the radial axis could
be different. Let us look into this. In the case that they could effectively differ, the term ∂rG

r
r (r) = ∂rΛ(r) in

eq. (19) will contribute with a Dirac delta like singularity. Thus, whenever the factor ∂rν(r) is a regular one in
the neighbourhood of r0, there will be no possibility other than the coincidence of the two values of the function
Λ. However, since the factor ∂rν(r) can show singularities at some special points, the opportunity is yet open for
cancelling the Dirac delta term. This is only possible by breaking the equality between Λr and Λ0, which allows
the mentioned singular dependence of the factor ∂rν(r) to play a role near special points. In this way the Einstein
equations could be obeyed in the sense of the generalized functions.

In the next section the satisfaction of the Einstein equations (3)-(5) will be discussed, in accordance with the given
solubility criterion, when all the Λ functions have a Heaviside step function behavior.

V. THE SOLUTION

Let us search in this section a solution of the equations (3)-(5) for the specific form of the cosmological term
suggested by the discussion in Section 2, that is

Λr(r) = Λr(r) = Λ(r), (20)

= Λ θ(r0 − r).

The first step in showing the satisfaction of the solubility criterion by a succession of functions (un, vn) tending
to (10) in the limit n → ∞ will be to define a corresponding succession of the values for the radial and temporal
components of the Einstein tensor. These components will be selected to approach the step-like cosmological function
(20) in the limit n → ∞ as:

Gr
r(r|n) = Λ θ(1)

n (r0, r), (21)

G0
0(r|n) = Λ θ(0)

n (r0 − r), (22)

σn(r) = θ(1)
n (r0 − r)−θ(0)

n (r0 − r), (23)

where the succession of functions θ
(1)
n and θ

(0)
n for all values of n are both chosen to define the step functions

appearing in (20) in the limit n → ∞. The precise expression for θ
(0)
n will be

θ(0)
n (r0 − r) = θ(r0 − ǫ′(n) − r),

where θ(x) is the Heaviside step function and ǫ′(n) is a small quantity with respect to r0, which is taken as vanishing

in the limit n → ∞. The regularization for θ
(1)
n (r0, r) is chosen as given by

θ(1)
n (r0, r) = θ(r0 − ǫ′(n) − r) + σn(r), (24)

σn(r) = gn(r)θ(r − r0 + ǫ′(n))θ(r0 − ǫ(n) − r),

ǫ′(n) > ǫ(n),

where ǫ(n) is another segment, also tending to zero in the limit n → ∞, but smaller as a real number than ǫ′(n).
The up to now arbitrary (but assumed to be bounded) function gn(r)) will be fixed in what follows.

Therefore, for this n-dependent selection of the two arbitrary components of the Einstein tensor, G0
0 and Gr

r, the
quantities un and vn determined through using (2) and (15), are solutions of the Einstein equations whenever the
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angular components are calculated from (19). Thus, in order to show that the succession (un, vn) satisfies the
solubility criterion for the space-dependent cosmological constant (20), it is only needed to prove that the generalized
functions associated to their external sources (14) have vanishing limits n → ∞. Let us show this property below.

The linear functionals in D′ being equivalent to the auxiliary external sources for which each of the pairs (un, vn)
turns to be a solution of Einstein equations (with cosmological term defined by (20)) can be explicitly written as

F 0
0 [un, vn] =

∫

∞

0

dr f(r) J0
0 (un, vn),

=

∫

∞

0

dr f(r)
(

−Λ(r) + G0
0(r|n)

)

,

=

∫

∞

0

dr f(r)

(

−Λ(r) − u′

n(r)

r
+

1 − un(r)

r2

)

, (25)

F r
r [un, vn] =

∫

∞

0

dr f(r)Jr
r (un, vn),

=

∫

∞

0

dr f(r) (−Λ(r) + Gr
r(r|n)) ,

=

∫

∞

0

dr f(r)

(

−Λ(r) − un(r)

vn(r)

v′n(r)

r
+

1 − un(r)

r2

)

, (26)

Fφ
φ [un, vn] =

∫

∞

0

dr f(r)Jφ
φ (un, vn) =

∫

∞

0

dr f(r)Jθ
θ (un, vn),

=

∫

∞

0

dr f(r)(−Λ(r) + Gφ
φ(r|n)),

=

∫

∞

0

dr f(r)

(

−Λ(r) − un(r)

2

(

v
′′

n(r)

vn(r)
− v′n(r)2

2vn(r)2
+

v′n(r) u′

n(r)

2 vn(r) un(r)
+

1

r
(
u′

n(r)

un(r)
+

v′n(r)

vn(r)
)

))

, (27)

Λ(r) = Λ θ(ro − r). (28)

Our purpose in what follows will be to show that these functionals tend to zero by properly selecting the regular-
ization, that is, to argue that there exists a succession of field configurations, approaching the fields (13) in the sense
of the generalized functions, for which the Einstein tensor also tends to the step-like cosmological term (20) in the
same sense.

For eq.(25) and (26), thanks to the same definitions of the succession of Einstein tensors (21),(22), it follows that

lim
n→∞

F 0
0 [un, vn] = lim

n→∞

∫

∞

0

dr f(r)
(

−Λ(r) + G0
0(r|n)

)

,

= lim
n→∞

∫

∞

0

dr f(r) (−Λ(r) + Λ θ(r0 − ǫ′(n) − r)) ,

= −Λ lim
n→∞

∫ r0

r0−ǫ′(n)

dr f(r),

= 0, (29)

lim
n→∞

F r
r [un, vn] = lim

n→∞

∫

∞

0

dr f(r) (−Λ(r) + Gr
r(r|n)) ,

= lim
n→∞

∫

∞

0

dr f(r) (−Λ(r) + Λ θ(r0 − ǫ′(n) − r) + σn(r)) ,

= −Λ lim
n→∞

∫ r0

r0−ǫ′(n)

dr f(r) + lim
n→∞

∫ r0−ǫ(n)

r0−ǫ′(n)

dr f(r) σn(r),

= 0, (30)

where the last equality follows thanks to the fact that σn(r) is assumed to be a bounded function for all n. Therefore,
the first two functionals associated to the external sources vanish in the limit n → ∞.

