## **References**

- 1. M.Jacob, J.Weyers N.C. 69 A(1970)521, NC 70A (1970) 285.
- 2. D.Treille et al. Proceedings **of** the International Conference, Palermo, 1975.
- 3. CERN-College **de** France-Ecole Polytechnique-Orsay Collaboration Backword elastic scattering  $\pi \cap \pi$  at 9 and 12 GeV/c (to be published).

NUCLEON POLARIZATION IN THE REACTION  $\mathcal{F}$ <sup>+</sup> $D \rightarrow n\pi^+K^-$ 

**1** 

H.Becker, **W.Blum,** V.Chabaud, H.de Groot, H.Dietl, J.Gallisn, B•Gotteschalk, G.Hentschel, B.Hyaas, E.Lorenz, G.LutJens, G.Lutz, W.Manner, B.Niozyporuk, D.Notz, T.Papadooulou, R.Richter, K.Rybioki, U.Stierlin, B.Stringfellow, M.Turala, P.Weilhammer, A.Zalewska

# CERN-Munich Collaboration Presented by G.Luts

Preliminary results from a high statistics **Measurements (f**/M **events)** of the reaction  $\mathcal{F}^*\Box \rightarrow n\mathcal{F}^{\dagger}\mathcal{F}$  on a polarised target at 17.2 GeV show **unexpected** strong nuoleon polarization effects which must be attributed to amplitudes corresponding to  $A_i$  exchange. The evidence is



Fig.1. Mass dependence of Unnormalized moments<br> $\frac{dZ}{dmdt} < Y_0^{\ell} >$  and  $\frac{dZ}{dmdt} < \cos \psi Y_0^{\ell} >$  in the low  $t$  region  $(0.01 < |t| < .2$  GeN<sup>2</sup>)

shown in fig.1, where the helicity zero moments of angular distribution for loo% transversely polarized protons are given as function of the mass of the pion pair. Small four momentum transfer to the nucleons  $(0.01 \angle t \times 0.2$  GeV<sup>2</sup>) has been selected. The spherical harmonics  $Y_Q^4$  are

expressed in the  *channel (or Gottfried-Jackson)* angles of the  $\overline{J}$ .  $\overline{J}$  is the angle between the **noraale to the production plane** *CPh% P &eGn )*  **and the (transverse) polarisation direction of the target. There is a preliminary uncertainty of** 25\* **between the polarisation dependent ao**ments  $\angle cos\psi$   $Re\frac{\partial f}{\partial x}$ obtained in this experiment and the polarisation independent moments  $<$   $Re$  V $^{1}_{m}$ > **taken from the hydrogen experiment^1/.** 

**Supprislng is the large size of the polarisation dependent moments in this t-range which was supposed to be dominated by one pion exchange and should therefore show little or no nucleon polarisation effect. For the left-right-asymmetry which is given by the ratio of the moments** 



**Fig.**2. **t-dependence of**  Cross section  $\frac{d}{dx}$  and normalized moments and  $\langle \cos \psi \chi \rangle$  > for the p-mass region (.71  $<$   $m_{\text{H II}}$   $<$  .83)  $2$ < $cos \psi$   $\chi_o$ >  $\angle$   $\chi$  $\chi_o$ > one obtains 0.35 in the **mass region.** 

The occurence of  $\angle \cos \psi$   $Re$   $\frac{\sqrt{7}}{10}$  moments requires the simultaneous presence of nucleon **spin flip and nonflip amplitudes for equal natu**rality of the exchange. The moment  $<<$   $<$   $0$ s $\psi$   $\frac{V_{o}}{2}$   $>$ **for exaaple is given** by **the interference of the** 

**(unnatural) S wave and P wave helicity zero amplitudes (assuaing absence of D and higher waves) with different nucleon spin flip.**   $[2\langle cos \psi \underline{v}' \rangle = Im(n_b \underline{f_s} - n_s \underline{f_c}) - \underline{f_c} - j(\mu_b, n_c n_c s/\mu_c)]$ The corresponding moments  $Re \leq \frac{\sqrt{3}}{2}$  combine flip **with flip and nonflip aaplltudes** 

**The** $\langle \cos \psi \, \text{Re}\, \chi^2_{\nu} \rangle$  moments resemble (with opposite sign) the  $\leq$ Re $\chi_n$ <sup>4</sup> $>$  moments in the low t region **where natural parity exchange is small. Earlier investigations of the density matrix**  $\frac{2}{3}$  showed **the vanishing of one unnatural eigenvalue in the**  *j>* **aass region. This in turn gives a relation between nonfllp and flip amplitudes** *n-C-j* **with the oomplex constant c independent of spin and helisity of the Jt -pair system. One then obtains a constant ratio** 

$$
R = \frac{2 < cos \psi \ Re \ Y_m >}{< Re \ Y_{m} >} = \frac{2 Im c}{1 + |c|^2}
$$

for all moments or moments combinations which **contain only unnatural parity exchange amplitudes. The relation seems to work in the limited region where it be has been tested. R decreases with m**  and has no strong variation with t in the p mass **region. The alnlaua nonflip amplitude is obtained by assuaing c pure imaginary. In the mass region this assumption helds to**  $A_1$ **-exchange (unnatural parity exchange nucleon spin nonflip) amplitude of roughly** 20\* **of the corresponding flip aaplltudes.** 