For the last functional it is possible to write first
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lim
n→∞

Fφ
φ [un, vn] = lim

n→∞

∫

∞

0

dr f(r)(−Λ(r) + Gφ
φ(r|n)),

= lim
n→∞

∫

∞

0

dr f(r)(−Λ(r) +
r

2
∂rG

r
r (r|n) + Gr

r(r|n) +
r

4
∂rνn(r)(Gr

r(r|n) − G0
0(r|n)) ),

= lim
n→∞

∫

∞

0

dr f(r)(
r

2
∂rG

r
r(r|n) +

r

4
∂rνn(r)(Gr

r(r|n) − G0
0(r|n)) ,

= lim
n→∞

∫

∞

0

dr f(r)
( r

2
∂r(Λ θ(r0 − ǫ′(n) − r) + Λ σn(r)) +

r

4
∂rνn(r)(Gr

r(r|n) − G0
0(r|n))

)

,

= −1

2
Λ f(r0) + lim

n→∞

∫

∞

0

dr f(r)
r

4
∂rνn(r)(Gr

r(r|n) − G0
0(r|n)). (31)

But, from the general relations (15)-(18) it follows that

λn(r) = − log (1 − 1

2

∫ r

0

r2G0
0(r|n) dr), (32)

νn(r) =

∫ r

0

dr

(

exp(λn(r)) − 1

r
− r exp (λ(r)) G1

1(r|n)

)

, (33)

which, after taking the derivative of νn(r), gives

∂rνn(r) =
exp(λn(r)) − 1

r
− r exp(λn(r))G1

1(r|n),

= −1

r
+

(1
r
− Λrθ

(0)
n (r0 − r))

1 −
∫ r

0
drr2θ

(1)
n (r0 − r)

.

Further, the denominator in the last expression can be explicitly evaluated as

exp(−λn(r)) = 1 −
∫ r

0

drr2θ(1)
n (r0 − r), (34)

= θ(r0 − ǫ′(n) − r)

(

1 − Λr2

3

)

+ θ(r − r0 + ǫ′(n))

(

1 − Λ

r

(r0 − ǫ′(n))3

3

)

.

After inserting (24) and (34) in (31) the functional Fφ
φ can be transformed in the following way:

lim
n→∞

Fφ
φ [un, vn] = −1

2
Λ r0 f(r0) + lim

n→∞

∫

∞

0

dr f(r)
r

4
∂rνn(r)(Gr

r(r|n) − G0
0(r|n)),

= −1

2
Λ r0 f(r0) − lim

n→∞

∫

∞

0

dr f(r)
Λ

4
σn(r) +

Λ

4
lim

n→∞

∫ r0−ǫ(n)−r

r−r0+ǫ′(n))

dr f(r)
σn(r)(1 − Λr2σn(r))

(1 − Λ
r

(r0−ǫ′(n))3

3 )
,

= −1

2
Λ r0 f(r0) +

Λ

4
lim

n→∞

∫ r0−ǫ(n)−r

r−r0+ǫ′(n))

dr f(r)
σn(r)(1 − Λr2σn(r))

(1 − Λ
r

(r0−ǫ′(n))3

3 )
.

In order to proceed, we complete the specification of the forms of un and vn by fixing the functions σn as given by

σn(r) =
1

6
θ(r0 − ǫ(n) − r) θ(r − r0 + ǫ′(n));

after defining the new integration variable z and parameter ∆ according to

z =
1

ǫ′(n)
(r − r0),

ǫ(n) = −∆ ǫ′(n),
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this allows us to write

lim
n→∞

Fφ
φ [un, vn] = −1

2
Λr0f(r0) +

Λ

24
lim

n→∞

∫

∞

0

dz f(r0 + ǫ′(n)z)
Λ
3 (1

2r2
0 − ǫ′(n)r0z − 1

2ǫ′(n)2z2)(r0 + ǫ′(n) z)θ(1 + z)θ(z − ∆)
Λ
3 (z r2

0 + 3r2
0 − ǫ′(n)r0 − ǫ′(n)2)

,

= −1

2
Λr0f(r0) + f(r0)

Λ r0

48
lim

n→∞

∫ ∆

−1

dz
1

z + 3
,

= f(r0)
Λr0

2
(−1 +

1

24
log

(∆ + 3)

2
).

In this way, after selecting ∆ defined by

∆ = 2 exp(24) − 3,

it follows that the succession of regularized fields S = {(un, vn)} has a corresponding succession of associated
externals sources, which vanish in the limit n → ∞. Therefore the generalized function (ug, vg) defined with the
precision of being the limit of the linear functionals associated to the specific configurations in S, satisfies the Einstein
equations in the weak sense defined here. It can noticed that for linear systems this definition is less restrictive and
the class of successions of field configurations allowed for expressing (ug, vg) as their limit is very much more wider.

VI. CONCLUSIONS

A criterion for a generalized function to be a solution of the non-linear Einstein equations is proposed. Then, a
particular solution satisfying the criterion for the Einstein equations in the presence of a cosmological term which
suddenly vanishes outside a given radial distance, is found. The considered space-time shows a homogeneous deSitter
Universe being at an internal region and the Schwartzschild space for the external one. The characterization of the
appearing singularity at the boundary will be considered in future works.
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