### **Amplitude analysis**

**A aodel independent determination of nucleon spin flip and nonflip amplitudes is not possible from this experiaent since the polarization of the recoiling neutrons is not measured. One can however determine two sets of "transversity" aaplltudes g and h corresponding to a polarization of the neutron perpendicular to the production**   $\mathbf{plane} \ \bar{\mathbf{C}} \ \mathcal{G}^{\mathcal{U}} = \frac{1}{2}(n^{\mathcal{U}} + i \int d^{\mathcal{U}})$ ,  $h^{\mathcal{U}} = \frac{1}{2}(\int d^{\mathcal{U}} - i \int d^{\mathcal{U}})$ ,  $\mathcal{G}^{\mathcal{U}} = \frac{1}{2}(\int d^{\mathcal{U}} - i \int d^{\mathcal{U}})$ *h*<sup>1</sup> = <del>j</del><sub>2</sub>(*n*<sup>*n*</sup>**+** $\iota$ **j**<sup>3</sup>) <sub>></sub> **n** and **f**-nonflip, flip, in**dees N, u- natural, unnatural parity exchange. The relative phase between the set of g and the set of h - aaplltudes remains unmeasurable.** 

Up to the p mass region where only s and  $\circ$ waves have to he considered 14 real quantities (8 amplitudes and 6 relative phases) are determined by 15 moments  $\left\langle \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array} \right\rangle$   $\left\langle \begin{array}{c} L & \Delta \\ C & \Delta \end{array} \right\rangle$   $\left\langle \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \end{array} \right\rangle$ and *3^Str\^; im***Vj;**moments) giving one **constraint**  Suitable combination of the moments allows a splitting of the set of 15 equations into 4 subsets which can be solved analytically. The analysis has been performed in the *p* mass region (•71**<m<** .83) for several bins in t. The analytical solution were taken as starting values for a *ji"*minimallzation to satisfy the constraint. In most cases only one unique result for the magnitude of the amplitudes was obtained. The question of phase ambiguities is still under investigation.

The solutions for the transvercity amplitudes of the S-wave  $(q_S, h_S)$ , the helicity zero  $R^S_o$  wave (  $q_{\bm{\alpha}}$  ,  $h_{\bm{a}}$  - the helicity one unnatural parity exchange  $\bigcap$  - wave  $(g_{\mathcal{U}}, h_{\mathcal{U}})$  and the natural parity exchange  $\mathfrak{l}_+^*$ -wave  $(\mathcal{G}_\mathcal{N}, \eta_{\overline{\mathcal{N}}})$  are shown in fig.3. The solid curves are obtained from, a fit





of the moments by adding  $A_4$  and  $A_2$  exchange to the "poor man s absorbtion"model<sup>/3,4/</sup>. The amplitudes are normalised so that the squares enter with equal weight in the cross section.

Without the presence of nonflip amplitudes g and corresponding h amplitude would have the same magnitude. A lower limit for the nonflip amplitude is given by relation

 $m > 1$  igi-IhU $\sqrt{2}$  ,

The knowledge of the transversity amplitudes allows a determination of the intensity<br>  $n|^2 + |\int_1^2 = |g|^2 + |h|^2$ 

for each partial wave separately (fig.4) and



Fig.4. Intensities of the partial waves calculated from the transversity amplitudes.

therefore a exact splitting of the cross section into natural and unnatural parity exchange contributions .

## Conclusions

The strong nucleon polarization effect found in a kinematic region which was supposed to be dominated by one pion exchange was completely unexpected. If it is due to the exchange of an additional particle this object has the quantum number of the  $A_i$ . Possibly it can also be explanedsimilarity to the helicity one moments in one pion exchange - by final state interaction. The problem is of particular interest for  $\tau\tau$  scattering as  $A_i$  exchange has been assumed to be absent in all  $\overline{11}$  phase hift analysis. A continuation of the unfinished analysis will hopefully clarify the situation.

#### References

- 1. G. Grayer et al. Nucl. Phys., B75(1974)189.
- 2. G.Grayer et al.Nucl.Phys.**,B50(1972)29.**
- 3. P.K.Williams,Phys.Rev.Dl(1970)1312.
- 4. B.Hyams et al.Nucl.Phys.,B100 (1975) 205.

**PARALLEL SESSION ON BARTON SPECTROSCOPY** 

**RESONANCES AND RESONANCE PARAMETERS FROM**   $\mathbf{A}^{\mathcal{J}\mathcal{L}\mathcal{N}}$  PARTIAL WAVE ANALYSIS BETWEEN 0.8 AND **2.0 GeV/c** 

> **R.E.Cutkosky, R.E.Hendriek Carnegie-Mellon University, Pittsburgh,**

**R.L.Kelly Lawrence Berkeley Laboratory, Berkeley, California** 

**Phenomenological models of baryon structure have been studied with increasing interest in recent years. The SU(6)x0(3) harmonic oscillator model proposed by Greenberg, and its relativis-** $\frac{t_{10}}{2}$  and diquark<sup>/3</sup> variations, have had **notable success in reproducing the observed baryon mass spectrum. More recent developments such as the "dual string"^4/ and "bag"/5/ models of baryons again focused attention on the spectrum of baryoa resonances.** 

**The primary source of information to test such models comes from partial wave analyses. For distinguishing among models, resonances on non-leading trajectories are of critical importance. It is hard to study such resonances, beoause they occur in partial waves which have low statistical weights and which are strongly affected by phase ambiguities. They also have small inelasticities and tend to overlap.For the unbiased determination of resonances in low partial waves, accurate data and sophisticated partial wave analysis methods are necessary.** 

**We have analysed amalgamated pion proton scattering data at 26 momenta in the range 0.8**  $\leq$  $P_{\ell,k}$  $\leq$  **2.0 GeV/c using the accelerated convergence expansion (ACE) method, in which higher partial waves are not required to vanish, but are determined by particle exchange processes and by extrapolation from lower partial waves. Dispersion relations along curves which lie within the physical region for scattering were used to remove ambiguities** and **to generate predioted amplitudes at each energy.**